KR100766614B1 - Method for preparing indole derivatives using decarboxylation - Google Patents

Method for preparing indole derivatives using decarboxylation Download PDF

Info

Publication number
KR100766614B1
KR100766614B1 KR1020010048683A KR20010048683A KR100766614B1 KR 100766614 B1 KR100766614 B1 KR 100766614B1 KR 1020010048683 A KR1020010048683 A KR 1020010048683A KR 20010048683 A KR20010048683 A KR 20010048683A KR 100766614 B1 KR100766614 B1 KR 100766614B1
Authority
KR
South Korea
Prior art keywords
reaction
indole
catalyst
preparing
derivative
Prior art date
Application number
KR1020010048683A
Other languages
Korean (ko)
Other versions
KR20030014808A (en
Inventor
곽병성
이상일
Original Assignee
에스케이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이 주식회사 filed Critical 에스케이 주식회사
Priority to KR1020010048683A priority Critical patent/KR100766614B1/en
Publication of KR20030014808A publication Critical patent/KR20030014808A/en
Application granted granted Critical
Publication of KR100766614B1 publication Critical patent/KR100766614B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
    • C07D209/42Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/165Natural alumino-silicates, e.g. zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/12Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
    • C07D209/32Oxygen atoms

Abstract

본 발명은 카르복시 이탈반응을 이용한 인돌 유도체의 제조방법에 관한 것으로서, 좀 더 상세하게는 인돌 유도체의 제조방법에 있어서, 불활성가스 분위기 하에서 금속산화물 촉매가 충진된 고정층 연속 반응계에 인돌 카르복실산 유도체를 용매에 녹여 반응기에 투입한 다음, 반응온도 50~500℃, 반응압력 50~2,500psig 및 시간당 중량공간속도(WHSV) 0.1~30h-1인 반응조건 하에서 카르복시 이탈반응을 통한 인돌 유도체의 제조방법에 관한 것이다. 본 발명에 따른 방법은 비교적 간단한 공정을 통해 생산성이 높고, 경제적인 방법으로 인돌 유도체를 제공할 수 있다.The present invention relates to a method for preparing an indole derivative using a carboxyl leaving reaction, and more particularly, to a method for preparing an indole derivative, indole carboxylic acid derivative in a fixed bed continuous reaction system filled with a metal oxide catalyst under an inert gas atmosphere After dissolving in a solvent and injecting into the reactor, the reaction temperature is 50 ~ 500 ℃, the reaction pressure 50 ~ 2,500psig and the weight hourly space velocity (WHSV) 0.1 ~ 30h -1 under the reaction conditions of the process for the preparation of indole derivatives through the carboxy removal reaction It is about. The process according to the invention can provide indole derivatives in a highly productive and economical way through a relatively simple process.

인돌, 카르복실산, 이탈반응, 금속, 산화물, 촉매Indole, carboxylic acid, leaving reaction, metal, oxide, catalyst

Description

카르복시 이탈반응을 이용한 인돌 유도체의 제조방법{Method for preparing indole derivatives using decarboxylation}Method for preparing indole derivatives using decarboxylation

도 1은 본 발명에 따른 5-메톡시 인돌의 수율을 나타낸 그래프이다.1 is a graph showing the yield of 5-methoxy indole according to the present invention.

본 발명은 카르복시 이탈반응을 이용한 인돌 유도체의 제조방법에 관한 것으로서, 좀 더 상세하게는 금속산화물 촉매가 충진된 고정층 연속 반응계에서 카르복시 이탈반응을 통해 인돌 카르복실산 유도체로부터 인돌 유도체를 연속적으로 제조하는 방법에 관한 것이다.The present invention relates to a method for preparing an indole derivative using a carboxy derivatization reaction, and more particularly, to continuously prepare an indole derivative from an indole carboxylic acid derivative through a carboxy derivatization reaction in a fixed bed continuous reaction system filled with a metal oxide catalyst. It is about a method.

방향족 카르복실산 유도체로부터 카르복시 이탈반응을 통해 방향족 유도체를 합성하는 방법은 종래에 여러 문헌에 개시된 바 있다. 그러나, 종래에 개시된 방법들은 회분식 반응기를 사용하므로써 생산성이 떨어지고, 수율이 낮을 뿐만 아니라, 사용된 촉매의 회수가 어렵고, 중화 및 추출공정 등의 후속 공정이 추가적으로 요구되며, 반응 후 다량의 폐기물이 발생되어 환경적으로 유해하기 때문에 공업적인 적용이 어렵다.Methods for synthesizing aromatic derivatives through carboxyl leaving reactions from aromatic carboxylic acid derivatives have been disclosed in various literatures. However, the conventionally disclosed methods are not only low productivity, low yield, but also difficult to recover the catalyst used by using a batch reactor, additional processes such as neutralization and extraction process are required, and a large amount of waste is generated after the reaction. Industrial application is difficult because it is environmentally harmful.

미국 특허 제5,739,388호는 산화구리(1) 촉매하에 155℃의 반응온도에서 트 리알킬 아민과 물을 혼합한 용매를 이용하여 카르복시 이탈반응을 이용하여 테트라플루오르벤조익산으로부터 테트라플루오르 벤젠을 제조하는 방법을 개시하고 있다. 그러나, 상기 특허에 따른 방법은 또한 반응완료 후에 반응물을 수산화나트륨 수용액으로 중화하고 증류한 다음, 추출 및 수분제거 등의 여러가지 후처리 공정이 요구되어 비경제적이다.U.S. Patent No. 5,739,388 discloses a method for preparing tetrafluorobenzene from tetrafluorobenzoic acid using a carboxyl leaving reaction using a solvent in which trialkyl amine and water are mixed at a reaction temperature of 155 DEG C under a copper oxide (1) catalyst. Is starting. However, the method according to the patent is also uneconomical, requiring various post-treatment processes such as neutralization and distillation of the reactants with an aqueous sodium hydroxide solution after completion of the reaction, followed by extraction and water removal.

미국 특허 제5,872,283호는 물의 존재하에 80 내지 180℃의 반응온도에서의 반응 및 물과 다른 산의 존재하에 80℃ 이상의 반응온도에서의 카르복시 이탈반응을 통해 할로겐화된 방향족 카르복실산으로부터 할로겐화된 방향족 화합물을 제조하는 방법을 개시하고 있다. 상기 특허에 따른 방법은 분자내 카르복실산이 2개인 화합물로부터 1개를 제거하는 반응이며, 황산, 염산 등의 액체산을 사용하므로 장치부식, 액체산 처리 등 환경적으로 유해하다. U.S. Patent No. 5,872,283 discloses aromatic compounds halogenated from halogenated aromatic carboxylic acids through reaction at reaction temperatures of 80 to 180 DEG C in the presence of water and carboxyl leaving at reaction temperatures of 80 DEG C or higher in the presence of water and other acids. Disclosed is a method of preparing the same. The method according to the patent is a reaction for removing one from a compound having two intramolecular carboxylic acids, and since it uses liquid acids such as sulfuric acid and hydrochloric acid, it is environmentally harmful such as device corrosion and liquid acid treatment.

미국 특허 제5,565,447호는 퀴놀린 용매 하에서 산화구리(1) 촉매를 사용하여 190℃의 반응조건 하에서 카르복시 이탈반응을 실시하여 1-[[2-카르복시-3-(2-디메틸아미노에틸)-5-인돌일]메탄술포닐]피롤리딘]으로부터 1-[[3-(2-디메틸아미노에틸)-5-인돌일]메탄술포닐]피롤리딘]을 제조하는 방법을 개시하고 있다. 그러나, 상기 특허에 따른 방법은 반응완료 후 염산을 투입하여 반응물을 중화하고 촉매를 제거한 다음, 유기용매로 추출하는 등의 여러가지 후처리 공정이 요구되어 비경제적이다.U.S. Patent No. 5,565,447 discloses 1-[[2-carboxy-3- (2-dimethylaminoethyl) -5- by carrying out a carboxylation reaction under a reaction condition of 190 DEG C using a copper oxide (1) catalyst in a quinoline solvent. 1-[[3- (2-dimethylaminoethyl) -5-indolyl] methanesulfonyl] pyrrolidine] from indolyl] methanesulfonyl] pyrrolidine] is disclosed. However, the method according to the patent is uneconomical because it requires various post-treatment processes such as adding hydrochloric acid to neutralize the reactants, removing the catalyst, and then extracting with an organic solvent after completion of the reaction.

그라함 비. 존스(Graham B. Jones)에 의한 J. Org. Chem. 1993. Vol 58, 5558~5559에는 커퍼 크로마이트(copper chromite) 또는 구리염 촉매하에서 퀴놀린 을 용매로 사용하여 카르복시 이탈반응을 통해 인돌-2-카르복실산 유도체로부터 인돌 유도체를 제조하는 방법을 개시하고 있다. 상기 문헌에 따르면, 고온에서 반응을 실시한 경우에는 65%의 수율로 생성물을 얻을 수 있지만, 마이크로웨이브로 반응을 실시한 경우에는 90% 이상의 높은 수율로 생성물을 얻을 수 있다. 그러나 상기 제조방법 모두 반응완료 후 반드시 염산, 수산화나트륨 및 유기용매를 사용하여 촉매를 제거하고 추출하는 등의 여러가지 후처리 공정을 거쳐야 한다. 또한, 수율을 향상시키기 위하여 산업상의 대량 생산 공정에 마이크로웨이브를 적용하기엔 어려움이 따른다.Graham Rain. J. Org. By Graham B. Jones. Chem. 1993. Vol 58, 5558-5559, discloses a process for the preparation of indole derivatives from indole-2-carboxylic acid derivatives via carboxyl leaving reaction using quinoline as a solvent under copper chromite or copper salt catalysts. have. According to the above document, the product can be obtained in a yield of 65% when the reaction is carried out at a high temperature, but the product can be obtained in a high yield of 90% or more when the reaction is carried out in the microwave. However, all of the above production methods must undergo various post-treatment processes such as removing and extracting the catalyst using hydrochloric acid, sodium hydroxide and an organic solvent after completion of the reaction. In addition, it is difficult to apply the microwave in the industrial mass production process to improve the yield.

전술한 바와 같은 문제점을 해결하기 위해 본 발명자들이 연구를 거듭한 결과, 무기 산화물 촉매가 충진된 고정층 반응계에서 연속공정으로 보다 간단한 카르복시 이탈공정을 통해 인돌 카르복실산 유도체로부터 인돌 유도체를 고수율로 제조하는 방법을 발견하였으며, 본 발명은 이에 기초하여 완성되었다.In order to solve the problems described above, the inventors of the present invention have repeatedly studied, in a high yield of indole derivatives from indole carboxylic acid derivatives through a simple carboxy separation process in a continuous process in a fixed bed reaction system filled with an inorganic oxide catalyst A method was found, and the present invention was completed based on this.

따라서, 본 발명의 목적은 무기 산화물 촉매가 충진된 고정층 연속 반응계를 이용한 카르복시 이탈반응을 통해 종래의 방법에 비해 보다 간단한 공정으로 생산성이 높고, 경제적인 인돌 유도체의 제조방법을 제공하는데 있다.Accordingly, it is an object of the present invention to provide a method for producing an indole derivative which is more productive and economical in a simpler process than a conventional method through a carboxy removal reaction using a fixed bed continuous reaction system filled with an inorganic oxide catalyst.

상기 목적을 달성하기 위한 본 발명의 방법은 인돌 유도체의 제조방법에 있어서, 불활성가스 분위기 하에서 금속산화물 촉매가 충진된 고정층 연속 반응계에 하기 화학식 1로 표시되는 인돌 카르복실산 유도체를 용매에 녹여 반응기에 투입한 다음, 반응온도 50~500℃, 반응압력 50~2,500psig 및 시간당 중량공간속도(WHSV) 0.1~30h-1인 반응조건 하에서 카르복시 이탈반응을 통해 하기 화학식 2로 표시되는 인돌 유도체를 얻는다:In the method of the present invention for achieving the above object, the indole carboxylic acid derivative represented by the following formula (1) in a fixed bed continuous reaction system filled with a metal oxide catalyst in an inert gas atmosphere in a solvent in a reactor After the addition, an indole derivative represented by the following Chemical Formula 2 is obtained through a carboxyl elimination reaction under reaction conditions of a reaction temperature of 50 to 500 ° C., a reaction pressure of 50 to 2,500 psig, and a weight hourly space velocity (WHSV) of 0.1 to 30 h −1 :

Figure 112001020206229-pat00001
Figure 112001020206229-pat00001

Figure 112001020206229-pat00002
Figure 112001020206229-pat00002

상기 화학식에서, R1, R2, R3, R4 및 R5는 서로 같거나 다르게 수소원자, 할로겐원자, 히드록시기, 탄소수 1∼12의 알킬기, 탄소수 6∼12의 아릴기, 또는 탄소수 1∼12의 알콕시기이다.In the above formula, R 1 , R 2 , R 3 , R 4 and R 5 are the same as or different from each other, a hydrogen atom, a halogen atom, a hydroxy group, an alkyl group of 1 to 12 carbon atoms, an aryl group of 6 to 12 carbon atoms, or 1 to C It is an alkoxy group of 12.

이하, 본 발명을 좀 더 구체적으로 살펴보면 다음과 같다. Hereinafter, the present invention will be described in more detail.

전술한 바와 같이, 본 발명은 카르복시 이탈반응을 이용한 인돌 유도체의 제조방법에 관한 것으로서, 좀 더 상세하게는 무기 산화물 촉매가 충진된 고정층 연 속 반응계를 이용하는 경제적인 연속공정을 통해 고수율로 카르복시 인돌 유도체로부터 인돌 유도체를 제조하는 방법에 관한 것이다. As described above, the present invention relates to a method for preparing an indole derivative using a carboxyl leaving reaction, and more particularly, to a high yield of carboxy indole through an economical continuous process using a fixed bed continuous reaction system filled with an inorganic oxide catalyst. A method for preparing indole derivatives from derivatives.

본 발명에 따른 고정층 연속 반응계는 공간시간 대비 높은 생산성과 수율을 얻을 수 있고, 추가적인 처리공정 없이 촉매를 반복적으로 재사용하며, 반응생성물의 분리가 간단하고, 또한 공정을 대폭 단순화시키기에 적합하다. 상기 고정층 반응계에 있어서 반응기의 형태나 반응물의 투입 및 흐름 방향에 제한은 없으나, 반응물간의 접촉이 원활하게 일어나게 하기 위하여 반응물인 탄화수소와 불활성가스가 함께 반응기의 상부에서 하부로 흐르며 반응물을 반응기 전체에 골고루 분산시킬 수 있는 설비를 갖춘 트리클-베드(trickle-bed)형태의 반응기를 사용하는 것이 가장 좋다.The fixed bed continuous reaction system according to the present invention can obtain high productivity and yield for space time, repeatedly reuse the catalyst without additional processing, and is easy to separate the reaction product, and is also suitable for greatly simplifying the process. In the fixed bed reaction system, there is no restriction on the shape of the reactor or the direction of the input and flow of the reactants, but in order for the contact between the reactants to occur smoothly, the reactant hydrocarbons and the inert gas flow together from the top to the bottom of the reactor, and the reactants are evenly distributed throughout the reactor. It is best to use a trickle-bed reactor with dispersing equipment.

또한, 반응을 수행할 때 반응물인 인돌 카르복실산 유도체와 불활성 가스 외에 특정 용매를 사용하여야 하는데, 상기 용매는 고체 상태인 인돌 카르복실산 유도체를 반응기로 원활하게 공급하는 역할을 한다. 본 발명에 따르면, 용매는 반응물인 인돌 카르복실산 유도체 및 불활성 가스와 반응하지 않으며, 인돌 카르복실산 유도체와 인돌 유도체를 잘 녹일 수 있는 탄화수소가 바람직하다. 본 발명에 사용 가능한 용매는 극성용매로서, 특히 다이글라임, 다이옥산 등의 에테르류, 퀴놀린과 같은 아민류, 및 디메틸술폭사이드, 디메틸포름아마이드 및 디메틸아세트아마이드와 같은 극성 비양성자성 용매로 이루어진 군으로부터 하나 이상 선택하여 사용할 수 있다. In addition, when performing the reaction, a specific solvent other than the reactant indole carboxylic acid derivative and the inert gas should be used, and the solvent serves to smoothly supply the indole carboxylic acid derivative in the solid state to the reactor. According to the present invention, the solvent does not react with the reactant indole carboxylic acid derivative and the inert gas, and a hydrocarbon capable of dissolving the indole carboxylic acid derivative and the indole derivative is preferable. Solvents usable in the present invention are polar solvents, in particular from the group consisting of ethers such as diglyme, dioxane, amines such as quinoline, and polar aprotic solvents such as dimethyl sulfoxide, dimethylformamide and dimethylacetamide You can select more than one.

본 발명에 따른 촉매는 알루미나, 실리카, 실리카-알루미나, 지르코니아, 티 타니아, 아연 산화물, 알카리 금속산화물, 알카리토 금속산화물 또는 분자체와 같은 무기 산화물을 단독 혹은 서로 혼합하여 사용할 수 있고, 이들 촉매에 알카리 금속 또는 알카리토 금속을 담지하여 사용할 수 있으며, 이 때 사용량은 상기 촉매에 대하여 50중량% 이하가 바람직하며, 더욱 바람직하게는 20중량% 이하가 바람직하다.The catalyst according to the present invention may be used alone or in combination with each other and inorganic oxides such as alumina, silica, silica-alumina, zirconia, titania, zinc oxide, alkali metal oxide, alkali earth metal oxide or molecular sieve, The alkali metal or alkaline earth metal may be supported and used, and the amount of the alkali metal or alkaline earth metal is preferably 50% by weight or less, more preferably 20% by weight or less based on the catalyst.

이 때, 상기 촉매의 BET 표면적의 제한은 없으나 10~1,000㎡/g이 좋고, 더욱 바람직하기로는 20~500㎡/g, 가장 바람직하기로는 30~400㎡/g의 값을 갖는 것이 좋다. 상기 담체의 기공부피는 0.2~1.5cc/g이 좋고, 더욱 바람직하기로는 0.2~1.2cc/g의 값을 갖는 것이 좋다. 상기 담체의 기공크기 분포에는 제한이 없으나, 평균 기공직경은 질소의 흡/탈착법에 의해 측정한 값이 500 이하인 것이 바람직하다.At this time, the BET surface area of the catalyst is not limited, but 10 to 1,000 m 2 / g is preferable, more preferably 20 to 500 m 2 / g, and most preferably 30 to 400 m 2 / g. The pore volume of the carrier is preferably 0.2 to 1.5 cc / g, more preferably 0.2 to 1.2 cc / g. The pore size distribution of the carrier is not limited, but the average pore diameter is preferably 500 or less as measured by the adsorption / desorption method of nitrogen.

상기 촉매 입자의 형태는 원형, 실린더형, 과립형 또는 어떠한 형태의 것을 사용해도 무방하나, 적당한 기계적 성질을 갖기 위해서는 원형 혹은 실린더형의 펠리트 형태로 성형된 것이 바람직하다. The catalyst particles may be in the form of circular, cylindrical, granular or any type, but in order to have suitable mechanical properties, the catalyst particles are preferably molded in the form of circular or cylindrical pellets.

본 발명에 따른 카르복시 이탈반응을 통해 인돌 카르복실산 유도체로부터 인돌 유도체를 제조하는데 있어서, 반응 조건은 반응압력 50~2,500psig, 반응온도 50~500℃ 및 시간당 중량공간속도(WHSV) 0.1~30h-1으로 실시하는 것이 바람직하며, 더욱 바람직하기로는 반응압력 100~2,000psig, 반응온도 100~400℃ 및 시간당 중량공간속도 0.2~25h-1에서 수행하는 것이 좋으며, 가장 바람직하기로는 반응압력 100~1,500psig, 반응온도 100~360℃ 및 시간당 중량공간속도 1~20h-1의 반응조건 하에서 수행하는 것이 좋다. 이 때, 상기 반응조건을 벗어나면 부반응 생성물이 증가하거나 또는 전환율이 떨어진다. Through the carboxy leaving the reaction according to the invention in the manufacture of an indole derivative from indole carboxylic acid derivative, the reaction conditions are a reaction pressure of 50 ~ 2,500psig, reaction temperature 50 ~ 500 ℃ and a weight hourly space velocity (WHSV) 0.1 ~ 30h - It is preferable to carry out at 1 , more preferably at a reaction pressure of 100 to 2,000 psig, a reaction temperature of 100 to 400 ° C. and a weight space velocity of 0.2 to 25 h −1 , and most preferably at a reaction pressure of 100 to 1,500. psig, the reaction temperature of 100 ~ 360 ℃ and the weight hourly space velocity 1 ~ 20h -1 it is preferably carried out under the reaction conditions. At this time, if the reaction conditions are out of the side reaction product increases or the conversion rate is lowered.

상기 반응기로부터 유출되는 반응생성물은 중화 및 추출공정을 거치지 않고 증류조작만으로 분리되어 원하는 반응생성물을 얻을 수 있다.The reaction product flowing out of the reactor may be separated by only distillation without undergoing neutralization and extraction to obtain a desired reaction product.

이하 비교예 및 실시예를 통하여 본 발명을 좀 더 구체적으로 살펴보지만, 하기 예에 본 발명의 범주가 한정되는 것은 아니다.The present invention will be described in more detail through the following Comparative Examples and Examples, but the scope of the present invention is not limited to the following Examples.

비교예 1Comparative Example 1

5-메톡시 인돌-2-카르복실산 13.38g(0.07몰)과 커퍼-크로마이트(copper chromite) 6g, 및 증류 정제된 퀴놀린 1ℓ를 질소로 치환된 회분식 반응기에 투입하여 238℃의 온도에서 반응시켰다. 일정한 시간 간격으로 시료를 채취한 후, 이를 고성능 액체 크로마토 그래피로 분석하여 전환율이 99.5%에 도달하면 상기 반응을 종료시키고 반응기 온도를 상온으로 내렸다. 상온으로 냉각된 반응물을 7.5ℓ의 에틸 아세테이트로 희석시킨 후, 1%의 염산 30ℓ로 3회 세척하였다. 상기 산세척액을 7.5ℓ의 에틸 아세테이트로 2회 추출한 후, 추출액은 7.5ℓ의 증류수로 2회 및 0.1M의 수산화나트륨 수용액으로 3회 세척한 다음, 7.5ℓ의 에틸아세테이트로 다시 2회 추출하였다. 상기 추출액은 5ℓ의 증류수로 세척하고 증류하여 순도 99.0%인 5-메톡시 인돌을 얻었다. 이때 수율은 63%였다.13.38 g (0.07 mol) of 5-methoxy indole-2-carboxylic acid, 6 g of copper chromite, and 1 liter of distilled and purified quinoline were added to a batch reactor replaced with nitrogen and reacted at a temperature of 238 ° C. I was. Samples were taken at regular time intervals and analyzed by high performance liquid chromatography to terminate the reaction when the conversion reached 99.5% and lower the reactor temperature to room temperature. The reaction cooled to room temperature was diluted with 7.5 L of ethyl acetate and washed three times with 30 L of 1% hydrochloric acid. After the acid wash was extracted twice with 7.5 L of ethyl acetate, the extract was washed twice with 7.5 L of distilled water and three times with 0.1 M aqueous sodium hydroxide solution, and then extracted twice with 7.5 L of ethyl acetate. The extract was washed with 5 L of distilled water and distilled to obtain 5-methoxy indole having a purity of 99.0%. The yield was 63%.

전술한 바와 같이, 종래 방법에 따른 실험을 실시한 결과, 사용된 촉매의 재 생이 어렵고, 복잡한 정제과정을 거쳐야 하며, 수율이 낮은 단점이 있다. 따라서, 상기와 같은 문제점을 개선하기 위하여 무기 산화물을 촉매로 한 고정층 연속반응을 실시하여 하기 실시예에 따라 얻은 5-메톡시 인돌의 전환율 및 수율을 비교예의 값과 대조하여 도 1에 나타내었다.As described above, as a result of the experiment according to the conventional method, it is difficult to regenerate the used catalyst, undergo a complicated purification process, and have a low yield. Therefore, in order to improve the above problems, the conversion and yield of 5-methoxy indole obtained according to the following example by performing a fixed bed continuous reaction using an inorganic oxide are shown in FIG. 1 in comparison with the values of the comparative example.

실시예 1~3Examples 1-3

수화된 알루미나를 실린더형 펠리트로 압출성형하고, 소성로로 옮겨 공기 분위기 하에서 550℃로 6시간 동안 소성하여 비표면적이 210㎡/g이고 기공부피가 0.60 cc/g인 촉매를 제조하였다. 상기 방법에 따라 제조된 촉매 5g을 316 스테인레스 재질의 완전 자동화된 고압 반응용 반응기에 충진하였다. 반응기 내부온도를 상온에서 450℃까지 분당 1℃의 승온속도로 올리면서 100sccm의 질소를 흘려주었다. 상기 반응기의 온도를 3시간 동안 450℃로 유지시킨 후, 반응온도 및 반응압력을 표 1에 나타낸 바와 같이 조절하여 일정 온도로 유지시킨 후, 5-메톡시 인돌-2-카르복실산 200g을 퀴놀린 용매 860g에 녹여 공간속도 5.0h-1으로 반응기에 주입하여 카르복시 이탈반응을 통해 5-메톡시 인돌을 얻었다. 상기 반응으로부터 얻은 5-메톡시 인돌의 전환율 및 선택도를 하기 표 1에 나타내었다.The hydrated alumina was extruded into cylindrical pellets, transferred to a calcination furnace, and calcined at 550 ° C. for 6 hours to prepare a catalyst having a specific surface area of 210 m 2 / g and a pore volume of 0.60 cc / g. 5 g of the catalyst prepared according to the method were charged to a fully automated high pressure reactor made of 316 stainless steel. 100 sccm of nitrogen was flowed while raising the reactor internal temperature at a temperature increase rate of 1 ° C. per minute from room temperature to 450 ° C. After maintaining the temperature of the reactor at 450 ℃ for 3 hours, and after adjusting the reaction temperature and the reaction pressure as shown in Table 1 to maintain a constant temperature, 200 g of 5-methoxy indole-2-carboxylic acid quinoline It was dissolved in 860 g of solvent and injected into the reactor at a space velocity of 5.0 h −1 to obtain 5-methoxy indole through carboxyl leaving reaction. The conversion and selectivity of 5-methoxy indole obtained from the reaction is shown in Table 1 below.

실시예Example 온도 (℃)Temperature (℃) 압력 (psig)Pressure (psig) 전환율 (%)% Conversion 선택도 (%)Selectivity (%) 1One 250250 150150 37.037.0 98.098.0 22 270270 150150 100.0100.0 96.396.3 33 290290 150150 100.0100.0 92.092.0

실시예 4~5Examples 4-5

실리카를 실린더형 펠리트로 압출성형하고, 소성로로 이송하여 공기 분위기 하에서 550℃로 6시간 동안 소성하여 비표면적이 380m2/g이고 기공부피가 0.6cc/g인 촉매를 제조하였다. 상기와 같이 제조된 촉매를 금속산화물 촉매로서 사용하여 하기 표 2에 나타낸 반응온도 및 반응압력하에서 수행한 것을 제외하고는 실시예 1과 동일한 방법에 따라 카르복시 이탈반응을 실시한 후, 상기 반응으로부터 얻은 5-메톡시 인돌의 전환율 및 선택도를 하기 표 2에 나타내었다.Silica was extruded into cylindrical pellets, transferred to a kiln, and fired at 550 ° C. for 6 hours under an air atmosphere to prepare a catalyst having a specific surface area of 380 m 2 / g and a pore volume of 0.6 cc / g. 5 was obtained from the reaction after carrying out the carboxyl separation reaction according to the same method as in Example 1 except that the catalyst prepared as described above was carried out under the reaction temperature and reaction pressure shown in Table 2 below. The conversion and selectivity of methoxy indole are shown in Table 2 below.

실시예Example 온도 (℃)Temperature (℃) 압력(psig)Pressure (psig) 전환율 (%)% Conversion 선택도 (%)Selectivity (%) 44 280280 150150 76.076.0 98.598.5 55 300300 150150 100.0100.0 98.098.0

실시예 6~7Examples 6-7

실시예 4~5의 방법에 따라 제조된 실리카 촉매 및 하기 표 3에 나타낸 온도, 압력 및 용매를 사용한 것을 제외하고는 실시예 1과 동일한 방법에 따라 카르복시 이탈반응을 실시한 후, 상기 반응으로부터 얻은 5-메톡시 인돌의 전환율 및 선택도를 하기 표 3에 나타내었다.After the carboxyl separation reaction was carried out according to the same method as Example 1 except that the silica catalyst prepared according to the method of Examples 4 to 5 and the temperature, pressure and solvent shown in Table 3 were used, The conversion and selectivity of -methoxy indole are shown in Table 3 below.

실시예Example 온도 (℃)Temperature (℃) 압력 (psig)Pressure (psig) 용매menstruum 전환율 (%)% Conversion 선택도 (%)Selectivity (%) 55 300300 150150 퀴놀린Quinoline 100.0100.0 98.098.0 66 300300 300300 다이글림Diglyme 100.0100.0 98.598.5 77 300300 900900 1,4-다이옥산1,4-dioxane 100.0100.0 98.798.7

실시예 6에 따라 얻은 반응생성물을 감압증류하여 순도 99.0%인 5-메톡시 인돌을 얻었으며, 이 때 수율은 92%였다.The reaction product obtained in Example 6 was distilled under reduced pressure to obtain 5-methoxy indole having a purity of 99.0%, at which time the yield was 92%.

실시예 8Example 8

지르코늄 하이드록사이드를 실린더형 펠리트로 압출성형하고, 소성로로 이송 하여 공기 분위기 하에서 500℃로 6시간 동안 소성하여 비표면적이 100m2/g이고 기공부피가 0.28cc/g인 촉매를 제조하였다. 상기 방법으로 제조된 촉매를 다이글라임 용매에 녹여 하기 표 4에 나타낸 반응온도 및 반응압력에서 수행한 것을 제외하고는 실시예 1과 동일한 방법에 따라 카르복시 이탈반응을 실시한 후, 상기 반응으로부터 얻은 5-메톡시 인돌의 전환율 및 선택도를 하기 표 4에 나타내었다.The zirconium hydroxide was extruded into cylindrical pellets, transferred to a kiln, and fired at 500 ° C. for 6 hours under an air atmosphere to prepare a catalyst having a specific surface area of 100 m 2 / g and a pore volume of 0.28 cc / g. After dissolving the catalyst prepared by the above method in a diglyme solvent and carrying out the carboxyl elimination reaction according to the same method as in Example 1 except that the reaction was carried out at the reaction temperature and the reaction pressure shown in Table 4, The conversion and selectivity of methoxy indole are shown in Table 4 below.

실시예Example 온도 (℃)Temperature (℃) 압력 (psig)Pressure (psig) 전환율 (%)% Conversion 선택도 (%)Selectivity (%) 88 280280 300300 100.0100.0 95.095.0

실시예 8에 따라 얻은 반응생성물을 감압증류하여 순도 98.8%인 5-메톡시 인돌을 얻었으며, 이때 수율은 89.0%이었다.The reaction product obtained in Example 8 was distilled under reduced pressure to obtain 5-methoxy indole having a purity of 98.8%, wherein the yield was 89.0%.

실시예 9~11Examples 9-11

티타니아를 실린더형 펠리트로 압출성형하고, 소성로로 옮겨 공기 분위기 하에서 500℃로 6시간 동안 소성하여 비표면적이 158m2/g이고 기공부피가 0.34cc/g인 촉매를 제조하였다. 상기 방법에 따라 제조된 티타니아에 대하여 수산화나트륨 수용액 또는 수산화 칼륨 수용액 2중량%를 상기 티타니아에 각각 담지하고 500℃로 1시간 동안 소성하여 산화 나트륨 또는 산화 칼륨이 담지된 티타니아를 각각 제조하였다. 상기 방법에 따라 제조된 3가지 촉매를 각각 사용하여 다이글라임 용매에서 하기 표 5에 나타낸 반응온도 및 반응압력하에서 실시한 것을 제외하고는 실시예 1과 동일한 방법에 따라 카르복시 이탈반응을 실시한 후, 상기 반응으로부터 얻은 5-메톡시 인돌의 전환율 및 선택도를 하기 표 5에 나타내었다. Titania was extruded into cylindrical pellets, transferred to a kiln, and calcined at 500 ° C. for 6 hours to prepare a catalyst having a specific surface area of 158 m 2 / g and a pore volume of 0.34 cc / g. The titania prepared according to the above method was loaded with 2% by weight of an aqueous sodium hydroxide solution or potassium hydroxide solution in the titania, respectively, and calcined at 500 ° C. for 1 hour, thereby preparing titania loaded with sodium oxide or potassium oxide. After carrying out the carboxy removal reaction according to the same method as in Example 1 except that the three catalysts prepared according to the above method were carried out in the diglyme solvent under the reaction temperature and reaction pressure shown in Table 5 below, The conversion and selectivity of 5-methoxy indole obtained from the reaction is shown in Table 5 below.

실시예Example 촉매catalyst 온도 (℃)Temperature (℃) 압력 (psig)Pressure (psig) 전환율(%)% Conversion 선택도 (%)Selectivity (%) 99 TiO2 TiO 2 270270 300300 100.0100.0 72.872.8 1010 2중량%의 Na2O-TiO2 2 wt% Na 2 O-TiO 2 270270 300300 100.0100.0 96.796.7 1111 2중량%의 CaO-TiO2 2 wt% CaO-TiO 2 270270 300300 100.0100.0 96.196.1

실시예 10에 따라 얻은 반응생성물을 감압증류하여 순도 99.0%인 5-메톡시 인돌을 얻었으며, 이때 수율은 90.3%이었다.The reaction product obtained in Example 10 was distilled under reduced pressure to obtain 5-methoxy indole having a purity of 99.0%, wherein the yield was 90.3%.

전술한 바와 같이, 본 발명은 무기 산화물 촉매가 충진된 고정층 반응계에서 연속공정으로 비교적 간단한 카르복시 이탈공정을 통해 후처리 공정없이 생산성이 높고, 경제적인 인돌 유도체의 제조방법을 제공한다.As described above, the present invention provides a high-productivity, economical method for producing an indole derivative without a post-treatment process through a relatively simple carboxy separation process in a continuous process in a fixed bed reaction system filled with an inorganic oxide catalyst.

Claims (9)

인돌 유도체의 제조방법에 있어서, In the method for producing an indole derivative, 불활성가스 분위기 하에서, 알루미나, 실리카, 실리카-알루미나, 지르코니아, 티타니아 및 이들의 혼합물로 이루어진 군으로부터 선택된 금속산화물 촉매가 충진된 고정층 반응계에 하기 화학식 1로 표시되는 인돌 카르복실산 유도체를 용매에 녹여 반응기에 투입한 다음, 반응온도 50~500℃, 반응압력 50~2,500psig 및 시간당 중량공간속도(WHSV) 0.1~30h-1인 반응조건 하에서 카르복시 이탈반응을 시킨 것을 특징으로 하는 하기 화학식 2로 표시되는 인돌 유도체의 제조방법:In an inert gas atmosphere, an indole carboxylic acid derivative represented by Formula 1 below was dissolved in a solvent in a fixed bed reaction system filled with a metal oxide catalyst selected from the group consisting of alumina, silica, silica-alumina, zirconia, titania, and mixtures thereof. After the addition, the reaction temperature is 50 ~ 500 ℃, the reaction pressure 50 ~ 2,500psig and the weight space velocity (WHSV) 0.1 ~ 30h -1 under the reaction conditions of the carboxyl leaving reaction characterized in that represented by the formula (2) Process for preparing indole derivatives: 화학식 1Formula 1
Figure 712007002242209-pat00003
Figure 712007002242209-pat00003
화학식 2Formula 2
Figure 712007002242209-pat00004
Figure 712007002242209-pat00004
상기 화학식에서, R1, R2, R3, R4 및 R5는 서로 같거나 다르게 수소원자, 할로겐원자, 히드록시기, 탄소수 1∼12의 알킬기, 탄소수 6∼12의 아릴기, 또는 탄소수 1∼12의 알콕시기이다.In the above formula, R 1 , R 2 , R 3 , R 4 and R 5 are the same as or different from each other, a hydrogen atom, a halogen atom, a hydroxy group, an alkyl group of 1 to 12 carbon atoms, an aryl group of 6 to 12 carbon atoms, or 1 to C It is an alkoxy group of 12.
제1항에 있어서, 상기 촉매는 비표면적이 10~1,000m2/g 이고, 평균 기공직경이 500Å이하이며, 총 기공부피가 0.2~1.5cc/g인 것을 특징으로 하는 카르복시 이탈반응을 이용한 인돌 유도체의 제조방법.[Claim 2] The indole of claim 1, wherein the catalyst has a specific surface area of 10 to 1,000 m 2 / g, an average pore diameter of 500 mm or less, and a total pore volume of 0.2 to 1.5 cc / g. Process for the preparation of derivatives. 삭제delete 제1항에 있어서, 상기 촉매에 50중량% 이하의 알카리 금속 또는 알카리토 금속을 담지하여 사용하는 것을 특징으로 하는 카르복시 이탈반응을 이용한 인돌 유도체의 제조방법.The method for preparing an indole derivative using a carboxyl leaving reaction according to claim 1, wherein an alkali metal or an alkali metal of 50 wt% or less is supported on the catalyst. 제1항에 있어서, 상기 반응은 고정층 연속 반응인 것을 특징으로 하는 카르복시 이탈반응을 이용한 인돌 유도체의 제조방법.The method of claim 1, wherein the reaction is a fixed bed continuous reaction. 제2항에 있어서, 상기 촉매는 비표면적이 20~700m2/g 이고, 총 기공부피가 0.2~1.2cc/g인 것을 특징으로 하는 카르복시 이탈반응을 이용한 인돌 유도체의 제조방법.The method of claim 2, wherein the catalyst has a specific surface area of 20 to 700 m 2 / g and a total pore volume of 0.2 to 1.2 cc / g. 삭제delete 제4항에 있어서, 상기 촉매에 20중량% 이하의 알카리 금속 또는 알카리토 금속을 담지하여 사용하는 것을 특징으로 하는 카르복시 이탈반응을 이용한 인돌 유도체의 제조방법.The method for preparing an indole derivative using a carboxyl leaving reaction according to claim 4, wherein the catalyst is loaded with an alkali metal or an alkali metal of 20% by weight or less. 제1항에 있어서, 상기 반응조건은 반응온도 100~360℃, 반응압력 100~1,500psig 및 시간당 중량공간속도(WHSV) 1~20h-1인 것을 특징으로 하는 카르복시 이탈반응을 이용한 인돌 유도체의 제조방법.The method of claim 1, wherein the reaction conditions are 100 to 360 ℃ reaction temperature, the reaction pressure 100 to 1,500 psig and the hourly space velocity (WHSV) of the production of indole derivatives using a carboxy leaving reaction, characterized in that 1 ~ 20h -1 Way.
KR1020010048683A 2001-08-13 2001-08-13 Method for preparing indole derivatives using decarboxylation KR100766614B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010048683A KR100766614B1 (en) 2001-08-13 2001-08-13 Method for preparing indole derivatives using decarboxylation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010048683A KR100766614B1 (en) 2001-08-13 2001-08-13 Method for preparing indole derivatives using decarboxylation

Publications (2)

Publication Number Publication Date
KR20030014808A KR20030014808A (en) 2003-02-20
KR100766614B1 true KR100766614B1 (en) 2007-10-11

Family

ID=27718960

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010048683A KR100766614B1 (en) 2001-08-13 2001-08-13 Method for preparing indole derivatives using decarboxylation

Country Status (1)

Country Link
KR (1) KR100766614B1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. Org. Chem. 58, 5558-5559(1993) *

Also Published As

Publication number Publication date
KR20030014808A (en) 2003-02-20

Similar Documents

Publication Publication Date Title
US6617465B2 (en) Process for the epoxidation of olefins
CN114249661B (en) Method for preparing amine ether compound by utilizing N-alkylation reaction of aromatic amine and alcohol ether substance
CN111233617A (en) Synthesis method of 1-iodoalkyne compound
JP6839715B2 (en) Method for preparing 1- (4-methanesulfonyl-2-trifluoromethyl-benzyl) -2-methyl-1H-pyrrolo [2,3-b] pyridine-3-yl-acetic acid
KR100766614B1 (en) Method for preparing indole derivatives using decarboxylation
KR100286570B1 (en) Process for the production of SERINOL (2-amino-1,3-propanediol)
JP2018108979A (en) Method for producing lactone compound and method for producing biotin using the lactone compound
JPWO2019073988A1 (en) Method for producing 2,5-bis (aminomethyl) tetrahydrofuran
US20200308126A1 (en) Method for producing 2,5-bis(aminomethyl)tetrahydrofuran
CN111825545A (en) Method for separating 2-alkyl anthracene from products containing alkyl anthracene and preparing 2-alkyl anthraquinone by adopting catalytic oxidation process
JPH07110840B2 (en) Method for producing dialkyl carbonate
JP2737295B2 (en) Method for producing methyl isobutyl ketone
JPH11343265A (en) Production of dichloroacetoxypropane and its derivative
JP3904916B2 (en) Method for producing alicyclic diamine compound containing fluorine
KR101786910B1 (en) Preparation method of 1,4-cyclohexanedimethanol
KR100688797B1 (en) Method for producing ?-olefin by dehydration of secondary alcohol
KR101847161B1 (en) Process for the preparation of optically pure substituted (S)-cyclohexylamino acid derivatives
JP2023152806A (en) Method for producing 4,4'-dihydroxybiphenyl-3,3'-dicarboxylic acid
CN114728898A (en) Process for producing epsilon-caprolactam
CN116925013A (en) High-yield low-energy-consumption dehydrogenation production process of gamma-butyrolactone
US8207355B2 (en) Method for preparing azetidine derivatives
KR100645667B1 (en) Process for producing 1-n-halophenylethanol
KR20140059559A (en) Method for preparing 4-acetoxystylene with catalytic continuous process
JP2001122829A (en) Method for producing dichloroacetoxypropane and derivative thereof
JP2004305811A (en) Method for regenerating zeolite catalyst

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee