KR100770670B1 - Carrier for treatment of organic/inorganic complex contaminants - Google Patents

Carrier for treatment of organic/inorganic complex contaminants Download PDF

Info

Publication number
KR100770670B1
KR100770670B1 KR20060053240A KR20060053240A KR100770670B1 KR 100770670 B1 KR100770670 B1 KR 100770670B1 KR 20060053240 A KR20060053240 A KR 20060053240A KR 20060053240 A KR20060053240 A KR 20060053240A KR 100770670 B1 KR100770670 B1 KR 100770670B1
Authority
KR
South Korea
Prior art keywords
alginate
carrier
activated carbon
organic
synthetic zeolite
Prior art date
Application number
KR20060053240A
Other languages
Korean (ko)
Inventor
김동주
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR20060053240A priority Critical patent/KR100770670B1/en
Application granted granted Critical
Publication of KR100770670B1 publication Critical patent/KR100770670B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

A complex carrier for treating organic/inorganic mixed pollutants is provided to remove simultaneously organic pollutants and inorganic pollutants, by immobilizing synthetic zeolite and powder type activated carbon on Na-alginate. A complex carrier for treating wastewater is formed in a bead shape having a diameter of 1-5 mm. The complex carrier is prepared by mixing Na-alginate, synthetic zeolite, and powder type activated carbon and hardening the mixed materials in a 2-6% of CaCl2 solution. The complex carrier is used to treat simultaneously inorganic pollutants and organic pollutants. A permeable reactive barrier contains the complex carrier as a porous medium body.

Description

유/무기 혼합오염물 처리용 복합담체 {Carrier for treatment of organic/inorganic complex contaminants}Carrier for treatment of organic / inorganic complex contaminants}

도 1은 현장 규모에서의 투수성 반응벽체 설치 모식도이다.1 is a schematic diagram of the installation of a permeable reaction wall at the site scale.

도 2는 ZAC-44 bead의 형태이다.2 is in the form of a ZAC-44 bead.

도 3은 ZAC-44 bead의 흡착반응에 의한 수용성 벤젠의 시간에 따른 농도 변화 곡선이다. Figure 3 is a concentration change curve of the water-soluble benzene over time by the adsorption reaction of ZAC-44 bead.

도 4는 ZAC-44 bead의 흡착반응에 의한 수용성 톨루엔의 시간에 따른 농도 변화 곡선이다. Figure 4 is a concentration change curve of the water-soluble toluene over time by the adsorption reaction of ZAC-44 bead.

도 5는 ZAC-44 bead의 흡착반응에 의한 아연의 시간에 따른 농도 변화 곡선이다.5 is a concentration change curve of zinc over time by adsorption reaction of ZAC-44 bead.

본 발명은 유/무기 혼합오염물 처리용 복합담체에 관한 것으로, 더욱 구체적으로 Na-알지네이트(Na-alginate), 합성 제올라이트(synthetic zeolite)와 분말활 성탄을 포함하는 폐수처리용 복합담체에 관한 것이다.The present invention relates to a composite carrier for treating organic / inorganic mixed contaminants, and more particularly, to a composite carrier for wastewater treatment including Na-alginate, synthetic zeolite, and powdered activated carbon.

폐수처리 기법에 관한 연구가 그동안 활발히 진행되어 왔으며, 다양한 형태의 흡착제가 개발 사용되었다. 예를 들면, hematite를 이용한 Zn와 Cd과 같은 2가 중금속 (Jeon et al., Water research, Vol 38: 2499-2504), gellan gum gel beads를 이용한 Pb와 Cu와 같은 다양한 중금속 (Lazaro et al., Water research, Vol 37: 2118-2126), Ca-alginate에 의한 Hg 및 Cd (Arica et al., Journal of Hazardous Materials, B109: 191-199), alginate와 silica gel를 이용한 Cd (Rangsayatorn et al., Environment International, Vol 30: 57-63) 의 제거 등을 들 수 있다. 한편 유기오염물에 대해서도 흡착제의 개발이 활발히 연구되었으며, 예컨대 Ca-alginate와 분말활성탄의 복합체를 이용한 페놀의 흡착제거 (Jorda and Mijangos, Separation science and technology, Vol. 38, No. 8: 1851-1867), 다양한 유기물질로 구성된 복합오염물 (Humic acid, gallic acid, methylene blue, p-Chlorophenol)에 관한 흡착특성 연구 (Lin et al., Journal of Hazardous Materials, Vol 120: 237-241) 등이 대표적인 경우라 할 수 있다. 그러나 지금까지의 흡착제는 대부분이 단일종의 오염물질에 대하여 제거능이 있으며 유/무기 혼합오염물을 동시에 제거하는 능력은 부족하였다.Research on wastewater treatment techniques has been actively conducted, and various types of adsorbents have been developed and used. For example, divalent heavy metals such as Zn and Cd using hematite (Jeon et al., Water research, Vol 38: 2499-2504), and various heavy metals such as Pb and Cu using gellan gum gel beads (Lazaro et al. , Water research, Vol 37: 2118-2126), Hg and Cd with Ca-alginate (Arica et al., Journal of Hazardous Materials, B109: 191-199), Cd with alginate and silica gel (Rangsayatorn et al. , Environment International, Vol 30: 57-63). On the other hand, the development of adsorbents has been actively studied for organic contaminants, for example, adsorption and removal of phenol using a complex of Ca-alginate and powdered activated carbon (Jorda and Mijangos, Separation science and technology, Vol. 38, No. 8: 1851-1867). , Adsorption characteristics study on complex pollutants (Humic acid, gallic acid, methylene blue, p-Chlorophenol) composed of various organic materials (Lin et al., Journal of Hazardous Materials, Vol 120: 237-241) can do. However, most of the adsorbents to date have been able to remove a single species of contaminants and lack the ability to simultaneously remove organic / inorganic mixed contaminants.

이에, 본 발명자는 상기 종래기술들의 문제점들을 극복하기 위하여 예의 연구 노력한 결과, Na-알지네이트 (Na-alginate), 합성 제올라이트(synthetic zeolite)와 분말활성탄을 포함하는 폐수처리용 복합담체의 경우, 방향족 탄화수소계 화합물인 유기오염물뿐만 아니라 중금속과 같은 무기오염물로 구성된 혼합폐수 를 동시에 효율적으로 제거할 수 있음을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors have made diligent research efforts to overcome the problems of the prior art, in the case of a composite carrier for wastewater treatment containing Na-alginate, synthetic zeolite and powdered activated carbon, aromatic hydrocarbon The present invention was completed, confirming that it is possible to efficiently remove mixed wastewater composed of inorganic contaminants such as heavy metals as well as organic contaminants as a system compound.

따라서, 본 발명의 주된 목적은 합성 제올라이트 (synthetic zeolite)와 분말활성탄 (powdered activated carbon)을 Na-alginate에 고정화시킴으로써 유/무기 오염물질을 동시에 제거하는 새로운 복합담체 (ZAC-44 bead)를 개발하는 것이다.Therefore, the main object of the present invention is to develop a new composite carrier (ZAC-44 bead) which simultaneously removes organic / inorganic contaminants by immobilizing synthetic zeolite and powdered activated carbon in Na-alginate. will be.

본 발명은 벤젠과 같은 방향족 탄화수소계 화합물인 유기오염물뿐만 아니라 중금속과 같은 무기오염물로 구성된 혼합폐수를 동시에 효율적으로 제거시키는 담체를 개발하는 기술로서 “폐수처리 기술” 분야에 속한다고 볼 수 있다.The present invention can be regarded as belonging to the field of "wastewater treatment technology" as a technology for developing a carrier that efficiently removes mixed wastewater composed of organic pollutants such as aromatic hydrocarbons as well as inorganic pollutants such as heavy metals.

본 발명의 한 양태에 따르면, 본 발명은 Na-알지네이트(Na-alginate), 합성 제올라이트(synthetic zeolite)와 분말활성탄을 포함하는 폐수처리용 복합담체를 제공한다. 본 발명의 복합담체는 멸균된 증류수에 녹인 Na-알지네이트에 합성 제올라이트와 분말활성탄을 혼합하여 제조하는 것으로, 본 발명자는 ZAC-44 bead로 명명하였다. 본 발명의 ZAC-44 bead 제조 시 성분함량은 분말활성탄 3~5 g, Na-알지네이트 파우더 8~12 g, 합성제올라이트 3~5 g, 및 증류수 400ml 이 바람직하다. 더욱 바람직하게는 분말활성탄 4g, Na-알지네이트 파우더 10g, 합성제올라이트 4g, 및 증류수 400ml 의 성분함량을 가지는 것이 좋다. 상기 성분함량 범위내에서 ZAC-44 bead는 우수한 흡착능과 최고의 경도를 나타냈었으며, 담체의 재생 시에 형태가 깨지거나 변형되지 않았다.According to one aspect of the present invention, the present invention provides a composite carrier for wastewater treatment comprising Na-alginate, synthetic zeolite and powdered activated carbon. The composite carrier of the present invention is prepared by mixing synthetic zeolite and powdered activated carbon in Na-alginate dissolved in sterilized distilled water, and the inventor named ZAC-44 bead. When preparing the ZAC-44 bead of the present invention, the content of the powder is preferably 3 to 5 g of activated carbon, 8 to 12 g of Na-alginate powder, 3 to 5 g of synthetic zeolite, and 400 ml of distilled water. More preferably, it has a component content of 4 g of powdered activated carbon, 10 g of Na-alginate powder, 4 g of synthetic zeolite, and 400 ml of distilled water. Within the above component content, ZAC-44 bead exhibited excellent adsorption capacity and highest hardness, and did not break or deform when the carrier was regenerated.

본 발명의 폐수처리용 복합담체에 있어서, 상기 복합담체는 2.0 ~ 6.0 %의 CaCl2 용액을 이용하여 직경 1 ~ 5 mm의 구슬(bead)을 형성하게 하는 것을 특징으로 하는 복합담체인 것이 바람직하다. CaCl2 용액의 농도가 2.0 % 이하일 경우 담체형성에 있어 구슬형태를 유지시키기 어려우며, 6.0 % 이상일 경우 담체의 표면이 매끄럽게 형성되지 못하고 분말활성탄이 담체 표면에 거칠게 나타난다. 그리고 담체의 직경이 5 mm 보다 클 경우 담체 사이의 공극이 커져 흡착처리 효율이 낮았다. 더욱 바람직하게는 4.0 %의 CaCl2 용액을 이용하여 직경 4 mm의 담체를 형성하게 하는 것이 좋다. CaCl2 용액의 농도가 4.0% 일 때 최고의 경도를 가지는 것으로 나타났으며, 담체표면 또한 매끄럽게 형성되었고, 직경 4 mm 일 때 복합담체의 흡착처리능력과 경도가 가장 적절하였다. 본 발명에서는 합성제올라이트와 분말활성탄을 Na-알지네이트 용액에 혼합함으로써, 분말 상태의 흡착제들을 담체형태로 경화시켜 일정수준의 경도를 유지할 수 있게 하고, 흡작후 재사용 또는 재생에 있어 용이하도록 한 것을 특징으로 한다. In the composite carrier for wastewater treatment of the present invention, the composite carrier is preferably a composite carrier, characterized in that beads having a diameter of 1 to 5 mm are formed using 2.0 to 6.0% of CaCl 2 solution. . When the concentration of CaCl 2 solution is less than 2.0%, it is difficult to maintain a bead form in the formation of the carrier. When the concentration of the CaCl 2 solution is more than 6.0%, the surface of the carrier is not formed smoothly, and the powder activated carbon is rough on the surface of the carrier. In addition, when the diameter of the carrier was larger than 5 mm, the gap between the carriers was large, so that the adsorption treatment efficiency was low. More preferably, 4.0% CaCl 2 solution is used to form a carrier having a diameter of 4 mm. The CaCl 2 solution was found to have the highest hardness when the concentration was 4.0%. The surface of the carrier was also smoothly formed. When the diameter was 4 mm, the adsorption capacity and hardness of the composite carrier were the most appropriate. In the present invention, by mixing the synthetic zeolite and powdered activated carbon in the Na- alginate solution, the adsorbents of the powder state in the form of a carrier to maintain a certain level of hardness, it is characterized in that it is easy to reuse or regeneration after absorption do.

복합담체 제조 시 Na-alginate 분말 함량에 따라 담체의 경도에 차이가 발생한다. 본 발명에서는 Na-alginate powder 10 g을 증류수(D.I. water) 400ml에 녹이고, CaCl2 powder 20 g을 증류수 500 ml에 녹인 비율일 때 가장 경도가 큰 것으로 나타났다. Na-alginate와 증류수의 비율이 이보다 낮아지면 경화되는 시간이 오래 걸리며, 경화된 후에도 파괴되기 쉽다. 반면 비율이 더 높아지면 점성이 커져 뷰렛 에서 CaCl2 용액내로 낙하되지 않으며, 또한 구형으로 제조되지 않는다.In the preparation of the composite carrier, a difference occurs in the hardness of the carrier depending on the Na-alginate powder content. In the present invention, 10 g of Na-alginate powder was dissolved in 400 ml of distilled water (DI water), and 20 g of CaCl 2 powder was dissolved in 500 ml of distilled water. If the ratio of Na-alginate to distilled water is lower than this, it takes a long time to harden and it is easy to be destroyed after hardening. At higher ratios, on the other hand, the viscosity becomes larger and does not fall into the CaCl 2 solution in the burette and is not produced spherically.

본 발명의 다른 양태에 따르면, 본 발명은 상기 복합담체를 이용하여 무기오염물과 유기오염물을 동시에 처리하는 것을 특징으로 하는 폐수처리 방법을 제공한다. 바람직하게는 상기 복합담체를 이용하여 중금속을 포함하는 무기오염물 및 벤젠, 톨루엔과 같은 방향족 탄화수소계 유기오염물을 동시에 처리하는 폐수처리 방법을 제공한다. 합성제올라이트를 포함하는 본 발명의 복합담체의 경우, 중금속 흡착능이 우수한 합성제올라이트와 벤젠, 톨루엔과 같은 방향족 탄화수소계 유기오염물 흡착능이 우수한 분말활성탄과 혼합함으로써 유/무기 복합 오염물을 동시에 처리할 수 있음을 입증하였다. According to another aspect of the present invention, the present invention provides a wastewater treatment method characterized by simultaneously treating the inorganic and organic contaminants using the composite carrier. Preferably, the present invention provides a wastewater treatment method for simultaneously treating inorganic pollutants including heavy metals and aromatic hydrocarbon-based organic pollutants such as benzene and toluene using the composite carrier. In the composite carrier of the present invention including synthetic zeolite, it is possible to simultaneously process organic / inorganic complex contaminants by mixing synthetic zeolite with excellent heavy metal adsorption capacity and powdered activated carbon having excellent adsorption capacity with aromatic hydrocarbon organic pollutants such as benzene and toluene. Proved.

본 발명의 다른 양태에 따르면, 본 발명은 복합담체 (ZAC-44 bead)의 톨루엔(toluene)과 아연(Zn)에의 적용가능성 확대로 1차원 칼럼 반응기(reactor)를 이용하여 중금속 및 BTEX (Benzene, Toluene, Ethylbenzene, m,p-Xylene, o-Xylene) 화합물을 함유한 복합산업폐수의 처리에 활용이 가능하다. 또한 2차원 규모의 모형 혹은 현장규모에서의 자유면 대수층에 투수반응벽체(permeable reactive barrier : PRB)를 설치한 후 투수반응벽체내에 투입할 흡착제거용 내용물 즉, 담체로 활용이 가능하다(도1). 본 발명에서의 투수반응벽체란 자유면 대수층에서 지하수 오염운이 지하수 흐름에 의해서 이동할 때 흐름방향에 수직방향으로 투수성과 흡착성이 높은 다공성 매질체를 설치한 후 오염운이 통과하도록 유도하여 흡착 혹은 생분해와 같은 다른 기작에 의하여 오염운의 농도를 저감시키는 벽체를 지칭한다. 바람직하게 는 본 발명의 투수성 반응벽체는 두 가지 대표적 시스템으로 연속벽체(Continuous PRBs)와 Funnel & Gate System이 있으며, Funnel & Gate System의 경우를 도 1에 도시하였다. Funnel & Gate system는 오염물의 지반내로의 흐름을 유도할 수 있는 안내벽(guide barrier)이 설치되어 있다. 이러한 system은 반응물질의 면적을 크게 줄임으로써 경제적인 반면 오염물의 반응물질 접촉속도를 증가시키므로 충분한 접촉이 일어날 수 있도록 벽체의 두께를 증가시켜 설치하게 된다. Funnel은 흙-벤토나이트 슬러리월(soil bentonite), 시멘트-벤토나이트 슬러리월(cement bentonite), 지하연속벽(diaphragm wall) 등의 slurry wall, 강재 쉬트파일(steel sheet), 합성수지 쉬트파일(geosynthetic sheet), 목재 쉬트파일등의 쉬트파일(sheet pile)등을 사용한다. According to another aspect of the present invention, the present invention is to expand the applicability of the composite carrier (ZAC-44 bead) to toluene and zinc (Zn) using a one-dimensional column reactor (heavy metal and BTEX (Benzene, It can be used for the treatment of complex industrial wastewater containing Toluene, Ethylbenzene, m, p-Xylene, o-Xylene). In addition, after the permeable reactive barrier (PRB) is installed in the free-surface aquifer in a two-dimensional model or on a site scale, it can be used as a content for adsorption removal, that is, a carrier (Fig. 1). ). In the present invention, the permeation reaction wall is a free surface aquifer, when the groundwater polluted cloud moves by the groundwater flow, the porous medium having high permeability and adsorption is installed in the direction perpendicular to the flow direction, and then guides the polluted cloud to pass through the adsorption or biodegradation. By other mechanisms, such as refers to walls that reduce the concentration of polluted clouds. Preferably, the water-permeable reaction wall of the present invention includes two types of continuous walls (Continuous PRBs) and a funnel & gate system, and the funnel & gate system is illustrated in FIG. 1. Funnel & Gate system is equipped with a guide barrier to guide the flow of contaminants into the ground. Such a system is economical by greatly reducing the area of the reactants, while increasing the contact speed of the reactants of the contaminants, thereby increasing the wall thickness so that sufficient contact can occur. Funnels include slurry walls such as soil-bentonite slurry walls, cement-bentonite slurry walls, diaphragm walls, steel sheets, geosynthetic sheets, Sheet piles such as wood sheet piles are used.

본 발명의 다른 양태에 따르면, 본 발명은 Na-alginate를 멸균된 증류수에 녹여 Na-alginate 용액을 준비하는 단계; 준비된 Na-alginate 용액에 합성 제올라이트와 분말활성탄을 혼합하는 단계; 및 합성 제올라이트와 분말활성탄이 혼합된 Na-alginate 용액을 CaCl2 용액에 떨어뜨려 구슬(bead)을 형성시키는 단계를 포함하는 폐수처리에 사용되는 복합담체 제조방법을 제공한다.According to another aspect of the present invention, the present invention comprises the steps of dissolving Na-alginate in sterile distilled water to prepare a Na-alginate solution; Mixing the synthetic zeolite and powdered activated carbon with the prepared Na-alginate solution; And dropping a Na-alginate solution mixed with synthetic zeolite and powdered activated carbon into a CaCl 2 solution to form beads.

실제의 산업폐수는 중금속과 유기오염물질의 혼합오염물질 형태로 종종 존재할 수 있다. 이러한 경우 유기 및 무기오염물질을 동시에 제거하는 흡착제의 개발이 필요하다. 그러나 지금까지 수행된 대부분의 흡착제 개발에 관한 연구는 중금속과 같은 무기오염물 혹은 벤젠, 페놀과 같은 유기오염물의 제거에 국한되었다. 따 라서 본 발명에서는 합성 제올라이트 (synthetic zeolite)와 분말활성탄 (powdered activated carbon)을 Na-alginate에 고정화시킴으로써 새로운 복합담체(ZAC-44 bead)를 개발하여 유/무기 오염물질을 동시에 제거하는 것이 특징이다. Actual industrial wastewater can often exist in the form of mixed pollutants of heavy metals and organic pollutants. In this case, it is necessary to develop an adsorbent that simultaneously removes organic and inorganic pollutants. However, most of the researches on the development of adsorbents conducted so far have been limited to the removal of inorganic contaminants such as heavy metals or organic contaminants such as benzene and phenol. Therefore, in the present invention, a new composite carrier (ZAC-44 bead) is developed by immobilizing synthetic zeolite and powdered activated carbon on Na-alginate to remove organic / inorganic contaminants at the same time. .

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.Hereinafter, the present invention will be described in more detail with reference to Examples. Since these examples are only for illustrating the present invention, the scope of the present invention is not to be construed as being limited by these examples.

실험재료 및 기기Experimental Materials and Equipment

본 발명에 사용된 Na-alginate powder (Sigma-aldrich, Korea), powdered activated carbon (Sigma-aldrich, Korea), 합성제올라이트(Jishim tech, Korea) 및 CaCl2 powder는 국내에서 통상적으로 입수할 수 있는 것을 사용하였다. 톨루엔에 대한 흡착능과 관련하여 사용된 기기는 HPLC (Young-Lin Instruments co., Korea)를 사용하였으며, 아연의 액상농도를 측정하기 위하여 ICP(Perkin elmer inc., USA)를 사용하였으며, 담체와 오염물질 반응용으로 Air shaker(Daehan Scientific co., Korea)를 사용하였다.Na-alginate powder (Sigma-aldrich, Korea), powdered activated carbon (Sigma-aldrich, Korea), synthetic zeolite (Jishim tech, Korea) and CaCl 2 powder used in the present invention are those that can be commonly obtained in Korea Used. HPLC (Young-Lin Instruments co., Korea) was used for the adsorption capacity for toluene, and ICP (Perkin elmer inc., USA) was used to measure the liquid phase concentration of zinc. Air shaker (Daehan Scientific co., Korea) was used for the material reaction.

실시예Example 1.  One. 복합담체Complex ( ( ZACZAC -44 -44 beadbead )의 제조Manufacturing

1) 분말 상태의 Na-alginate 10g을 멸균된 증류수 400 mL에 녹여 Na-alginate용액을 만든다. 1) Dissolve 10g of powdered Na-alginate in 400 mL of sterile distilled water to make Na-alginate solution.

2) 준비된 400 mL Na-alginate용액에 합성 제올라이트와 분말활성탄을 각각 4g씩 주입하고 약 20시간 정도 균질 혼합한다.2) Inject 4 g of synthetic zeolite and powdered activated carbon into the prepared 400 mL Na-alginate solution and mix homogeneously for about 20 hours.

3) 합성제올라이트와 분말활성탄이 혼합된 Na-alginate용액을 0.5% CaCl2 500mL 용액에 뷰렛을 이용하여 방울방울 떨어뜨려 짙은 회색모양의 직경 4 mm 구슬 (ZAC-44 bead)을 형성하게 된다(도 2a와 b).3) Na-alginate solution mixed with synthetic zeolite and powdered activated carbon was dropped into a 500 mL solution of 0.5% CaCl 2 using a burette to form a dark gray 4 mm diameter beads (ZAC-44 bead). 2a and b).

실시예Example 2. 벤젠, 톨루엔 및 아연의 흡착시험 2. Adsorption test of benzene, toluene and zinc

ZAC-44 bead를 복합담체로 이용하여 아연 및 벤젠, 톨루엔에 대한 흡착시험을 수행하였으며, 시험절차는 다음과 같다.Adsorption tests on zinc, benzene and toluene were carried out using ZAC-44 bead as a composite carrier, and the test procedure was as follows.

1) 250 mL 플라스크에 ZAC-44 bead 8 g을 투입한 후 초기농도 약 600 mg/L의 벤젠 또는 톨루엔 용액 250 mL를 주입하고 테프론 재질의 마개를 이용하여 플라스크입구를 짧은 시간내에 밀봉한다.1) Add 8 g of ZAC-44 bead to a 250 mL flask, and inject 250 mL of benzene or toluene solution at an initial concentration of about 600 mg / L, and seal the flask inlet in a short time using a Teflon stopper.

2) 밀봉된 플라스크룰 air shaker에서 교반시키면서 일정시간 간격으로 수용액 시료를 채취하여 HPLC(High performance liquid chromatography)로 액상농도를 측정한다.2) Take an aqueous sample at regular intervals while stirring in a sealed flask air shaker and measure the liquid concentration by HPLC (High performance liquid chromatography).

3) 아연에 대해서도 1)-3)까지의 동일한 방법으로 흡착시험이 수행되나 초기농도 1000 mg/L 아연용액 80 mL에 ZAC-44 bead 20 g을 투입하여 반응시키며, ICP를 이용하여 아연의 액상농도를 측정한다.3) The adsorption test is carried out in the same way as in 1) -3) for zinc, but the reaction is performed by adding 20 g of ZAC-44 bead to 80 mL of the initial concentration of 1000 mg / L zinc solution. Measure the concentration.

실험결과 1. 벤젠 또는 톨루엔의 흡착제거 효과Experimental Results 1. Adsorption Removal Effect of Benzene or Toluene

1) 시간에 따른 수용성 벤젠 또는 톨루엔의 농도감소가 도 3과 도 4에 도시되었으며, 초기농도 약 600 mg/L 주입시 반응 5시간 경과 후 벤젠의 경우 초기 농도의 약 42%, 톨루엔의 경우 초기 농도의 약 50 %가 제거되었으며, 이후 3일 경과시 벤젠은 약 45%. 톨루엔은 약 60 %가 제거되었다.1) The decrease in the concentration of water-soluble benzene or toluene with time is shown in Figures 3 and 4, the initial concentration of about 600 mg / L after the reaction 5 hours after the reaction of benzene about 42% of the initial concentration, toluene initial About 50% of the concentration was removed and after 3 days benzene was about 45%. Toluene was removed about 60%.

2) ZAC-44 bead의 톨루엔 제거율은 약 11.25 mg/g으로 상당히 높은 것을 알 수 있다.2) The toluene removal rate of ZAC-44 bead is about 11.25 mg / g, which is very high.

실험결과 2. 아연의 흡착제거 효과Experimental Results 2. Adsorption Removal Effect of Zinc

1) 시간에 따른 아연용액의 농도감소가 도 5에 나타났으며, 반응 6시간 경과 후 초기 농도의 약 70 %가 제거되었으며 1일 이후부터 완만한 농도감소를 보여주고 있으며, 4일 경과시 약 80 %의 아연이 흡착 제거되었음을 알 수 있다.1) The decrease in concentration of zinc solution with time is shown in Figure 5, and after 6 hours of reaction, about 70% of the initial concentration was removed, showing a gentle decrease in concentration after 1 day. It can be seen that 80% of zinc has been adsorbed and removed.

2) ZAC-44 bead의 아연 제거율은 약 3.2 mg/g으로 톨루엔보다 상대적으로 낮게 나타났으나 중금속에 대한 흡착 가능성을 충분히 시사하고 있다.2) The zinc removal rate of ZAC-44 bead is about 3.2 mg / g, which is relatively lower than that of toluene, but it indicates the possibility of adsorption on heavy metals.

이상 설명한 바와 같이, 본 발명에 따르면 합성 제올라이트 (synthetic zeolite)와 분말활성탄 (powdered activated carbon)을 Na-alginate에 고정화시킴으로써 새로운 복합담체를 개발하여 유/무기 오염물질을 동시에 제거하는 것이 특징이다. 또한, 현장규모에서는 자유면 대수층에 투수성 반응벽체내에 투입할 흡착 제거용 담체로써의 활용이 기대된다.As described above, according to the present invention, a new composite carrier is developed by immobilizing synthetic zeolite and powdered activated carbon on Na-alginate to remove organic / inorganic contaminants at the same time. In addition, on-site scale is expected to be utilized as a carrier for adsorption removal to be introduced into the permeable reaction wall in the free surface aquifer.

Claims (5)

Na-알지네이트(Na-alginate), 합성 제올라이트(synthetic zeolite)와 분말활성탄(powdered activated carbon)을 혼합하여 2 ~ 6 %의 CaCl2 용액에서 경화시켜 만들어진 직경 1 ~ 5 mm의 구슬(bead) 형태의 폐수처리용 복합담체.Na-alginate, synthetic zeolite and powdered activated carbon were mixed and cured in 2-6% CaCl 2 solution to form beads of diameter 1-5 mm. Complex carrier for wastewater treatment. 삭제delete 제 1항의 복합담체를 이용하여 무기오염물과 유기오염물을 동시에 처리하는 것을 특징으로 하는 폐수처리 방법.Wastewater treatment method comprising the simultaneous treatment of inorganic and organic contaminants using the composite carrier of claim 1. 제 1항의 복합담체를 다공성 매질체로 포함하는 투수성 반응벽체(permeable reactive barrier).Permeable reactive barrier comprising the composite carrier of claim 1 as a porous medium. Na-alginate를 멸균된 증류수에 녹여 Na-alginate 용액을 준비하는 단계; 준비된 Na-alginate 용액에 합성 제올라이트와 분말활성탄을 혼합하는 단계; 및 합성 제올라이트와 분말활성탄이 혼합된 Na-alginate 용액을 CaCl2 용액에 떨어뜨려 구슬(bead)을 형성시키는 단계를 포함하는 폐수처리용 복합담체의 제조방법.Dissolving Na-alginate in sterile distilled water to prepare a Na-alginate solution; Mixing the synthetic zeolite and powdered activated carbon with the prepared Na-alginate solution; And dropping a Na-alginate solution mixed with a synthetic zeolite and powdered activated carbon into a CaCl 2 solution to form beads.
KR20060053240A 2006-06-13 2006-06-13 Carrier for treatment of organic/inorganic complex contaminants KR100770670B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20060053240A KR100770670B1 (en) 2006-06-13 2006-06-13 Carrier for treatment of organic/inorganic complex contaminants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20060053240A KR100770670B1 (en) 2006-06-13 2006-06-13 Carrier for treatment of organic/inorganic complex contaminants

Publications (1)

Publication Number Publication Date
KR100770670B1 true KR100770670B1 (en) 2007-10-29

Family

ID=38816012

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20060053240A KR100770670B1 (en) 2006-06-13 2006-06-13 Carrier for treatment of organic/inorganic complex contaminants

Country Status (1)

Country Link
KR (1) KR100770670B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101092377B1 (en) * 2010-02-04 2011-12-09 한국과학기술연구원 Medium calcinated at the low-temperature for treatment of organic and inorganic complex contaminants and fabticating method of the same
KR101290873B1 (en) 2011-05-06 2013-07-29 서울시립대학교 산학협력단 The manufacturing method of waste nutrient solution sterilization biofilter and it's composition
KR101439408B1 (en) 2013-10-21 2014-09-11 한국과학기술연구원 Core-shell composite having zero valent iron and lipids and method for fabricating the same
KR101442758B1 (en) 2012-08-28 2014-09-23 한국과학기술원 Valuable metal collector derived from seaweed biomass, its preparation methods and the method of collecting the valuable metal using the said
KR101459008B1 (en) * 2013-02-25 2014-11-07 한국화학연구원 A porous nickel phosphate molecular sieve, the preparing method thereof and the method of removing heavy metal using the same
KR102145031B1 (en) 2019-10-25 2020-08-18 고려대학교 산학협력단 Adsorbent of organic and inorganic contaminants and manufaturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01207193A (en) * 1988-02-12 1989-08-21 Shigekazu Nakano Microorganism-active carbon composite carrier and treatment of organic waste water
KR20030092674A (en) * 2002-05-30 2003-12-06 주식회사 에코다임 Immobilized Body of Biological Material, and Apparatus for Manufacturing the Body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01207193A (en) * 1988-02-12 1989-08-21 Shigekazu Nakano Microorganism-active carbon composite carrier and treatment of organic waste water
KR20030092674A (en) * 2002-05-30 2003-12-06 주식회사 에코다임 Immobilized Body of Biological Material, and Apparatus for Manufacturing the Body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101092377B1 (en) * 2010-02-04 2011-12-09 한국과학기술연구원 Medium calcinated at the low-temperature for treatment of organic and inorganic complex contaminants and fabticating method of the same
KR101290873B1 (en) 2011-05-06 2013-07-29 서울시립대학교 산학협력단 The manufacturing method of waste nutrient solution sterilization biofilter and it's composition
KR101442758B1 (en) 2012-08-28 2014-09-23 한국과학기술원 Valuable metal collector derived from seaweed biomass, its preparation methods and the method of collecting the valuable metal using the said
KR101459008B1 (en) * 2013-02-25 2014-11-07 한국화학연구원 A porous nickel phosphate molecular sieve, the preparing method thereof and the method of removing heavy metal using the same
KR101439408B1 (en) 2013-10-21 2014-09-11 한국과학기술연구원 Core-shell composite having zero valent iron and lipids and method for fabricating the same
KR102145031B1 (en) 2019-10-25 2020-08-18 고려대학교 산학협력단 Adsorbent of organic and inorganic contaminants and manufaturing method thereof

Similar Documents

Publication Publication Date Title
KR100770670B1 (en) Carrier for treatment of organic/inorganic complex contaminants
Zhang et al. Active capping technology: a new environmental remediation of contaminated sediment
JP3045148B2 (en) Alginate gel water treatment agent and method for producing the same
Masue et al. Arsenate and arsenite adsorption and desorption behavior on coprecipitated aluminum: iron hydroxides
US8598062B2 (en) Zero valent metal composite, manufacturing, system and method using thereof, for catalytically treating contaminated water
Xu et al. Transformation of internal sedimentary phosphorus fractions by point injection of CaO2
US7727306B2 (en) Systems and methods for flow-through treatment of contaminated fluids
US7662291B2 (en) Canister for treatment of contaminated fluids
AU2007357140A1 (en) Systems and methods for removal of heavy metal contaminants from fluids
Kobayashi et al. Decontamination of extra-diluted radioactive cesium in fukushima water using zeolite–polymer composite fibers
Ali et al. Sustainable use of concrete demolition waste as reactive material in permeable barrier for remediation of groundwater: batch and continuous study
JP2009112970A (en) Mixture for preventing diffusion of contaminating component and method of preventing diffusion of contaminating component
Chen et al. Selective adsorption and efficient degradation of petroleum hydrocarbons by a hydrophobic/lipophilic biomass porous foam loaded with microbials
Borthakur et al. Rechargeable stormwater biofilters: In situ regeneration of PFAS removal capacity by using a cationic polymer, polydiallyldimethylammonium chloride
Luo et al. Biomass base membrane with phenol hydroxy-amino group for ultraselective adsorption of radioactive Co (II) in trace concentration
KR20110008515A (en) Stabilization method of heavy metal contaminated dredged sediments
Wu et al. Arsenic species transformation and transportation in arsenic removal by Fe-Mn binary oxide–coated diatomite: Pilot-scale field Study
KR20170006045A (en) Bead immobilized absorbent and microorganism and method for fabricating the same
Ahmed et al. Novel low-cost composite sorbent for remediating synthetic sanitary landfill leachates: batch and column study
Kozyatnyk Filtration materials for groundwater: a guide to good practice
Önnby 12 Application of Cryogels
Malakhova et al. Flow-through polyethylenimine/ZnS supermacroporous composite for Hg (II) uptake at ppb concentrations
Chien et al. Permeable reactive barrier of waste sludge from wine processing utilized to block a metallic mixture plume in a simulated aquifer
Wang et al. Mercury speciation transformation mediated by thiolated biochar in high salinity groundwater: Interfacial processes, influencing factors, and mechanisms
JP2022171001A (en) Method for removing harmful substance, and method for producing adsorbent

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110914

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20120725

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140905

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151019

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160928

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee