KR100773322B1 - Polymer electrolyte membrane for fuel cell containing cross-liked pbi and method of preparing the same - Google Patents

Polymer electrolyte membrane for fuel cell containing cross-liked pbi and method of preparing the same Download PDF

Info

Publication number
KR100773322B1
KR100773322B1 KR1020060133691A KR20060133691A KR100773322B1 KR 100773322 B1 KR100773322 B1 KR 100773322B1 KR 1020060133691 A KR1020060133691 A KR 1020060133691A KR 20060133691 A KR20060133691 A KR 20060133691A KR 100773322 B1 KR100773322 B1 KR 100773322B1
Authority
KR
South Korea
Prior art keywords
polymer
electrolyte membrane
polymer electrolyte
pbi
acid
Prior art date
Application number
KR1020060133691A
Other languages
Korean (ko)
Inventor
김형준
이혜진
임태훈
이상엽
윤성필
하흥용
조은애
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020060133691A priority Critical patent/KR100773322B1/en
Application granted granted Critical
Publication of KR100773322B1 publication Critical patent/KR100773322B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/06Polyhydrazides; Polytriazoles; Polyamino-triazoles; Polyoxadiazoles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

A polymer, a polymer electrolyte membrane containing the polymer, a method for preparing the polymer electrolyte membrane, and a polymer electrolyte membrane fuel cell containing the polymer electrolyte membrane are provided to prevent the decrease of the size of polybenzimidazole at a high temperature, thereby improving the performance of a fuel cell. A polymer is represented by the formula 1, wherein X is SO2 or CO; Y is C(CH3)2, C(CF3)2, CH2 or no atom; n/m is 1/99 - 50/50; and n+m is 500-10,000. The polymer electrolyte membrane comprises the product obtained by crosslinking the polymer represented by the formula 1, and polybenzimidazole or poly(2,5-benzimidazole). Preferably the polymer electrolyte membrane comprises further an inorganic acid.

Description

크로스링크된 PBI를 포함하는 연료전지용 고분자 전해질막 및 그 제조방법{Polymer electrolyte membrane for fuel cell containing cross-liked PBI and method of preparing the same} Polymer electrolyte membrane for fuel cell containing cross-liked PBI and method of preparing the same}

도 1은 PBI와 크로스링크된 PBI의 I-V 곡선을 나타낸 그림이다.1 shows an I-V curve of a PBI crosslinked with a PBI.

본 발명은 고분자와 크로스링크된 PBI 를 포함하는 고분자 전해질막, 그의 제조방법 및 상기 고분자 전해질막을 이용한 고분자 전해질막 연료전지에 관한 것이다.The present invention relates to a polymer electrolyte membrane comprising a PBI crosslinked with a polymer, a method for manufacturing the same, and a polymer electrolyte membrane fuel cell using the polymer electrolyte membrane.

연료전지는 사용되는 전해질의 종류에 따라 고분자 전해질막 연료전지(PEMFC: polymer electrolyte membrane fuel cell), 인산 연료전지 (PAFC : phosphoric acid fuel cell), 용융탄산염 연료전지 (MCFC : molten carbonate fuel cell), 고체 산화물 연료전지 (SOFC : solid oxide fuel cell) 등으로 구분될 수 있다. 사용되는 전해질에 따라 연료전지의 작동온도 및 구성 부품의 재질 등이 달라진다.The fuel cell is a polymer electrolyte membrane fuel cell (PEMFC), a phosphoric acid fuel cell (PAFC), a molten carbonate fuel cell (MCFC) according to the type of electrolyte used, It may be classified into a solid oxide fuel cell (SOFC). Depending on the electrolyte used, the operating temperature of the fuel cell and the material of the components vary.

PEMFC의 기본 구조는 통상적으로 애노드(연료 전극), 캐소드(산화제 전극), 및 애노드와 캐소드 사이에 배치된 고분자 전해질막을 포함한다. PEMFC의 애노드에는 연료의 산화를 촉진시키기 위한 촉매층이 구비되어 있으며, PEMFC의 캐소드에는 산화제의 환원을 촉진시키기 위한 촉매층이 구비되어 있다.The basic structure of a PEMFC typically includes an anode (fuel electrode), a cathode (oxidant electrode), and a polymer electrolyte membrane disposed between the anode and the cathode. The anode of the PEMFC is provided with a catalyst layer for promoting the oxidation of the fuel, and the cathode of the PEMFC is provided with a catalyst layer for promoting the reduction of the oxidant.

PEMFC의 애노드에 공급되는 연료로서는 통상적으로 수소, 수소 함유 가스, 메탄올과 물의 혼합 증기, 메탄올 수용액 등이 사용된다. PEMFC의 캐소드에 공급되는 산화제는 통상적으로 산소, 산소 함유 가스 또는 공기이다. PEMFC의 애노드에서는 연료가 산화되어 수소이온과 전자가 생성된다. 수소 이온은 전해질막을 통하여 캐소드로 전달되며, 전자는 도선(또는 집전체)을 통하여 외부회로(부하)로 전달된다. PEMFC의 캐소드에서는 전해질막을 통하여 전달된 수소이온, 도선(또는 집전체)을 통하여 외부회로로부터 전달된 전자, 및 산소가 결합하여 물이 생성된다. 이 때, 애노드, 외부회로 및 캐소드를 경유하는 전자의 이동이 곧 전력이다.As a fuel supplied to the anode of PEMFC, hydrogen, a hydrogen containing gas, mixed vapor of methanol and water, aqueous methanol solution, etc. are used normally. The oxidant supplied to the cathode of the PEMFC is typically oxygen, an oxygen containing gas or air. At the anode of the PEMFC, the fuel is oxidized to produce hydrogen ions and electrons. Hydrogen ions are transferred to the cathode through the electrolyte membrane, and electrons are transferred to the external circuit (load) through the conductor (or current collector). In the cathode of the PEMFC, water is generated by combining hydrogen ions transferred through the electrolyte membrane, electrons transferred from an external circuit through a conductor (or current collector), and oxygen. At this time, the movement of electrons via the anode, the external circuit and the cathode is power.

PEMFC에 있어서 고분자 전해질막은 애노드로부터 캐소드로의 수소이온의 이동을 위한 이온전도체의 역할을 할 뿐만 아니라, 애노드와 캐소드의 기계적 접촉을 차단하는 격리막(separator)의 역할도 한다. 따라서 고분자 전해질막에 대하여 요구되는 특성은 우수한 이온전도도, 전기화학적 안전성, 높은 기계적 강도, 작동온도에서의 열안정성, 박막화의 용이성 등이다.In PEMFC, the polymer electrolyte membrane not only functions as an ion conductor for the migration of hydrogen ions from the anode to the cathode, but also serves as a separator that blocks mechanical contact between the anode and the cathode. Therefore, the properties required for the polymer electrolyte membrane are excellent ion conductivity, electrochemical stability, high mechanical strength, thermal stability at operating temperature, ease of thinning and the like.

고분자 전해질막의 재료로서는 일반적으로 불소화 알킬렌으로 구성된 주쇄와 말단에 술폰산기를 갖는 불소화비닐 에테르로 구성된 측쇄를 갖는 술포네이트 고불화 고분자(예: Nafion : Dupont사의 상표)와 같은 고분자 전해질이 사용되고 있다. 이러한 고분자 전해질막은 적정량의 물을 함습함으로써 우수한 이온 전도성을 발휘 하게 된다.As the material of the polymer electrolyte membrane, a polymer electrolyte such as a sulfonate high fluorinated polymer having a main chain composed of a fluorinated alkylene and a side chain composed of a fluorinated vinyl ether having a sulfonic acid group at its terminal (for example, Nafion: Dupont's trademark) is used. The polymer electrolyte membrane exhibits excellent ion conductivity by impregnating an appropriate amount of water.

그러나 이러한 전해질막은 100℃ 이상의 작동 온도에서 증발에 의한 수분손실로 인하여 이온 전도성이 심각하게 저하되어서 전해질막으로서의 기능을 상실하게 된다. 따라서 이러한 고분자 전해질막을 사용하는 PEMFC를 상압하에서 그리고 100℃ 이상의 온도에서 작동시키는 것은 거의 불가능하다. PEMFC의 작동온도를 100℃ 이상으로 상승시키기 위하여, PEMFC에 가습 장치를 장착하거나 PEMFC를 가압 조건 하에서 운전하는 방안, 가습을 요하지 않는 고분자 전해질을 사용하는 방안 등이 제안된 바 있다. 그러나 가압 시스템을 적용하거나 가습장치를 장착하면, PEMFC의 크기 및 중량이 매우 증가할 뿐만 아니라, 발전 시스템의 전체 효율도 감소한다. However, the electrolyte membrane is severely lowered in ionic conductivity due to moisture loss due to evaporation at an operating temperature of more than 100 ℃ to lose the function as an electrolyte membrane. Therefore, it is almost impossible to operate PEMFC using such a polymer electrolyte membrane under normal pressure and at a temperature of 100 ° C. or higher. In order to increase the operating temperature of the PEMFC to more than 100 ℃, a method of mounting a humidifier to the PEMFC or operating the PEMFC under pressurized conditions, a method of using a polymer electrolyte that does not require humidification has been proposed. However, applying a pressurized system or mounting a humidifier not only greatly increases the size and weight of the PEMFC, but also reduces the overall efficiency of the power generation system.

PEMFC의 활용범위를 극대화시킬 수 있는, 가습하지 않아도 우수한 이온 전도도를 발휘하는 "무가습 고분자 전해질막"로서, 폴리벤조이미다졸(PBI), 황산 또는 인산이 도핑된 폴리벤조이미다졸 등과 같은 재료가 개시되어 있다. 그러나 100℃ 내지 200℃의 온도에서 고분자 전해질막로서 PBI 계열의 전해질막을 사용하는 경우, 고온에서의 열 및 화학적 안정성은 우수하지만 장시간 사용시 고분자 물질의 크기가 줄어들어 장기적으로 성능이 감소되는 단점이 있다. It is a "humidification-free polymer electrolyte membrane" that exhibits excellent ionic conductivity without humidification, which can maximize the application range of PEMFC, and materials such as polybenzoimidazole (PBI), sulfuric acid or phosphoric acid-doped polybenzoimidazole Is disclosed. However, when the PBI-based electrolyte membrane is used as the polymer electrolyte membrane at a temperature of 100 ° C. to 200 ° C., the thermal and chemical stability at high temperatures are excellent, but the polymer material is reduced in the long term, resulting in a decrease in performance in the long term.

상기 문제를 해결하기 위하여, 본 발명은 기존의 무기산 도핑 PBI를 고분자와 크로스링크시킴으로써 PBI의 치수 불안정성이 해결된 고분자 전해질막을 제공하는 것을 목적으로 한다. 또한 상기 고분자 전해질막을 포함하는 연료전지를 제공하 는 것을 목적으로 한다. In order to solve the above problems, an object of the present invention is to provide a polymer electrolyte membrane in which dimensional instability of PBI is solved by crosslinking an existing inorganic acid-doped PBI with a polymer. It is also an object of the present invention to provide a fuel cell comprising the polymer electrolyte membrane.

상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 고분자 A를 제공한다.In order to achieve the above object, the present invention provides a polymer A represented by the following formula (1).

Figure 112006096179114-pat00001
Figure 112006096179114-pat00001

(X는 SO2 또는 CO; Y는 C(CH3)2, C(CF3)2, CH2 또는 no atom;(X is SO 2 or CO; Y is C (CH 3 ) 2 , C (CF 3 ) 2 , CH 2 or no atom;

n/m = 1/99 ~ 50/50, n + m = 500 ~ 10,000) n / m = 1/99 to 50/50, n + m = 500 to 10,000)

또한 본 발명은 상기 화학식 1로 표시되는 고분자 A; 및 폴리벤조이미다졸(PBI) 또는 폴리(2,5-벤즈이미다졸)(ABPBI)을 크로스링크 반응시킨 생성물을 포함하는 것을 특징으로 하는 고분자 전해질막을 제공한다.In addition, the present invention is a polymer A represented by the formula (1); And a product obtained by crosslinking polybenzoimidazole (PBI) or poly (2,5-benzimidazole) (ABPBI).

본 발명의 고분자 전해질막에 있어서, 무기산이 더 포함되는 것을 특징으로 하고, 상기 무기산은 인산, 질산, 염산 및 황산 중에 선택된 하나 이상인 것을 특징으로 한다. 또한 상기 반응하는 고분자A : PBI의 중량비 또는 고분자 A : ABPBI의 중량비는 1:10 ~ 10:1인 것을 특징으로 한다. In the polymer electrolyte membrane of the present invention, an inorganic acid is further included, and the inorganic acid is at least one selected from phosphoric acid, nitric acid, hydrochloric acid, and sulfuric acid. In addition, the weight ratio of the polymer A: PBI or the polymer A: ABPBI to the reaction is characterized in that 1:10 ~ 10: 1.

본 발명은 상기 화학식 1로 표시되는 고분자 A, 및 PBI 또는 ABPBI를 혼합하여 용매에 용해시키는 단계(S1); 상기 혼합물로 막을 캐스팅하는 단계(S2); 및 상 기 막에 UV를 조사하고 건조시키는 단계(S3)를 포함하는 것을 특징으로 하는 고분자 전해질막 제조방법을 제공한다.The present invention comprises the steps of mixing the polymer A, represented by the formula (1), and PBI or ABPBI dissolved in a solvent (S1); Casting the membrane with the mixture (S2); And it provides a polymer electrolyte membrane manufacturing method comprising the step (S3) of irradiating and drying the membrane UV.

본 발명의 고분자 전해질막 제조방법에 있어서, 상기 제조방법은 상기 S3 단계에서 건조된 막을 무기산에 담궈 도핑하는 단계를 더 포함하는 것을 특징으로 하고 상기 무기산은 인산, 질산, 염산 및 황산 중에 선택된 하나 이상인 것을 특징으로 한다. 또한 상기 S1 단계는 고분자 A 및 PBI, 또는 고분자 A 및 ABPBI를 1:10 내지 10:1의 중량비로 혼합하는 것을 특징으로 한다.In the manufacturing method of the polymer electrolyte membrane of the present invention, the method further comprises the step of immersing the membrane dried in the step S3 in the inorganic acid and the inorganic acid is at least one selected from phosphoric acid, nitric acid, hydrochloric acid and sulfuric acid. It is characterized by. In addition, the step S1 is characterized in that the polymer A and PBI, or polymer A and ABPBI are mixed in a weight ratio of 1:10 to 10: 1.

또한 본 발명은 상기 고분자 전해질막; 캐소드; 및 애노드를 포함하는 것을 특징으로 하는 고분자 전해질막 연료전지를 제공한다.In addition, the present invention is the polymer electrolyte membrane; Cathode; And it provides a polymer electrolyte membrane fuel cell comprising an anode.

이하 본 발명을 더욱 상세하게 설명한다. Hereinafter, the present invention will be described in more detail.

상기 화학식 1로 표시되는 고분자 A에서 n과 m의 합은 합성방법의 정교함에 따라 다르지만 500 ~ 10,000 이 바람직하고, n/m은 1/99 ~ 50/50이 바람직하다. 이는 1/99보다 작은 경우에는 크로스링크가 적게 되고 50/50보다 큰 경우에는 크로스링크가 너무 많아져 고분자막이 깨지기 쉬워지기 때문이다. In the polymer A represented by Formula 1, the sum of n and m is different depending on the sophistication of the synthesis method, but 500 to 10,000 is preferable, and n / m is preferably 1/99 to 50/50. This is because when the size is less than 1/99, the crosslink is small, and when the size is larger than 50/50, the crosslink is too large to easily break the polymer membrane.

상기 화학식 1로 표시되는 고분자 A 중 X가 SO2인 고분자 A를 제조하기 위해서는 폴리에테르케톤(PEK) 대신 폴리에테르설폰(Polyethersulfone)의 합성으로부터 상기 화학식 1로 표시되는 고분자 A를 제조한다.In order to prepare polymer A, wherein X is SO 2 in the polymer A represented by Formula 1, polymer A represented by Formula 1 is prepared from synthesis of polyethersulfone instead of polyether ketone (PEK).

상기 화학식 1로 표시되는 고분자 A와 크로스링크되는 화합물로는 PBI 대신 하기 화학식 2로 표시되는 ABPBI (poly(2,5-benzimidazole)를 사용하는 것이 가능 하다. It is possible to use ABPBI (poly (2,5-benzimidazole) represented by Formula 2 below instead of PBI as a compound crosslinked with the polymer A represented by Formula 1 above.

Figure 112006096179114-pat00002
Figure 112006096179114-pat00002

이하 하기 구체예를 통해 본 발명을 더욱 상세하게 설명한다. 하기 구체예들은 발명을 설명하기 위한 것이고 발명을 한정하기 위한 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. The following embodiments are intended to illustrate the invention and are not intended to limit the invention.

<실시예 1: 폴리에테르케톤(Polyetherketone, PEK) 합성>Example 1 Polyetherketone (PEK) Synthesis

Figure 112006096179114-pat00003
Figure 112006096179114-pat00003

100 mL 둥근바닥 플라스크에 디플루오로벤조페논(difluorobenzophenone)(4.364 g, 20 mmol), 4-메틸 하이드로퀴논(4-methyl hydroquione)(1.2414 g, 10 mmol), 비스페놀 A(Bisphenol A)(2.2829 g, 10 mmol), 포타슘 카보네이트(potassium carbonate)(5.5284 g, 40 mmol), DMAc(Dimethylacetamide) (20 mL)와 톨루엔(20 mL)을 넣고 질소 분위기 하에서 딘스탁(Deanstark trap)장치로 4시간 가열하였다. 그 후 플라스크 안의 톨루엔과 물은 1시간 간격으로 딘스탁 트랩을 통해 제거하고 플라스크를 180 ℃에서 20시간 교 반하면서 가열하였다. 반응이 종결된 후 플라스크를 실온으로 식히고, 점도가 증가한 고분자 혼합물에 NMP 20 mL를 넣어 완전히 용해시킨 후 메탄올 1L에 넣어 흰색의 침전을 얻었다. 상기 흰색의 고체를 진공 오븐 60℃에서 2시간동안 건조하고, 잔류하는 무기물 및 미반응 물질은 속슬렛(Soxhlet) 장치를 이용하여 제거한 후, 얻어진 고체를 다시 진공오븐 60℃에서 24시간동안 건조하여 PEK(반응식 1의 물질 1)를 얻었다.Difluorobenzophenone (4.364 g, 20 mmol), 4-methyl hydroquione (1.2414 g, 10 mmol), Bisphenol A (2.2829 g) in a 100 mL round bottom flask , 10 mmol), potassium carbonate (5.5284 g, 40 mmol), DMAc (Dimethylacetamide) (20 mL) and toluene (20 mL) were added and heated by a Deanstark trap device under a nitrogen atmosphere for 4 hours. . Toluene and water in the flask were then removed via a Deanstock trap at 1 hour intervals and the flask was heated with stirring at 180 ° C. for 20 hours. After the reaction was completed, the flask was cooled to room temperature, 20 mL of NMP was added to the polymer mixture having increased viscosity to completely dissolve it, and then put into 1 L of methanol to obtain a white precipitate. The white solid was dried in a vacuum oven at 60 ° C. for 2 hours, the remaining inorganic material and unreacted material were removed using a Soxhlet apparatus, and then the obtained solid was dried at 60 ° C. in a vacuum oven for 24 hours. PEK (Material 1 of Scheme 1) was obtained.

1H NMR (500 MHz, CDCl3, δ) 9.5-9.2 (8H, broad signal, ArH), 7.9-7.7 (8H, broad siganl, ArH), 7.1-6.8 (11H, broad signal, ArH) 2.3-2.1 (3H, broad signal, ArCH 3) 1.8-1.6 (6H, broad signal, 비스페놀 A로부터 2 x ArCH 3) 1 H NMR (500 MHz, CDCl 3, δ ) 9.5-9.2 (8H, broad signal, Ar H ), 7.9-7.7 (8H, broad siganl, Ar H ), 7.1-6.8 (11H, broad signal, ArH) 2.3 -2.1 (3H, broad signal, ArC H 3 ) 1.8-1.6 (6H, broad signal, 2 x ArC H 3 from bisphenol A)

<실시예 2: PEK의 브롬화 반응>Example 2: Bromination of PEK

Figure 112006096179114-pat00004
Figure 112006096179114-pat00004

둥근바닥 플라스크에서 상기 실시예 1에서 제조된 PEK(5 g)를 메틸렌 클로라이드(methylene chloride)(50 mL)에 녹였다. 고분자가 용매에 녹으면 CCl4 (100 ml) 와 DCM (50ml)을 혼합한 것과 N-브로모숙신이미드(bromosuccinimide, NBS)(1.88 g)를 넣고 UV를 10분간 조사하였다. 이후 용액을 질소하 실온에서 24시간 교반하여 얻어진 노란색의 액체를, 메탄올 1L에 넣어 침전을 석출시키고, 침전물은 필터 후 다시 물에 넣어 교반시키고 필터하였다. 얻어진 고체를 진공오븐에서 24시간 건조시켜 PEK 코폴리머 브로마이드(PEK copolymer bromide)(반응식 2의 물질 2)를 얻었다.PEK (5 g) prepared in Example 1 was dissolved in methylene chloride (50 mL) in a round bottom flask. When the polymer was dissolved in a solvent, a mixture of CCl 4 (100 ml) and DCM (50 ml) was added and N-bromosuccinimide (NBS) (1.88 g) was added thereto, followed by UV irradiation for 10 minutes. Then, the yellow liquid obtained by stirring the solution at room temperature under nitrogen for 24 hours was added to 1 L of methanol to precipitate a precipitate, and the precipitate was put in water again after the filter and stirred and filtered. The obtained solid was dried in a vacuum oven for 24 hours to obtain a PEK copolymer bromide (Material 2 of Scheme 2).

1H NMR (500 MHz, CDCl3, δ) 8.6-8.3 (8H, broad signal, ArH), 7.9-7.7 (8H, broad signal, ArH), 7.1-6.8 (11H, broad signal, ArH), 4.5-4.4 (2H, broad signal, ArCH 2Br), 1.8-1.6 (6H, broad signal, 비스페놀 A로부터 2 x ArCH 3). 1 H NMR (500 MHz, CDCl 3, δ ) 8.6-8.3 (8H, broad signal, Ar H ), 7.9-7.7 (8H, broad signal, Ar H ), 7.1-6.8 (11H, broad signal, ArH), 4.5-4.4 (2H, broad signal, ArC H 2 Br), 1.8-1.6 (6H, broad signal, 2 × ArC H 3 from bisphenol A).

<실시예 3:벤질 브로마이드의 치환>Example 3 Substitution of Benzyl Bromide

Figure 112006096179114-pat00005
Figure 112006096179114-pat00005

상기 반응식 2에서 제조된 PEK 코폴리머 브로마이드(PEK copolymer bromide)(3 g)를 DMF (50 mL)에 녹인 후, NaN3 (0.37 g)를 넣고 실온, 질소하에서 24시간 교반하였다. 반응이 종결된 후 얻어진 액체를 메탄올 500 mL에 넣어 결정으로 석출시키고 여과한 후 고체를 다시 증류수 1L에 넣어 닦아주었다. 얻어진 고체를 다시 진공 오븐에서 24시간 건조하여 고분자 A(반응식 3의 물질 3)를 얻었다.PEK copolymer bromide (3 g) prepared in Scheme 2 was dissolved in DMF (50 mL), NaN 3 (0.37 g) was added thereto, and the mixture was stirred at room temperature and nitrogen for 24 hours. After the reaction was completed, the obtained liquid was poured into 500 mL of methanol to precipitate crystals, filtered, and the solid was put back into 1 L of distilled water and washed. The obtained solid was again dried in a vacuum oven for 24 hours to obtain Polymer A (Material 3 of Scheme 3).

ν max (KBr)/cm-1 3432 (vinyl C-H), 3094 (C-H), 3056 (C-H), 2094 (N3), 1652 (C=O), 1601 (vinyl C=C), 1491 and 1232 ν max (KBr) / cm -1 3432 (vinyl CH), 3094 (CH), 3056 (CH), 2094 (N 3 ), 1652 (C = O), 1601 (vinyl C = C), 1491 and 1232

<실시예 4: PBI 합성>Example 4: PBI Synthesis

Figure 112006096179114-pat00006
Figure 112006096179114-pat00006

1L의 둥근 플라스크에 3.3'-디아미노벤지딘(3.3'-Diaminobenzidine)(12g)과 이소프탈릭산(Isophthalic acid)(9.3g)을 폴리포스포릭산(Polyphosphoric acid, PPA)에 넣고 질소분위기에서 220℃로 25시간 중합시킨다. 교반은 메카니칼 오버헤드 스터러(mechanical overhead stirrer)를 이용하였다. 교반속도는 상온에서 100RPM으로 맞추어주면, 온도가 증가함에 따라 PPA의 점성이 줄어들어 300RPM까지 증가하다가, 반응이 진행됨에 따라 용액의 점도가 증가하여 최종적으로는 180~200RPM이 되었다. 또한 반응이 진행되면 용액의 색깔도 황토색에서 진한 갈색으로 변했다. 이렇게 제조된 용액을 물에 침전시켜 고분자를 얻고 이 고분자를 100℃ 진공오븐에서 24시간 건조시켜 고유점도가 1.5~3.0dL/g 정도인 PBI 분말을 얻었 다. In a 1 L round flask, 3.3'-Diaminobenzidine (12g) and isophthalic acid (9.3g) were put in polyphosphoric acid (PPA) and heated at 220 ° C in a nitrogen atmosphere. To 25 hours. Stirring was used with a mechanical overhead stirrer. When the stirring speed was adjusted to 100 RPM at room temperature, the viscosity of the PPA decreased with increasing temperature and increased to 300 RPM, and as the reaction proceeded, the viscosity of the solution increased to finally 180 to 200 RPM. The color of the solution also changed from ocher to dark brown as the reaction proceeded. The solution thus prepared was precipitated in water to obtain a polymer, and the polymer was dried in a vacuum oven at 100 ° C. for 24 hours to obtain PBI powder having an intrinsic viscosity of about 1.5 to 3.0 dL / g.

<실시예 5: 크로스링크된 PBI 막 제조>Example 5: Crosslinked PBI Film Preparation

Figure 112006096179114-pat00007
Figure 112006096179114-pat00007

상기 실시예 4에서 제조된 PBI (5g)와 상기 실시예 3에서 제조된 고분자 A (2g)를 DMAc (100mL)에 용해시키고 유리판에 적당량을 부은 후 닥터블레이드(Doctor blade)로 막을 캐스팅하였다(PBI:고분자A=1:10~10:1). 이 고분자 용액 막에 UV를 10분간 조사하고 60℃ 진공 오븐에서 50시간 건조하여 크로스링크된 PBI 막을 제조하였다. 제조된 막을 60% 인산에 3일 동안 담구어 400%가 도핑된 고분자 전해질막을 얻었다. PBI (5 g) prepared in Example 4 and Polymer A (2 g) prepared in Example 3 were dissolved in DMAc (100 mL), poured into an appropriate amount on a glass plate, and the membrane was cast using a doctor blade (PBI). : Polymer A = 1: 10 ~ 10: 1). The polymer solution membrane was irradiated with UV for 10 minutes and dried in a vacuum oven at 60 ° C. for 50 hours to prepare a crosslinked PBI membrane. The prepared membrane was immersed in 60% phosphoric acid for 3 days to obtain a polymer electrolyte membrane doped with 400%.

<비교예: 기존의 PBI막> Comparative Example: Existing PBI Film

PBI(5g)를 DMAc (100mL)에 용해시키고 유리판에 적당량을 부은 후 닥터블레 이드로 막을 캐스팅하였다. 이것을 60℃ 진공 오븐에서 50시간 건조하여 PBI 막을 제조하였다. 제조된 막을 60% 인산에 3일 동안 담구어 400%가 도핑된 고분자 전해질막을 얻는다.PBI (5 g) was dissolved in DMAc (100 mL), an appropriate amount was poured on a glass plate, and the membrane was cast with a doctor blade. This was dried for 50 hours in a 60 ℃ vacuum oven to prepare a PBI film. The prepared membrane was immersed in 60% phosphoric acid for 3 days to obtain a polymer electrolyte membrane doped with 400%.

<실험예: 단위전지 성능 테스트>Experimental Example: Unit Battery Performance Test

상기 실시예 5에서 제조된 크로스링크된 PBI 막 및 비교예에서 제조된 PBI 막에 전극을 장착하여 핫프레스 작업 없이 연료전지를 제작하고 단위전지의 성능을 테스트하였다(조건 150℃, 수소/공기).The fuel cell was fabricated without hot press operation by mounting electrodes on the crosslinked PBI membrane prepared in Example 5 and the PBI membrane prepared in Comparative Example, and the performance of the unit cell was tested (condition 150 ° C., hydrogen / air). .

그 결과 I-V 곡선인 도 1에서 나타난 바와 같이, 실시예 5의 크로스링크된 PBI막을 구비한 전지의 단위전지성능이 비교예에 비하여 더 높음을 알 수 있었다.As a result, as shown in FIG. 1, which is an I-V curve, it was found that the unit cell performance of the battery having the crosslinked PBI film of Example 5 was higher than that of the comparative example.

이상에서 설명한 바와 같이, 고분자와 크로스링크된 PBI를 전해질막으로 사용함으로써 기존의 고분자 전해질막에서 PBI의 크기가 고온에서 줄어드는 문제를 해결할 수 있다. 이에 따른 성능 감소 문제도 해결할 수 있으므로 이러한 고분자를 고분자 전해질막으로 이용할 경우 높은 성능의 연료전지를 제작할 수 있다. As described above, by using the PBI crosslinked with the polymer as an electrolyte membrane, it is possible to solve the problem that the size of the PBI is reduced at a high temperature in the conventional polymer electrolyte membrane. As a result, the performance reduction problem can be solved, and thus, when the polymer is used as a polymer electrolyte membrane, a high performance fuel cell can be manufactured.

Claims (10)

하기 화학식 1로 표시되는 고분자 A.Polymer A represented by Formula 1 below. [화학식 1][Formula 1]
Figure 112006096179114-pat00008
Figure 112006096179114-pat00008
(X는 SO2 또는 CO;(X is SO 2 or CO; Y는 C(CH3)2, C(CF3)2, CH2 또는 no atom;Y is C (CH 3 ) 2 , C (CF 3 ) 2 , CH 2 or no atom; n/m = 1/99 ~ 50/50, n + m = 500 ~ 10,000) n / m = 1/99 to 50/50, n + m = 500 to 10,000)
하기 화학식 1로 표시되는 고분자 A; 및Polymer A represented by the following Formula 1; And 폴리벤조이미다졸(PBI) 또는 폴리(2,5-벤즈이미다졸)(ABPBI)을 크로스링크 반응시킨 생성물을 포함하는 것을 특징으로 하는 고분자 전해질막.A polymer electrolyte membrane comprising a product obtained by crosslinking polybenzoimidazole (PBI) or poly (2,5-benzimidazole) (ABPBI). [화학식 1][Formula 1]
Figure 112006096179114-pat00009
Figure 112006096179114-pat00009
(X는 SO2 또는 CO;(X is SO 2 or CO; Y는 C(CH3)2, C(CF3)2, CH2 또는 no atom;Y is C (CH 3 ) 2 , C (CF 3 ) 2 , CH 2 or no atom; n/m = 1/99 ~ 50/50, n + m = 500 ~ 10,000) n / m = 1/99 to 50/50, n + m = 500 to 10,000)
제2항에 있어서, 무기산이 더 포함되는 것을 특징으로 하는 고분자 전해질막.The polymer electrolyte membrane of Claim 2, further comprising an inorganic acid. 제2항 또는 제3항에 있어서, 상기 반응하는 고분자A : PBI의 중량비, 또는 고분자 A : ABPBI의 중량비는 1:10 ~ 10:1인 것을 특징으로 하는 고분자 전해질막.The polymer electrolyte membrane according to claim 2 or 3, wherein the weight ratio of the polymer A: PBI to react or the weight ratio of the polymer A: ABPBI is 1:10 to 10: 1. 제3항에 있어서, 상기 무기산은 인산, 질산, 염산 및 황산 중에 선택된 하나 이상인 것을 특징으로 하는 고분자 전해질막.The polymer electrolyte membrane of Claim 3, wherein the inorganic acid is at least one selected from phosphoric acid, nitric acid, hydrochloric acid, and sulfuric acid. 하기 화학식 1로 표시되는 고분자 A, 및 PBI 또는 ABPBI를 혼합하여 용매에 용해시키는 단계(S1); Mixing the polymer A represented by Formula 1 with PBI or ABPBI and dissolving it in a solvent (S1); 상기 혼합물로 막을 캐스팅하는 단계(S2); 및Casting the membrane with the mixture (S2); And 상기 막에 UV를 조사하고 건조시키는 단계(S3)를 포함하는 것을 특징으로 하는 고분자 전해질막 제조방법.The polymer electrolyte membrane manufacturing method comprising the step of irradiating and drying the membrane UV (S3). [화학식 1][Formula 1]
Figure 112006096179114-pat00010
Figure 112006096179114-pat00010
(X는 SO2 또는 CO;(X is SO 2 or CO; Y는 C(CH3)2, C(CF3)2, CH2 또는 no atom;Y is C (CH 3 ) 2 , C (CF 3 ) 2 , CH 2 or no atom; n/m = 1/99 ~ 50/50, n + m = 500 ~ 10,000) n / m = 1/99 to 50/50, n + m = 500 to 10,000)
제6항에 있어서, 상기 제조방법은 상기 S3 단계에서 건조된 막을 무기산에 담궈 도핑하는 단계를 더 포함하는 것을 특징으로 하는 고분자 전해질막 제조방법.The method according to claim 6, wherein the manufacturing method further comprises the step of doping the membrane dried in the step S3 in an inorganic acid. 제6항 또는 제7항에 있어서, 상기 S1 단계는 고분자 A 및 PBI, 또는 고분자 A 및 ABPBI를 1:10 내지 10:1의 중량비로 혼합하는 것을 특징으로 하는 고분자 전해질막 제조방법.The method of claim 6 or 7, wherein the step S1 comprises polymer A and PBI, or polymer A and ABPBI in a weight ratio of 1:10 to 10: 1. 제7항에 있어서, 상기 무기산은 인산, 질산, 염산 및 황산 중에 선택된 하나 이상인 것을 특징으로 하는 고분자 전해질막 제조방법.The method of claim 7, wherein the inorganic acid is at least one selected from phosphoric acid, nitric acid, hydrochloric acid, and sulfuric acid. 제2항 또는 제3항에 따른 고분자 전해질막;The polymer electrolyte membrane according to claim 2 or 3; 캐소드; 및Cathode; And 애노드를 포함하는 것을 특징으로 하는 고분자 전해질막 연료전지.A polymer electrolyte membrane fuel cell comprising an anode.
KR1020060133691A 2006-12-26 2006-12-26 Polymer electrolyte membrane for fuel cell containing cross-liked pbi and method of preparing the same KR100773322B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060133691A KR100773322B1 (en) 2006-12-26 2006-12-26 Polymer electrolyte membrane for fuel cell containing cross-liked pbi and method of preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060133691A KR100773322B1 (en) 2006-12-26 2006-12-26 Polymer electrolyte membrane for fuel cell containing cross-liked pbi and method of preparing the same

Publications (1)

Publication Number Publication Date
KR100773322B1 true KR100773322B1 (en) 2007-11-05

Family

ID=39060804

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060133691A KR100773322B1 (en) 2006-12-26 2006-12-26 Polymer electrolyte membrane for fuel cell containing cross-liked pbi and method of preparing the same

Country Status (1)

Country Link
KR (1) KR100773322B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017171239A1 (en) * 2016-03-31 2017-10-05 주식회사 엘지화학 Ion exchange separation membrane, electrochemical cell including same, flow cell and fuel cell, and manufacturing method thereof
CN111342098A (en) * 2018-12-18 2020-06-26 中国科学院大连化学物理研究所 Preparation method of phosphoric acid-doped polybenzimidazole crosslinked membrane
US11127967B2 (en) 2019-09-03 2021-09-21 Korea Institute Of Science And Technology High temperature-type unitized regenerative fuel cell using water vapor and method of operating the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5599639A (en) 1995-08-31 1997-02-04 Hoechst Celanese Corporation Acid-modified polybenzimidazole fuel cell elements
JP2000247940A (en) 1999-02-26 2000-09-12 Sankyo Co Ltd New benzylazide compound
US6248469B1 (en) 1997-08-29 2001-06-19 Foster-Miller, Inc. Composite solid polymer electrolyte membranes
US6946211B1 (en) 1999-09-09 2005-09-20 Danish Power Systems Aps Polymer electrolyte membrane fuel cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5599639A (en) 1995-08-31 1997-02-04 Hoechst Celanese Corporation Acid-modified polybenzimidazole fuel cell elements
US6248469B1 (en) 1997-08-29 2001-06-19 Foster-Miller, Inc. Composite solid polymer electrolyte membranes
JP2000247940A (en) 1999-02-26 2000-09-12 Sankyo Co Ltd New benzylazide compound
US6946211B1 (en) 1999-09-09 2005-09-20 Danish Power Systems Aps Polymer electrolyte membrane fuel cells

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017171239A1 (en) * 2016-03-31 2017-10-05 주식회사 엘지화학 Ion exchange separation membrane, electrochemical cell including same, flow cell and fuel cell, and manufacturing method thereof
CN111342098A (en) * 2018-12-18 2020-06-26 中国科学院大连化学物理研究所 Preparation method of phosphoric acid-doped polybenzimidazole crosslinked membrane
CN111342098B (en) * 2018-12-18 2021-06-08 中国科学院大连化学物理研究所 Preparation method of phosphoric acid-doped polybenzimidazole crosslinked membrane
US11127967B2 (en) 2019-09-03 2021-09-21 Korea Institute Of Science And Technology High temperature-type unitized regenerative fuel cell using water vapor and method of operating the same

Similar Documents

Publication Publication Date Title
US11108071B2 (en) Method for producing polymer electrolyte molded article, polymer electrolyte material, polymer electrolyte membrane, and polymer electrolyte fuel cell
KR100723391B1 (en) Polymer electrolytic membrane , and fuel cell employing the same
KR101193164B1 (en) Organic polymer siloxane compounds containing sulfonic acid group and fuel cell comprising the same
KR101370806B1 (en) Sulfonated polyethersulfone copolymer containing hydroxyl groups and preparation method thereof, polymer electrolyte membrane for fuel cells and membrane electrode assembly comprising the same
KR100634551B1 (en) Crosslinked proton conductive copolymer and fuel cell comprising the same
JP2004035891A (en) Proton conductive polymer having acid group on side chain, its manufacturing method, polymer membrane using the proton conductive polymer, and fuel cell using it
EP2134768B1 (en) Proton conducting aromatic polyether type copolymers bearing main and side chain pyridine groups and use thereof in proton exchange membrane fuel cells
JP2006261103A (en) Polymer electrolyte material; and polymer electrolyte component, membrane-electrode assembly and polymer electrolyte fuel cell using it
JP4537065B2 (en) Proton conducting electrolyte membrane, method for producing the same and use in fuel cell
KR100829060B1 (en) A membrane-electrode binder having a dual electrode, the manufacturing method thereof, and a fuel electrode comprising thereof
KR100773322B1 (en) Polymer electrolyte membrane for fuel cell containing cross-liked pbi and method of preparing the same
KR20100026237A (en) Sulfonated poly(arylene ether sulfone) containing photocrosslinkable functional group, manufacturing method of proton conducting polymer membranes using it and polymer electrolyte fuel cell having proton conducting polymer membranes
JP5233065B2 (en) Polymer having ionic group, polymer electrolyte material, polymer electrolyte component, membrane electrode composite, and polymer electrolyte fuel cell
JP2004335472A (en) Proton conductive polymer, proton conductive polymer membrane containing the above, manufacturing method of proton conductive polymer membrane, and fuel cell adopting polymer membrane
KR100659130B1 (en) Polymer electrolytic membrane, and fuel cell employing the same
KR100948347B1 (en) Manufacturing method of partially crosslinked type proton conducting polymer membranes, membrane-electrolyte assemblies using partially crosslinked type polymer membranes manufactured thereby and fuel cell having them
KR100953616B1 (en) Polymer, membrane-electrode assembly for fuel cell, and fuel cell system comprising the same
JP2010238373A (en) Polymer electrolyte membrane, its manufacturing method, and membrane electrode assembly as well as solid polymer fuel cell using the same
KR100696460B1 (en) Proton-conducting polymer
KR101573191B1 (en) Polyphenylehter based copolymer method for preparing the copolymer polymer electrolyte membrane comprising the copolymer and fuel cell comprising the membrane
JP2006131745A (en) Polymer having ionic group, polyelectrolyte material, polyelectrolyte part, membrane-electrode composite and polyelectrolyte type fuel cell
KR101395040B1 (en) Alkyl chain modified sulfonated poly(ether sulfone) copolymer and method for preparing the same
JP4992184B2 (en) Polymer having ionic group, polymer electrolyte material, polymer electrolyte component, membrane electrode composite, and polymer electrolyte fuel cell
KR100823183B1 (en) Method of manufacturing polymer membranes hybird silica nano composition, its products and direct methanol fuel cell using them
JP2007039536A (en) Ionic group-containing polymer

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111007

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee