KR100768406B1 - New innovative functional composites comprising mesoporous carbon-based material and functional polymer - Google Patents

New innovative functional composites comprising mesoporous carbon-based material and functional polymer Download PDF

Info

Publication number
KR100768406B1
KR100768406B1 KR1020060075536A KR20060075536A KR100768406B1 KR 100768406 B1 KR100768406 B1 KR 100768406B1 KR 1020060075536 A KR1020060075536 A KR 1020060075536A KR 20060075536 A KR20060075536 A KR 20060075536A KR 100768406 B1 KR100768406 B1 KR 100768406B1
Authority
KR
South Korea
Prior art keywords
functional
carbon
complex
polymer
mixtures
Prior art date
Application number
KR1020060075536A
Other languages
Korean (ko)
Inventor
정용주
연제원
최계천
하영경
김원호
Original Assignee
한국원자력연구원
한국수력원자력 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국원자력연구원, 한국수력원자력 주식회사 filed Critical 한국원자력연구원
Priority to KR1020060075536A priority Critical patent/KR100768406B1/en
Application granted granted Critical
Publication of KR100768406B1 publication Critical patent/KR100768406B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds

Abstract

A functional composite useful as an agent for improving the quality of water is provided to improve stability in an aqueous solution and metal removing property, to increase the content of a functional polymer and to allow it to be separated from an aqueous solution easily. A functional composite comprises a mesoporous carbon-based material matrix having an average pore size of 2-30 nm; and a complex forming polymer which is adsorbed to the matrix strongly to form a complex with a metal ion. Preferably the mesoporous carbon-based material is at least one selected from the group consisting of a carbon having a regular pore structure, a carbon having an irregular pore structure, a carbon having a hollow core and a mesoporous shell, a carbon having a non-hollow core and a mesoporous shell, their derivative and their mixture.

Description

메조기공 탄소계 물질과 착물 형성 고분자로 구성된 신규 기능성 복합체{New Innovative Functional Composites Comprising Mesoporous Carbon-based Material and Functional Polymer}New Innovative Functional Composites Comprising Mesoporous Carbon-based Material and Functional Polymer

도 1은 메조기공 탄소 및 활성탄 위에서의 폴리에틸렌이민의 흡착 등온선(adsorption isotherm)을 나타낸 그래프; 및 1 is a graph showing the adsorption isotherm of polyethyleneimine on mesoporous carbon and activated carbon; And

도 2는 F400/CM-PEI 복합체 및 F400의 UO2 2 + 흡착 등온선을 나타낸 그래프. 2 is a graph showing UO 2 2 + adsorption isotherm of F400 / CM-PEI complex and F400.

1. M. Chanda, Reactive Polymers, vol. 25, pp. 25, 1995.M. Chanda, Reactive Polymers , vol. 25, pp. 25, 1995.

2. D. Leroy, J. Applied Polymer Science, vol. 88, pp. 352, 2003.2.D. Leroy, J. Applied Polymer Science , vol. 88, pp. 352, 2003.

3. A. Denizli, Reactive and Functional Polymers, vol. 55, pp. 121, 2003.3.A. Denizli, Reactive and Functional Polymers , vol. 55, pp. 121, 2003.

4. J. Wang, J. Colloid and Interface Science, vol. 216, 436, 1999. 4.J. Wang, J. Colloid and Interface Science , vol. 216, 436, 1999.

5. M. Ghoul, Water Research vol. 37, pp. 729, 2003.M. Ghoul, Water Research vol. 37, pp. 729, 2003.

본 발명은 메조기공 탄소계 물질과 기능성 고분자로 구성된 새로운 개념의 기능성 복합체(composites)에 관한 것이다. 특히, 모체와 기능성 고분자의 강한 결합으로 인해 수용액 중에서 안정성이 탁월하고 실질적으로 고분자가 접근할 수 있는 넓은 비표면적을 가진 모체를 사용하고 다양한 금속종과 강한 착물을 형성하는 기능성 고분자를 사용함으로써, 높은 금속 제거 능력을 가질 뿐 아니라 단순한 분리공정을 통하여 수용액으로부터 쉽게 분리할 수 있는 메조기공 탄소계 물질과 기능성 고분자로 구성된 새로운 개념의 기능성 복합체에 대한 것이다. The present invention relates to a novel concept of functional composites composed of mesoporous carbon-based materials and functional polymers. In particular, due to the strong bonding of the mother and functional polymers, a high stability is achieved in an aqueous solution and a mother having a large specific surface area that is substantially accessible to the polymer and a functional polymer that forms a strong complex with various metal species, It is a new concept of functional composites composed of mesoporous carbon-based materials and functional polymers that not only have the ability to remove metals but also can be easily separated from aqueous solutions through simple separation processes.

종래로부터, 수용액 중에 있는 중금속 또는 액틴족 원소를 포함하는 방사성 물질의 분리 및 제거를 위해 실리카(silica)나 지르코니아(zirconia) 등과 같은 세라믹 물질 또는 유기고분자나 유기수지 등과 같은 유기물질을 모체(matrix)로 사용하고 그 위에 기능성 고분자를 붙인 다양한 복합체가 개발되고 있다.Conventionally, in order to separate and remove radioactive materials containing heavy metals or actin elements in an aqueous solution, ceramic materials such as silica or zirconia or organic materials such as organic polymers or organic resins are matrixed. Various complexes have been developed that are used as a functional polymer on top of it.

찬다 등은 실리카 위에 폴리에틸렌이민(polyethyleneimine)을 코팅시킨 복합체를 제조하여 당시 우라늄 분리에 향상된 성능을 선보인바 있고[1], 르로이 등은 폴리에틸렌이민(polyethyleneimine) 유도체를 폴리피롤(polypyrrole) 고분자와 결합시킨 복합체를 제조하여 우라늄 이온을 분리하는데 적용하였다[2]. Chanda et al. Produced a composite coated with polyethyleneimine on silica and showed improved performance at the time of uranium separation [1]. Leroy et al. Composited a polyethyleneimine derivative with polypyrrole. Was prepared and applied to separate uranium ions [2].

데니질 등은 폴리2-하이드록시에틸메타크릴레이트(poly(2-hyrdoxyethylmethacrylate)) 비드(bead) 표면을 폴리에틸렌이민(polyethyleneimine)으로 개질시켜 복합물질을 제조하여 수용액에서 수은을 제거하는데 적용하였다[3]. Denizil et al. Prepared a composite material by modifying a poly (2-hyrdoxyethylmethacrylate) bead surface with polyethyleneimine to remove mercury from an aqueous solution [3. ].

왕 등은 지르코니아를 모체로 사용하고 기능성 고분자로 폴리에틸렌이민(polyethyleneimine)을 사용하여 복합체를 제조하였고[4], 고울 등은 가교 실리카(crosslinked silica) 표면을 폴리에틸렌이민(polyethyleneimine)으로 개질시켜 복합체를 제조하여 납(Pb), 아연(Zn), 카드뮴(Cd), 니켈(Ni) 등과 같은 중금속의 제거에 적용하였다[5].Wang et al prepared composites using zirconia as a mother and polyethyleneimine as a functional polymer [4], and Goul et al. Prepared composites by modifying the surface of crosslinked silica with polyethyleneimine. It was applied to the removal of heavy metals such as lead (Pb), zinc (Zn), cadmium (Cd) and nickel (Ni) [5].

그러나 이러한 무기재료 및 레진을 모체로 한 종래의 발명 등은 다음과 같은 몇 가지 문제점을 가지고 있다.However, the conventional inventions based on such inorganic materials and resins have some problems as follows.

첫째, 모체와 기능성 고분자 간의 결합이 약해 기능성 고분자가 수용액 상에서 용해되어 나와 복합체의 안정성이 떨어진다. 이러한 경우 단순한 여과공정으로는 용해된 기능성 고분자의 분리가 어렵게 되어 결과적으로 수용액에 있는 중금속이나 방사성 물질의 완벽한 제거가 불가능하다.First, the bond between the parent and the functional polymer is weak, so that the functional polymer is dissolved in the aqueous solution and the stability of the composite is inferior. In this case, it is difficult to separate the dissolved functional polymer by a simple filtration process, and as a result, it is impossible to completely remove the heavy metal or radioactive material in the aqueous solution.

둘째, 기존의 세라믹 또는 유기수지 모체는 비표면적이 낮고 기능성 고분자와의 결합이 약해 복합체 내의 기능성 고분자 함량을 높이기가 쉽지 않다. 따라서 복합체 단위 무게당 금속의 제거량이 낮은 단점을 갖는다. Second, the conventional ceramic or organic resin matrix has a low specific surface area and a weak bond with the functional polymer, making it difficult to increase the functional polymer content in the composite. Therefore, the amount of removal of metal per unit weight of the composite has a disadvantage.

또한, 미국특허 제2003/0118823호와 제2005/0035062호에서는 벤젠, 클로로포름, 톨루엔을 포함한 다양한 유기오염물질과 카드뮴(Cd), 라돈(Rn), 셀레늄(Se)을 포함한 금속물질을 제거하기 위한 활성탄 기반 복합체 기술이 개시되고 있는데, 이는 활성탄 표면으로 폴리에틸렌(polyethylene)이 이멀젼 스프레이 기법을 통해 도입되어 복합체가 제조된 것이다.In addition, US Patent Nos. 2003/0118823 and 2005/0035062 describe various organic pollutants, including benzene, chloroform and toluene, and metals including cadmium (Cd), radon (Rn) and selenium (Se). Activated carbon based composite technology is disclosed, in which polyethylene is introduced to the surface of activated carbon through an emulsion spray technique to produce a composite.

최근 황택성 등은 활성탄소섬유(activated carbon fiber; ACF)와 폴리프로필렌(polypropylene; PP) 혼성 부직포에 방사선 중합법으로 아크릴산(acrylic acid; AAc)을 중합시켜 ACF-PP-g-AAc 공중합체를 제조하여 망간(Mn), 코발트(Co), 니켈(Ni), 구리(Cu) 등과 같은 다양한 중금속에 대한 흡착특성을 평가한 바 있다.Recently, Taek-Sung and others prepared ACF-PP-g-AAc copolymers by polymerizing acrylic acid (AAc) on the activated carbon fiber (ACF) and polypropylene (PP) hybrid nonwoven fabrics by radiation polymerization method. Therefore, the adsorption characteristics of various heavy metals such as manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), and the like were evaluated.

일본특허 제58150434호에서는 활성차콜(activated charcoal)을 폴리에틸렌이민(polyethyleneimine)과 이황화탄소(CS2)로 처리함으로써 중금속 제거용 흡착제 제조 기술이 개시되고 있다. 또한, 일본특허 제58223439호에서는 분자량 600 내지 6000 사이의 폴리에틸렌이민(polyethyleneimine)을 활성탄에 코팅한 후 에폭시 가교제와 이황화탄소(CS2)를 차례로 반응시키는 중금속 흡착제 제조 기술이 개시되어 있다. Japanese Patent No. 58150434 discloses a technique for preparing an adsorbent for removing heavy metals by treating activated charcoal with polyethyleneimine and carbon disulfide (CS 2 ). In addition, Japanese Patent No. 58223439 discloses a technique for preparing a heavy metal adsorbent in which polyethyleneimine having a molecular weight of 600 to 6000 is coated on activated carbon and then an epoxy crosslinker and carbon disulfide (CS 2 ) are sequentially reacted.

그러나 이러한 기존의 탄소계 물질을 모체로 한 종래의 발명 등은 다음과 같은 몇 가지 문제점을 가지고 있다.However, the conventional inventions based on the existing carbon-based materials have some problems as follows.

첫째, 기존의 탄소계 물질은 기공크기가 작아 고분자가 탄소 내부까지 도달하지 못하므로 실질적인 비표면적이 줄어들게 되고 고분자의 함량을 크게 올리지 못한다는 단점이 있다.First, the existing carbon-based material has a disadvantage that the specific specific surface area is reduced and the polymer content is not greatly increased because the polymer does not reach the carbon inside because the pore size is small.

둘째, 기존의 기능성 고분자는 금속 이온과 착물반응 시 결합세기가 약해 흡착제 무게에 대비해서 금속 제거량이 실질적으로 낮다는 점이다.Second, conventional functional polymers have a low bond strength when reacting complexes with metal ions, resulting in a substantially low metal removal relative to the weight of the adsorbent.

따라서, 본 발명은 종래 금속제거용 복합체의 문제점을 해결하기 위하여 수용액 중에서 복합체의 안정성을 높여 다양한 물리화학적 환경에 적용 가능하고 더욱 높은 금속 이온 흡착특성을 보이는 메조기공 탄소계 물질과 기능성 고분자로 구성된 새로운 개념의 기능성 복합체를 제공하는 데에 목적이 있다.Therefore, the present invention is applicable to various physical and chemical environments by increasing the stability of the complex in aqueous solution to solve the problems of the conventional metal removal complex and a novel mesoporous carbon-based material and functional polymers showing higher metal ion adsorption characteristics The purpose is to provide a conceptual functional complex.

상기 목적을 달성하기 위하여, 본 발명은 메조기공 탄소계 물질의 모체, 및 상기 모체에 강하게 흡착되어 있는 1종 이상의 기능성 고분자를 포함하는 기능성 복합체를 제공한다. In order to achieve the above object, the present invention provides a functional composite comprising a matrix of mesoporous carbon-based material, and at least one functional polymer strongly adsorbed to the matrix.

또한, 본 발명은 탄소계 물질의 모체 및 모체에 강하게 흡착되어 있는 카르복시메틸화 폴리에틸렌이민(carboxymethylated polyethyleneimine)을 포함하는 것을 특징으로 하는 기능성 복합체를 제공한다. In addition, the present invention provides a functional complex comprising a carboxymethylated polyethyleneimine strongly adsorbed to the mother and mother of the carbon-based material.

이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은 수용액 중의 중금속 및 방사성 물질을 분리하기 위한 기능성 복합체를 포함한다.The present invention includes a functional complex for separating heavy metals and radioactive materials in an aqueous solution.

구체적으로, 본 발명은 최소한 물에 녹지 않는 모체(matrix)와 상기 모체에 강하게 흡착되어 금속 이온과 착물을 형성하는 기능성 고분자(functional polymer)로 구성된 새로운 개념의 기능성 복합체를 포함하며, 상기 모체로써 다양한 형태나 구조의 탄소계 물질을 사용하는 것을 특징으로 하는 새로운 개념의 기능성 복합체를 포함한다.Specifically, the present invention includes a new concept functional complex composed of a matrix which is insoluble in water and a functional polymer that is strongly adsorbed to the matrix to form a complex with metal ions. It includes a new concept of functional composites characterized by the use of carbon-based materials in form or structure.

본 발명에 따른 상기 다양한 구조의 메조기공 탄소계 물질에서, 상기 메조기공 탄소계 물질이란 기능성 고분자와의 강한 결합으로 인해 수용액 중에서 안정성이 탁월하고, 실질적으로 고분자가 접근할 수 있는 넓은 비표면적을 가진 모체를 사용함으로써 기능성 고분자의 담지량을 현저히 높이기 위해, 규칙적인 기공구조를 가진 탄소와 비규칙적인 기공구조를 가진 탄소, 속이 비어있고 껍질(Shell) 부분에 메조기공이 있는 탄소, 속이 차있고 껍질(Shell) 부분에 메조기공이 있는 탄소, 이들의 유도체 및 이들의 혼합물로 이루어진 군 중에서 1종 이상이 선택되는 것이 바람직하다.In the mesoporous carbon-based material having various structures according to the present invention, the mesoporous carbon-based material has excellent stability in aqueous solution due to strong bonding with a functional polymer, and has a large specific surface area substantially accessible to the polymer. In order to significantly increase the loading of the functional polymer by using the matrix, carbon having a regular pore structure and carbon having an irregular pore structure, carbon having a hollow and mesoporous portion in the shell portion, a hollow and shell It is preferable that at least one selected from the group consisting of carbons having mesopores in the moiety), derivatives thereof, and mixtures thereof.

상기 메조기공 탄소계 물질은 수용액 중에서 많은 양의 금속을 분리하기 위해 보다 큰 비표면적을 제공하여 더욱 많은 고분자와 흡착할 수 있어야 하므로 2 nm 내지 50 nm 범위의 크기의 기공을 가지는 것이 바람직하다. 기공의 크기가 2 nm 보다 작다면 고분자가 탄소 내부까지 도달하지 못하게 되고, 50 nm 보다 크다면 비표면적은 작아져 고분자 함량을 높이려는 효과는 적어지게 된다.The mesoporous carbon-based material has a pore size in the range of 2 nm to 50 nm because the mesoporous carbon-based material should be able to adsorb with more polymers by providing a larger specific surface area in order to separate a large amount of metal in an aqueous solution. If the pore size is smaller than 2 nm, the polymer does not reach the inside of the carbon. If the pore size is larger than 50 nm, the specific surface area becomes smaller, thereby reducing the effect of increasing the polymer content.

본 발명에 따른 기능성 고분자에 있어서, 상기 기능성 고분자 재료는 다양한 금속종과 강한 착물을 형성하는 기능성 고분자를 사용함으로써 높은 흡착량을 보이는, 이민계 폴리머, 알콜계 폴리머, 아크릴계 폴리머, 페놀계 폴리머, 비닐계 폴리머, 니트닐계 폴리머, 이들의 혼합물 및 이들의 유도체 등에서 1종 이상이 선택되는 것이 바람직하다.In the functional polymer according to the present invention, the functional polymer material exhibits a high adsorption amount by using a functional polymer that forms a strong complex with various metal species, an imine polymer, an alcohol polymer, an acrylic polymer, a phenolic polymer, and a vinyl. It is preferable that at least 1 sort (s) is chosen from a type | system | group polymer, a nitrile type polymer, mixtures thereof, derivatives thereof, etc.

상기 탄소계 물질과 강한 결합을 형성할 수 있는 극성 기능기를 가진 폴리에틸렌이민(polyethyleneimine), 카르복시메틸화 폴리에틸렌이민(carboxymethylated polyethyleneimine), 폴리우레탄(polyurethane), 폴리아크릴산(poly(acrylic acid)), 폴리비닐 알콜(poly(vinyl alcohol)), 폴리이미노아세틱 엑시드(poly(iminoacetic acid)), 이들의 혼합물 및 이들의 유도체 등에서 1종 이상이 선택될 수 있으나, 이들에만 국한되는 것은 아니다.Polyethyleneimine, carboxymethylated polyethyleneimine, polyurethane, polyacrylic acid, poly (acrylic acid), polyvinyl alcohol (poly (vinyl alcohol)), polyiminoacetic acid (poly (iminoacetic acid)), mixtures thereof and derivatives thereof may be selected, but not limited thereto.

상기 복합체는 모체와 기능성 고분자의 결합을 강화하기 위하여 바인더 역할을 하는 한가지 이상의 첨가제를 추가로 포함할 수 있다. The composite may further include one or more additives that act as binders to enhance the binding of the parent and the functional polymer.

상기 첨가제는 폴리비닐파이롤리돈(polyvinyl pyrrolidone), 폴리비닐리덴 플루오라이드(polyvinylidene fluoride), 폴리헥사플루오로프로필렌(polyhexafluoropropylene), 폴리에틸 아크릴레이트(polyethyl acrylate), 폴리테트라플루오로에틸렌(polytetrafluoroethylene), 폴리비닐 클로라이드(polyvinyl chloride), 폴리아크릴로니트릴(polyacrylonitrile), 이들의 혼합물 및 이들의 유도체로 이루어진 군에서 1종 이상이 선택될 수 있다.The additive is polyvinyl pyrrolidone, polyvinylidene fluoride, polyhexafluoropropylene, polyethyl acrylate, polytetrafluoroethylene, At least one may be selected from the group consisting of polyvinyl chloride, polyacrylonitrile, mixtures thereof and derivatives thereof.

또한, 본 발명은 탄소계 물질의 모체 및 상기 모체에 강하게 흡착되어 있는 카르복시메틸화 폴리에틸렌이민(carboxymethylated polyethyleneimine)을 포함하여 구성되는 기능성 복합체를 포함한다.The present invention also includes a functional complex comprising a matrix of carbonaceous material and a carboxymethylated polyethyleneimine strongly adsorbed to the matrix.

상기 탄소계 물질은 흑연(graphite), 탄소섬유(carbon fiber), 카본 블랙(carbon black), 탄소 나노 튜브(carbon nanotube), 활성탄소(activated carbon), 이들의 혼합물 및 이들의 유도체로 이루어진 군 중에서 1종 이상이 선택되는 것이 바람직하다.The carbonaceous material is selected from the group consisting of graphite, carbon fiber, carbon black, carbon nanotube, activated carbon, mixtures thereof, and derivatives thereof. It is preferable that 1 or more types are selected.

상기 복합체는 수용액 중에서 더 많은 양의 금속을 분리하기 위해서 많은 양의 고분자와 흡착된 형태를 가져야 한다. 따라서, 기능성 고분자로 사용되는 카르복시메틸화 폴리에틸렌이민(carboxymethylated polyethyleneimine; CM-PEI)의 분자량은 1,000 내지 1,000,000 인 것이 바람직하며, 10,000 내지 500,000 인 것이 더욱 바람직하다.The complex should have an adsorbed form with a large amount of polymer in order to separate higher amounts of metal in aqueous solution. Therefore, the molecular weight of the carboxymethylated polyethyleneimine (CM-PEI) used as the functional polymer is preferably 1,000 to 1,000,000, more preferably 10,000 to 500,000.

상기 복합체는 모체와 카르복시메틸화 폴리에틸렌이민 사이의 결합력을 높이기 위하여 바인더 역할을 하는 한가지 이상의 첨가제를 추가로 포함할 수 있다. The complex may further include one or more additives that act as binders to increase the binding force between the parent and the carboxymethylated polyethyleneimine.

상기 첨가제로는 폴리비닐파이롤리돈(polyvinyl pyrrolidone), 폴리비닐리덴 플루오라이드(polyvinylidene fluoride), 폴리헥사플루오로프로필렌(polyhexafluoropropylene), 폴리에틸 아크릴레이트(polyethyl acrylate), 폴리테트라플루오로에틸렌(polytetrafluoroethylene), 폴리비닐 클로라이드(polyvinyl chloride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리부타디엔(polybutadiene), 폴리이소프렌(polyisoprene), 폴리아크릴산(polyacrylic acid), 이들의 혼합물 및 이들의 유도체로 이루어진 군에서 1종 이상이 선택될 수 있다.The additives include polyvinylpyrrolidone, polyvinylidene fluoride, polyhexafluoropropylene, polyethyl acrylate, polytetrafluoroethylene , Polyvinyl chloride, polyacrylonitrile, polybutadiene, polyisoprene, polyacrylic acid, polyacrylic acid, mixtures thereof and derivatives thereof Can be selected.

이하 본 발명에 따른 새로운 개념의 복합체의 자세한 제조과정을 상세하게 설명한다.Hereinafter will be described in detail the manufacturing process of the composite of the new concept according to the present invention.

기능성 고분자를 먼저 물에 녹인 후 pH를 조절한다. 특정 pH에서 탄소를 천천히 고분자 용액에 넣으면서 혼합용액을 2일 동안 마그네틱바로 교반하면서 반응시킨다. 반응이 종결되면 혼합용액을 여과한 후 생성물인 복합체로부터 약하게 결합된 고분자를 제거하기 위해 과량의 물로 씻는다. 비반응된 고분자의 양을 총유기탄소(total organic carbon; TOC) 분석기로 측정하여 복합체 내의 고분자 함량을 결정한다.The functional polymer is first dissolved in water and then the pH is adjusted. The mixed solution is reacted with a magnetic bar for 2 days while slowly adding carbon to the polymer solution at a specific pH. After the reaction is over, the mixed solution is filtered and washed with excess water to remove the weakly bound polymer from the product complex. The amount of unreacted polymer is measured by a total organic carbon (TOC) analyzer to determine the polymer content in the composite.

상기 새로운 개념의 복합체 제조시 탄소의 분산을 향상시키기 위해 다양한 분산제를 부가함으로써 상대적으로 고분자의 분포가 고르고 고분자 함량이 높은 새로운 개념의 고분자를 제공할 수 있다.By adding various dispersants to improve the dispersion of carbon in the preparation of the composite of the new concept, it is possible to provide a new concept of polymer having a relatively even distribution of polymer and a high polymer content.

이하 본 발명의 일 실시예에 따른 새로운 개념의 복합체의 자세한 제조과정을 상세하게 설명한다. 실시예는 다만 본 발명의 이해를 돕기 위하여 제시되는 것일 뿐, 본 발명이 하기 실시예에 한정되는 것은 아니다.Hereinafter will be described in detail the manufacturing process of the composite of a new concept according to an embodiment of the present invention. The examples are only presented to aid the understanding of the present invention, and the present invention is not limited to the following examples.

<실시예 1> 메조기공 탄소를 이용한 기능성 복합체의 제조Example 1 Preparation of Functional Composite Using Mesoporous Carbon

다양한 초기 농도의 폴리에틸렌이민(polyethyleneimine; PEI) 수용액에 평균 기공 크기가 4 nm인 메조기공 탄소를 pH 5에서 천천히 가하여 48시간 동안 교반하면서 복합체를 제조하였다. 상기 혼합 용액의 pH는 고순도 염산으로 조절하였고, 이온 세기는 0.1M NaNO3로 맞추었다. 반응이 평형에 도달한 후 여과하여 용액 중에 남아있는 PEI 양을 총유기탄소분석기로 측정하였다. 초기 투입량에서 남아있는 양을 뺌으로써 복합체 내의 PEI의 양을 결정하였다. A mesoporous carbon having an average pore size of 4 nm was slowly added at pH 5 to various aqueous solutions of polyethyleneimine (PEI) at various initial concentrations to prepare a complex while stirring for 48 hours. The pH of the mixed solution was adjusted with high purity hydrochloric acid and the ionic strength was adjusted to 0.1M NaNO 3 . After the reaction had reached equilibrium, the amount of PEI remaining in the solution was measured by total organic carbon analyzer. The amount of PEI in the complex was determined by subtracting the amount remaining from the initial dose.

도 1에 메조기공 탄소표면에서 일어나는 PEI 흡착 등온선(adsorption isotherm)을 나타내었다. 1 shows the PEI adsorption isotherm that occurs at the mesoporous carbon surface.

<실시예 2> 활성탄을 이용한 기능성 복합체의 제조 및 구리 흡착 실험Example 2 Preparation of Functional Composite Using Activated Carbon and Copper Adsorption Experiment

다양한 초기 농도의 카르복시메틸화 폴리에틸렌이민((carboxymethylated polyethyleneimine; CM-PEI) 수용액에 활성탄(F400, Calgon Carbon Corporation, USA)을 pH 5에서 천천히 가하여 48시간 동안 교반하면서 복합체를 제조하였다. 상기 혼합 용액의 pH는 고순도 염산으로 조절하였고, 이온 세기는 0.1M NaNO3로 맞추었다. 반응이 평형에 도달한 후 여과하여 용액 중에 남아있는 CM-PEI 양을 총유기탄소분석기로 측정하였다. 초기 투입량에서 남아있는 양을 뺌으로써 복합체 내의 CM-PEI 양을 결정할 수 있다. 또한 복합체의 구리흡착 특성을 살펴보기 위해, 고분자 함량이 10 wt% 및 20 wt% 인 복합체를 사용하여 pH 5, 구리 초기 농도 100 ppm의 수용액에서의 구리 흡착량을 조사하였다. 흡착반응이 평형에 도달한 후 여과하여 용액에 남아있는 구리의 양을 유도결합 플라즈마분광법(inductively coupled plasma spectroscopy)으로 정량함으로써 흡착된 구리의 양을 결정하였다.Activated carbon (F400, Calgon Carbon Corporation, USA) was slowly added to an aqueous solution of carboxymethylated polyethyleneimine (CM-PEI) at various initial concentrations at pH 5 to prepare a complex while stirring for 48 hours. Was adjusted with high purity hydrochloric acid and the ionic strength was adjusted to 0.1 M NaNO 3. After the reaction had reached equilibrium, the amount of CM-PEI remaining in the solution was measured by total organic carbon analyzer. The amount of CM-PEI in the composite can be determined by determining the amount of CM-PEI in the composite. The amount of copper retained in the solution was filtered after the adsorption reaction reached equilibrium (inductively c). The amount of copper adsorbed was determined by quantification by oupled plasma spectroscopy.

표 1에서 실시예 2에 따른 고분자 함량이 10 wt% 및 20 wt% 인 복합체의 구리 최대 흡착량 실험결과를 정리하였다. Table 1 summarizes the experimental results of the copper maximum adsorption amount of the composite having a polymer content of 10 wt% and 20 wt% according to Example 2.

<실시예 3> 우라늄 흡착 실험Example 3 Uranium Adsorption Experiment

실시예 2와 같이 제조된 고분자 함량 20 wt% 인 복합체를 이용하여 다양한 우라늄 농도에서 우라늄 흡착 특성을 조사하였다. 상기 다양한 농도의 우라늄 용액은 UO2(NO3)2(MERCK)를 물에 녹여 제조하여 사용하였고 흡착실험은 pH 3.5에서 수행되었으며 이온 세기는 0.1M NaNO3로 맞추었다. The uranium adsorption characteristics were investigated at various uranium concentrations using a composite having a polymer content of 20 wt% prepared as in Example 2. The uranium solution of various concentrations was prepared by dissolving UO 2 (NO 3 ) 2 (MERCK) in water, and the adsorption experiment was performed at pH 3.5 and the ionic strength was adjusted to 0.1 M NaNO 3 .

도 2에 복합체에서 일어나는 우라늄의 흡착 등온선을 나타내었다. 2 shows adsorption isotherms of uranium occurring in the composite.

<비교예 1> 활성탄을 이용한 기능성 복합체의 제조Comparative Example 1 Preparation of Functional Composite Using Activated Carbon

모체물질로 메조기공 탄소 대신 활성탄을 사용하여 복합체를 제조한 것을 제 외하고는 실시예 1과 동일한 조건으로 수행되었다.Except that the composite was prepared using activated carbon instead of mesoporous carbon as the parent material was carried out under the same conditions as in Example 1.

<비교예 2> 활성탄을 이용한 기능성 복합체의 제조 및 구리 흡착 실험Comparative Example 2 Preparation of Functional Composite Using Activated Carbon and Experiment of Copper Adsorption

기능성 고분자로 카르복시메틸화 폴리에틸렌이민(CM-PEI) 대신 폴리에틸렌이민(PEI)을 사용하여 제조한 것을 제외하고는 실시예 2와 동일한 조건으로 수행되었다. It was carried out under the same conditions as in Example 2 except that the polymer was manufactured using polyethyleneimine (PEI) instead of carboxymethylated polyethyleneimine (CM-PEI) as a functional polymer.

표 1에 비교예 2에 따른 고분자 함량이 10 wt% 및 20 wt% 인 복합체의 구리 최대 흡착량 실험결과를 정리하였다. Table 1 summarizes the experimental results of the copper maximum adsorption amount of the composite having a polymer content of 10 wt% and 20 wt% according to Comparative Example 2.

<비교예 3> 활성탄을 이용한 기능성 복합체의 제조 및 구리 흡착 실험Comparative Example 3 Preparation of Functional Composite Using Activated Carbon and Copper Adsorption Experiment

기능성 고분자로 카르복시메틸화 폴리에틸렌이민(CM-PEI) 대신 폴리아크릴산(polyacrylic acid; PAA)을 사용하여 제조한 것을 제외하고는 실시예 2와 동일한 조건으로 수행되었다. It was carried out under the same conditions as in Example 2, except that polyacrylic acid (PAA) was used instead of carboxymethylated polyethyleneimine (CM-PEI) as a functional polymer.

표 1에 비교예 3에 따른 고분자 함량이 10 wt% 및 20 wt% 인 복합체의 구리 최대 흡착량 실험결과를 정리하였다. Table 1 summarizes the experimental results of the copper maximum adsorption amount of the composite having a polymer content of 10 wt% and 20 wt% according to Comparative Example 3.

<비교예 4> 활성탄을 이용한 우라늄 흡착 실험Comparative Example 4 Uranium Adsorption Experiment Using Activated Carbon

우라늄 흡착제로 F400을 사용한 것을 제외하고는 실험예 3과 동일한 조건으로 수행되었다. Except for using F400 as the uranium adsorbent it was carried out under the same conditions as in Experiment 3.

도 2에서와 같이 F400을 흡착제로 사용할 때보다 F400/CM-PEI 복합체가 흡착 제로 사용될 때 우라늄 흡착량이 현격히 증가함을 확인할 수 있다. As shown in FIG. 2 , the amount of uranium adsorption increased significantly when the F400 / CM-PEI composite was used as the adsorbent than when the F400 was used as the adsorbent.

실시예 1과 비교예 1의 결과를 보이고 있는 도 1에서 명백히 볼 수 있듯이 메조기공 탄소를 모체로 사용할 때 폴리에틸렌이민(PEI)의 함량이 크게 높아지는 것을 확인할 수 있다. 표 1은 활성탄에 동일한 함량의 고분자가 들어있는 복합체에서 고분자 종류에 따라 구리 흡착량이 달라질 수 있음을 보여준다. 폴리에틸렌이민(PEI)이나 폴리아크릴산(PAA)가 활성탄에 도입되는 것보다 카르복시메틸화 폴리에틸렌이민(CM-PEI)이 되입될 때 구리 흡착량이 크게 증가함을 알 수 있다.As can be clearly seen in FIG. 1 showing the results of Example 1 and Comparative Example 1, it can be seen that the content of polyethyleneimine (PEI) is greatly increased when mesoporous carbon is used as a parent. Table 1 shows that the amount of copper adsorption may vary depending on the type of polymer in the composite containing the same amount of polymer in activated carbon. It can be seen that the amount of copper adsorbed increases when the carboxymethylated polyethyleneimine (CM-PEI) is re-introduced, rather than polyethyleneimine (PEI) or polyacrylic acid (PAA) introduced into activated carbon.

복합체 내 고분자 함량Polymer content in the composite 실시예 2Example 2 비교예 2Comparative Example 2 비교예 3Comparative Example 3 10 wt%10 wt% 20 wt%20 wt% 10 wt%10 wt% 20 wt%20 wt% 10 wt%10 wt% 20 wt%20 wt% 구리흡착량 (구리 mg/ 복합체 g)Copper adsorption amount (copper mg / g complex) 8.3 8.3 15 15 4.2 4.2 9 9 3.5 3.5 6.2 6.2

이상에서 살펴본 바와 같이, 본 발명에 따른 새로운 개념의 기능성 복합체는 산업폐수의 정수, 초순수의 제조, 환경오염방지 및 방사선 물질의 제염 등과 같은 다양한 화학적 환경에서 적용이 가능하고, 모체와 기능성 고분자의 강한 결합으로 인해 수용액 중에서 안정성이 탁월하고 실질적으로 고분자가 접근할 수 있는 넓은 비표면적을 가진 모체를 사용함으로써 기능성 고분자의 담지량을 현저히 높이고, 다양한 금속종과 강한 착물을 형성하는 기능성 고분자를 사용함으로써 높은 흡착량을 가질 뿐 아니라 단순한 분리공정을 통하여 수용액으로부터 쉽게 분리할 수 있어서 수질 개선제 또는 제염제로서 다양한 화학적 환경에서 적용이 가능하고, 제조비용면에서 탁월하게 유리할 것으로 기대된다. As described above, the new functional functional complex according to the present invention can be applied in various chemical environments such as water purification of industrial wastewater, production of ultrapure water, prevention of environmental pollution, and decontamination of radioactive substances, and strong resistance of the mother and functional polymers. Due to the bonding, the mothers have excellent stability in aqueous solution and have a large specific surface area that polymers can access substantially, significantly increasing the amount of functional polymers supported, and high adsorption by using functional polymers that form strong complexes with various metal species. It can be easily separated from an aqueous solution through a simple separation process and can be applied in various chemical environments as a water improver or decontamination agent, and is expected to be advantageous in terms of manufacturing cost.

Claims (13)

평균 기공 크기가 2 nm ~ 30 nm 인 메조기공 탄소계 물질의 모체, 및A matrix of mesoporous carbonaceous material having an average pore size of 2 nm to 30 nm, and 상기 모체에 강하게 흡착되어 금속 이온과 착물을 형성하는 착물 형성 고분자Complex-forming polymer that is strongly adsorbed to the matrix to form a complex with metal ions 를 포함하는 기능성 복합체.Functional complex comprising a. 제1항에 있어서, 상기 메조기공 탄소계 물질은 규칙적인 기공구조를 가진 탄소와 비규칙적인 기공구조를 가진 탄소, 속이 비어있고 껍질(Shell) 부분에 메조기공이 있는 탄소, 속이 차있고 껍질(Shell) 부분에 메조기공이 있는 탄소, 이들의 유도체 및 이들의 혼합물로 이루어진 군 중에서 1종 이상이 선택된 것임을 특징으로 하는 기능성 복합체.The mesoporous carbonaceous material according to claim 1, wherein the mesoporous carbonaceous material includes carbon having a regular pore structure and carbon having an irregular pore structure, hollow and carbon having mesopores in a shell portion, and having a hollow shell. Functional complex, characterized in that at least one selected from the group consisting of carbon having mesopores, derivatives thereof, and mixtures thereof. 삭제delete 제1항에 있어서, 상기 착물 형성 고분자는 이민계 폴리머, 알콜계 폴리머, 아크릴계 폴리머, 페놀계 폴리머, 비닐계 폴리머, 니트닐계 폴리머, 이들의 혼합물 및 이들의 유도체로 이루어진 군 중에서 1종 이상이 선택된 것임을 특징으로 하는 기능성 복합체.The complex forming polymer of claim 1, wherein the complex-forming polymer is selected from the group consisting of imine polymers, alcohol polymers, acrylic polymers, phenolic polymers, vinyl polymers, nitrile polymers, mixtures thereof, and derivatives thereof. Functional complex characterized in that. 제4항에 있어서, 상기 착물 형성 고분자는 폴리에틸렌이민(polyethyleneimine), 카르복시메틸화 폴리에틸렌이민(carboxymethylated polyethyleneimine), 폴리우레탄(polyurethane), 폴리아크릴산(poly(acrylic acid)), 폴리비닐 알콜(poly(vinyl alcohol)), 폴리이미노아세틱 엑시드(poly(iminoacetic acid)), 이들의 혼합물 및 이들의 유도체로 이루어진 군 중에서 1종 이상이 선택된 것임을 특징으로 하는 기능성 복합체.The method of claim 4, wherein the complex forming polymer is polyethyleneimine, carboxymethylated polyethyleneimine, polyurethane, polyacrylic acid, polyvinyl alcohol )), Polyiminoacetic acid (poly (iminoacetic acid)), a functional complex, characterized in that at least one selected from the group consisting of their derivatives. 제1항에 있어서, 상기 기능성 복합체는 모체와 기능성 고분자의 결합을 강화하는 바인더 역할을 하는 1종 이상의 첨가제를 추가로 포함함을 특징으로 하는 기능성 복합체. The functional composite of claim 1, wherein the functional complex further comprises one or more additives that act as binders to enhance bonding between the parent and the functional polymer. 제6항에 있어서, 상기 첨가제는 폴리비닐파이롤리돈(polyvinyl pyrrolidone), 폴리비닐리덴 플루오라이드(polyvinylidene fluoride), 폴리헥사플루오로프로필렌(polyhexafluoropropylene), 폴리에틸 아크릴레이트(polyethyl acrylate), 폴리테트라플루오로에틸렌(polytetrafluoroethylene), 폴리비닐 클로라이드(polyvinyl chloride), 폴리아크릴로니트릴(polyacrylonitrile), 이들의 혼합물 및 이들의 유도체로 이루어진 군에서 1종 이상이 선택된 것임을 특징으로 하는 기능성 복합체.The method of claim 6, wherein the additive is polyvinylpyrrolidone, polyvinylidene fluoride, polyhexafluoropropylene, polyethyl acrylate, polytetrafluoro Functional complex characterized in that at least one selected from the group consisting of polytetrafluoroethylene, polyvinyl chloride, polyacrylonitrile, mixtures thereof and derivatives thereof. 탄소계 물질의 모체, 및Matrix of carbonaceous material, and 상기 모체에 강하게 흡착되어 금속 이온과 착물을 형성하는 카르복시메틸화 폴리에틸렌이민(carboxymethylated polyethyleneimine)Carboxymethylated polyethyleneimine that is strongly adsorbed to the parent to form complexes with metal ions 을 포함하는 기능성 복합체.Functional complex comprising a. 제8항에 있어서, 상기 탄소계 물질은 흑연(graphite), 탄소섬유(carbon fiber), 카본 블랙(carbon black), 탄소 나노 튜브(carbon nanotube), 활성탄소(activated carbon), 이들의 혼합물 및 이들의 유도체로 이루어진 군 중에서 1종 이상이 선택된 것임을 특징으로 하는 기능성 복합체.The method of claim 8, wherein the carbon-based material is graphite, carbon fiber, carbon black, carbon nanotubes, activated carbon, mixtures thereof, and mixtures thereof Functional complex, characterized in that at least one selected from the group consisting of derivatives of. 제8항에 있어서, 상기 카르복시메틸화 폴리에틸렌이민(carboxymethylated polyethyleneimine)의 분자량은 1,000 내지 1,000,000 인 것임을 특징으로 하는 기능성 복합체. The functional complex of claim 8, wherein the molecular weight of the carboxymethylated polyethyleneimine is 1,000 to 1,000,000. 제8항에 있어서, 상기 카르복시메틸화 폴리에틸렌이민(carboxymethylated polyethyleneimine)의 분자량은 10,000 내지 500,000 사이인 것임을 특징으로 하는 기능성 복합체.The functional complex of claim 8, wherein the molecular weight of the carboxymethylated polyethyleneimine is between 10,000 and 500,000. 제8항에 있어서, 상기 기능성 복합체는 상기 탄소계 물질과 상기 카르복시메틸화 폴리에틸렌이민(carboxymethylated polyethyleneimine)의 결합을 강화하는 바인더 역할을 하는 1종 이상의 첨가제를 추가로 포함함을 특징으로 하는 기능성 복합체.The functional composite of claim 8, wherein the functional complex further comprises one or more additives that act as binders to enhance bonding between the carbonaceous material and the carboxymethylated polyethyleneimine. 제12항에 있어서, 상기 첨가제는 폴리비닐파이롤리돈(polyvinyl pyrrolidone), 폴리비닐리덴 플루오라이드(polyvinylidene fluoride), 폴리헥사플루오로프로필렌(polyhexafluoropropylene), 폴리에틸 아크릴레이트(polyethyl acrylate), 폴리테트라플루오로에틸렌(polytetrafluoroethylene), 폴리비닐 클로라이드(polyvinyl chloride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리부타디엔(polybutadiene), 폴리이소프렌(polyisoprene), 폴리아크릴산(polyacrylic acid), 이들의 혼합물 및 이들의 유도체로 이루어진 군에서 1종 이상이 선택된 것임을 특징으로 하는 기능성 복합체.The method of claim 12, wherein the additive is polyvinylpyrrolidone, polyvinylidene fluoride, polyhexafluoropropylene, polyethyl acrylate, polytetrafluoro Consisting of polytetrafluoroethylene, polyvinyl chloride, polyacrylonitrile, polybutadiene, polyisoprene, polyacrylic acid, mixtures thereof and derivatives thereof Functional complex, characterized in that at least one selected from the group.
KR1020060075536A 2006-08-10 2006-08-10 New innovative functional composites comprising mesoporous carbon-based material and functional polymer KR100768406B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060075536A KR100768406B1 (en) 2006-08-10 2006-08-10 New innovative functional composites comprising mesoporous carbon-based material and functional polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060075536A KR100768406B1 (en) 2006-08-10 2006-08-10 New innovative functional composites comprising mesoporous carbon-based material and functional polymer

Publications (1)

Publication Number Publication Date
KR100768406B1 true KR100768406B1 (en) 2007-10-18

Family

ID=38815205

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060075536A KR100768406B1 (en) 2006-08-10 2006-08-10 New innovative functional composites comprising mesoporous carbon-based material and functional polymer

Country Status (1)

Country Link
KR (1) KR100768406B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101136750B1 (en) 2010-05-27 2012-04-19 한국과학기술연구원 Reuseable heavy metal remover and the fabrication method thereof
KR101329796B1 (en) 2011-11-02 2013-11-18 한국과학기술연구원 Composition for polyacrylonitrile based electroconductive composites, method for preparing the composites using the same and the composites prepared thereby
KR20220082365A (en) * 2020-12-10 2022-06-17 광운대학교 산학협력단 Phosphoric acid modified biochar adsorbent and the manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59186641A (en) 1983-04-05 1984-10-23 Toyobo Co Ltd Adsorbent for filter for cleaning atmospheric air
JPH07241462A (en) * 1994-03-04 1995-09-19 Nisso Eng Kk Adsorbent for air purifying filter
JPH11106209A (en) 1997-09-30 1999-04-20 Mitsubishi Pencil Co Ltd Active carbon and its production
JP2004315297A (en) 2003-04-17 2004-11-11 Misuzu Kogyo:Kk Nano carbon composite material and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59186641A (en) 1983-04-05 1984-10-23 Toyobo Co Ltd Adsorbent for filter for cleaning atmospheric air
JPH07241462A (en) * 1994-03-04 1995-09-19 Nisso Eng Kk Adsorbent for air purifying filter
JPH11106209A (en) 1997-09-30 1999-04-20 Mitsubishi Pencil Co Ltd Active carbon and its production
JP2004315297A (en) 2003-04-17 2004-11-11 Misuzu Kogyo:Kk Nano carbon composite material and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101136750B1 (en) 2010-05-27 2012-04-19 한국과학기술연구원 Reuseable heavy metal remover and the fabrication method thereof
KR101329796B1 (en) 2011-11-02 2013-11-18 한국과학기술연구원 Composition for polyacrylonitrile based electroconductive composites, method for preparing the composites using the same and the composites prepared thereby
KR20220082365A (en) * 2020-12-10 2022-06-17 광운대학교 산학협력단 Phosphoric acid modified biochar adsorbent and the manufacturing method thereof
KR102498159B1 (en) 2020-12-10 2023-02-09 광운대학교 산학협력단 Phosphoric acid modified biochar adsorbent and the manufacturing method thereof

Similar Documents

Publication Publication Date Title
Qiu et al. Polyaniline coating with various substrates for hexavalent chromium removal
Chen et al. A novel Fe3+-stabilized magnetic polydopamine composite for enhanced selective adsorption and separation of Methylene blue from complex wastewater
Bao et al. PEI grafted amino-functionalized graphene oxide nanosheets for ultrafast and high selectivity removal of Cr (VI) from aqueous solutions by adsorption combined with reduction: Behaviors and mechanisms
Wang et al. Enhanced antimonate (Sb (V)) removal from aqueous solution by La-doped magnetic biochars
Xiong et al. Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53 (Fe) as new adsorbent
US11078093B2 (en) Surfactant-assisted synthesis of surface-functionalized nanoparticle-polymer electrospun composites
He et al. Design and fabrication of highly ordered ion imprinted SBA-15 and MCM-41 mesoporous organosilicas for efficient removal of Ni2+ from different properties of wastewaters
CN108479712B (en) Modified carbon nanotube film material capable of adsorbing and degrading tetrabromobisphenol A and application method thereof
Hu et al. Construction of adsorbents with graphene and its derivatives for wastewater treatment: a review
KR101206826B1 (en) Improved preparation of metal ion imprinted microporous polymer particles
Sarojini et al. Dyes removal from water using polymeric nanocomposites: a review
Li et al. Development of chitosan-based granular adsorbents for enhanced and selective adsorption performance in heavy metal removal
CN113000023A (en) Graphene oxide modified activated carbon, preparation method thereof and water treatment method
CN104258816A (en) Preparation method of magnetic stripping type montmorillonite nanocomposite material for wastewater treatment
KR100768406B1 (en) New innovative functional composites comprising mesoporous carbon-based material and functional polymer
Ahmad Study of different polymer nanocomposites and their pollutant removal efficiency
Meng et al. Improving the adsorption of poly (o-phenylenediamine) to heavy metal ions in aqueous solution through its composite with carbon dots
JP2008050237A (en) Spherical porous carbon particle powder and production method therefor
JP5502678B2 (en) Composition, metal ion adsorbent, and metal recovery method
Amaly et al. Effective tetracycline removal from liquid streams of dairy manure via hierarchical poly (vinyl alcohol-co-ethylene)/polyaniline metal complex nanofibrous membranes
KR101016231B1 (en) Method for preparing porous imprinted polymer particles for the selective separation of heavy metal ions
KR101621954B1 (en) Chelating compound, and method of use of, poly(2-octadecyl-butanedioate) and the corresponding acid, poly(2-octadecyl-butanedioate)
Xiao et al. Preparation of mesoporous silica nanoparticles modified by urushiol and their adsorption on malachite green
CN110605101A (en) Adsorbent for adsorbing lead ions, and membrane protective agent and water treatment agent containing same
JPWO2012063305A1 (en) Treatment method of mercury ion-containing liquid and mercury ion adsorbent

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20111010

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee