KR100759595B1 - Manufacturing method of carbon-glass fiber hybrid composites for wind turbine blade - Google Patents

Manufacturing method of carbon-glass fiber hybrid composites for wind turbine blade Download PDF

Info

Publication number
KR100759595B1
KR100759595B1 KR1020060124850A KR20060124850A KR100759595B1 KR 100759595 B1 KR100759595 B1 KR 100759595B1 KR 1020060124850 A KR1020060124850 A KR 1020060124850A KR 20060124850 A KR20060124850 A KR 20060124850A KR 100759595 B1 KR100759595 B1 KR 100759595B1
Authority
KR
South Korea
Prior art keywords
glass fiber
carbon
resin
fiber
mold
Prior art date
Application number
KR1020060124850A
Other languages
Korean (ko)
Inventor
한인섭
김세영
서두원
홍기석
이시우
유지행
우상국
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020060124850A priority Critical patent/KR100759595B1/en
Application granted granted Critical
Publication of KR100759595B1 publication Critical patent/KR100759595B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • B32B37/1018Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure using only vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2603/00Vanes, blades, propellers, rotors with blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Moulding By Coating Moulds (AREA)
  • Wind Motors (AREA)

Abstract

A method for manufacturing a carbon-glass fiber hybrid composite for a wind turbine blade is provided to increase rigidity and strength by aligning carbon fibers in the center of the carbon-glass fiber hybrid composite and to decrease the density by 10%. A method for manufacturing a carbon-glass fiber hybrid composite for a wind turbine blade comprises the steps of: treating glass fiber and carbon fiber with a releasing agent by VARTM(Vacuum Assisted Resin Transfer Molding) and forming the composite by positioning the carbon fiber in a middle layer and stacking the glass fiber on upper and lower layers in the same thickness on a dried mold(S1); successively stacking a peel ply fabric cloth and a mat for improving the flow of resin, on the glass fiber forming the upper layer and covering and sealing the part of the mold except a resin injection port and a vacuum port, with a transparent nylon bagging film(S2); pressing the stacked fibers by closing up the resin injection port and reducing pressure through the vacuum port over 1 atmosphere(S3); impregnating the fiber with resin by injecting the resin into the sealed mold through vacuum pressure by opening the resin injection port, and then closing up the resin injection port to cut off the inflow of the air(S4); and hardening the resin with continuously applying vacuum pressure to the inside of the mold(S5).

Description

풍력발전 터빈 블레이드용 탄소-유리섬유 하이브리드 복합체 제조방법{Manufacturing method of carbon-glass fiber hybrid composites for wind turbine blade}Manufacturing method of carbon-glass fiber hybrid composites for wind turbine blade}

도 1는 본 발명에 따른 하이브리드 복합체의 제조과정을 나타낸 흐름도.1 is a flow chart showing a manufacturing process of a hybrid composite according to the present invention.

도 2는 본 발명의 실시일예에 따른 복합체 내부 탄소섬유의 배열량과 외부의 유리섬유의 배열량을 나타낸 그림.Figure 2 is a diagram showing the arrangement of the inner carbon fiber and the array of the glass fiber of the composite according to an embodiment of the present invention.

도 3는 도 2의 조건으로 제조된 하이브리드 복합체의 밀도 특성을 도시한 그래프.3 is a graph showing density characteristics of the hybrid composite prepared under the conditions of FIG. 2.

도 4은 도 2의 조건으로 제조된 하이브리드 복합체의 굽힘강도 실험 결과를 도시한 그래프.4 is a graph showing the bending strength test results of the hybrid composite prepared under the conditions of FIG. 2.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for main parts of the drawings>

S1 : 적층단계 S2 : 밀봉단계S1: lamination step S2: sealing step

S3 : 진공단계 S4 : 수지주입단계S3: vacuum step S4: resin injection step

S5 : 경화단계S5: curing step

본 발명은 풍력발전의 터빈 블레이드 제조에 사용되는 탄소-유리섬유 하이브리드 복합체 제조방법에 관한 것으로, 더 상세하게는 유리섬유 복합체의 중심부에 탄소섬유가 적층되도록 배열한 후 수지에 함침되도록 함으로써 강성 및 강도를 향상시키고 밀도를 감소시킨 풍력발전 터빈 블레이드용 탄소-유리섬유 하이브리드 복합체 제조방법에 관한 것이다.The present invention relates to a method for producing a carbon-glass fiber hybrid composite used in the manufacture of turbine blades for wind power generation, and more particularly, to stiffness and strength by arranging carbon fibers to be laminated in the center of the glass fiber composite and then impregnating the resin. The present invention relates to a method for manufacturing a carbon-glass fiber hybrid composite for a wind turbine blade having improved density and reduced density.

풍력발전에 사용되는 터빈 블레이드는 효율을 상승시키기 위해 터빈 블레이드의 구조설계 변경과 더불어 소재를 개발하는 방법이 적용되고 있으며, 특히 소재개발의 경우에는 강화제로 사용되는 섬유의 종류나 형상이 매우 중요한 변수로 작용하고 있다.Turbine blades used in wind power generation have been applied to the development of materials along with the structural design changes of turbine blades in order to increase efficiency. Especially in the case of material development, the type and shape of fibers used as reinforcing agents are very important variables. It is working.

지금까지는 풍력발전용 터빈 블레이드의 소재로는 유리섬유를 강화제로 사용한 GFRP (Glass Fiber Reinforced Polymer)가 사용되고 있으나, 최근에는 풍력발전 용량이 증가되고 있으므로, 내구성 향상이 요구되고 있다. 상기 내구성을 향상시키기 위해서는 고탄성, 저비중의 특성을 요구하고 있으므로, 최적의 블레이드 소재로서 탄소섬유를 이용한 CFRP (Carbon Fiber Reinforced Polymer)로의 전환이 시도되고 있는 실정이다.Until now, GFRP (Glass Fiber Reinforced Polymer) using glass fiber as a reinforcing agent has been used as a material for turbine blades for wind power generation, but recently, since wind power generation capacity is increased, durability improvement is required. In order to improve the durability, high elasticity and low specific gravity are required, and as a result, an attempt has been made to convert to carbon fiber reinforced polymer (CFRP) using carbon fiber as an optimal blade material.

그러나 블레이드 전체를 탄소섬유 재질로 적용할 경우에는 고탄성, 저비중에는 기여할 수 있으나, 탄소섬유의 가격이 유리섬유에 비해 매우 고가 (유리섬유의 약 10배)이기 때문에 제조단가가 높아지는 단점이 있으며, 또한 탄소섬유는 전도성 을 갖고 있으므로, 우천 시 낙뢰에 의한 치명적인 파괴를 일으킬 수 있는 문제점을 가지고 있다. 따라서 종류가 다른 두 가지 또는 그 이상의 섬유를 기지상과 복합화시킨 하이브리드 복합체의 연구가 요구되고 있는 설정이다.However, if the entire blade is applied as a carbon fiber material, it may contribute to high elasticity and low specific gravity. However, the cost of carbon fiber is very high (about 10 times that of glass fiber) compared to glass fiber, which increases the manufacturing cost. Since carbon fiber has conductivity, it has a problem of causing fatal destruction by lightning in rainy weather. Therefore, it is a setting that requires the study of a hybrid composite in which two or more kinds of fibers are mixed with matrix.

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로, The present invention has been made to solve the above problems,

기존 유리섬유 복합체의 중심부에 탄소섬유를 배열함으로써 굽힘강도가 정점인 탄소섬유의 함유량을 제시함과 아울러 밀도는 기존 유리섬유 복합체보다 약 10% 이상 감소되도록 하는 등 강성과 강도를 향상시키고, 밀도는 감소시킨 하이브리드 복합체의 제조방법을 제공하는 것을 목적으로 한다.By arranging the carbon fiber in the center of the existing glass fiber composite, the carbon fiber with the highest bending strength is suggested, and the density is reduced by about 10% more than the existing glass fiber composite. It is an object to provide a method for producing a reduced hybrid composite.

또한 본 발명은 블레이드 소재 제조에 있어 유리섬유를 탄소섬유의 외부에 위치하게 함으로써 낙뢰에 의한 피해로부터 블레이드 구조물을 보호하도록 하는 제조방법의 제공을 목적으로 한다. In another aspect, the present invention is to provide a manufacturing method for protecting the blade structure from damage caused by lightning strike by placing the glass fiber in the outside of the carbon fiber in the blade material manufacture.

상기 과제를 달성하기 위한 본 발명의 풍력발전 터빈 블레이드용 탄소-유리섬유 하이브리드 복합체 제조방법은,Carbon-glass fiber hybrid composite manufacturing method for a wind turbine blade of the present invention for achieving the above object,

탄소-유리섬유 제조방법에 있어서, VARTM 공법으로 유리섬유과 탄소섬유를 이형제 처리하고, 건조시킨 금형위에 중간층에는 탄소섬유가 위치하도록 하고 상하부층에는 유리섬유가 동일한 두께로 적층되도록 하여 복합체를 형성하는 적층단계 와; 상기 상부층을 형성하는 유리섬유의 상측으로 이형처리된 필 플라이 (peel ply) 직포와 수지의 흐름을 향상시키기 위한 매트를 순차적으로 적층하고, 몰드에는 수지 주입구과 진공구를 제외한 다른 부분을 투명 나일론 배깅 필름 (bagging film)을 밀봉재로 덮어 밀봉시키는 밀봉단계와; 상기 밀봉된 몰드에는 수지주입구을 밀폐시키고 진공구를 통해 1기압 이상으로 감압하여 적층된 섬유가 서로 잘 압착되도록 하는 진공단계와; 상기 압착된 상태에서 수지주입구를 개방하여 진공압력에 의해 수지가 밀봉된 몰드내로 주입되도록 하여 내부의 섬유가 수지에 함침되도록 한 후 공기의 유입을 차단하기 위해 수지주입구를 밀폐시키는 수지주입단계와; 몰드 내에 진공압력을 계속 가하면서 경화시키는 경화단계;를 포함하여 이루어진다.In the carbon-glass fiber manufacturing method, the glass fiber and the carbon fiber is treated with a release agent by the VARTM method, and the laminated layer is formed on the dried mold so that the carbon fiber is placed in the middle layer and the glass fibers are laminated in the upper and lower layers with the same thickness. Step; Lay out the peel ply fabric releasing to the upper side of the glass fiber forming the upper layer and the mat to improve the flow of the resin in sequence, and in the mold other parts except the resin inlet and vacuum port transparent nylon bagging film a sealing step of sealing the covering film with a sealing material; A vacuum step of sealing the resin inlet in the sealed mold and decompressing the resin inlet at a pressure of 1 atm or more through a vacuum hole so that the laminated fibers are compressed well together; A resin injection step of opening the resin inlet in the compressed state so that the resin is injected into the mold sealed by the vacuum pressure so that the fibers inside are impregnated in the resin and sealing the resin inlet to block the inflow of air; And a curing step of curing while continuously applying a vacuum pressure in the mold.

상기 유리섬유는 E-glass, S-glass로 이루어진 군으로부터 일종을 선택사용하고, 상기 탄소섬유는 Rayon계, PAN계로 이루어진 군으로부터 일종을 선택사용되며, 상기 유리섬유와 탄소섬유는 일방향 (unidirectional) 형태 또는 평직 (plain weave) 형태로 직조될 수 있다. 또한, 상기 복합체에서 탄소섬유의 함유량은 복합체 전체 두께의 25 ~ 75% 범위가 되도록 하는 것이 바람직하다.The glass fiber is selected from the group consisting of E-glass, S-glass, and the carbon fiber is selected from the group consisting of Rayon-based, PAN-based, the glass fiber and carbon fiber is unidirectional (unidirectional) It can be woven into form or plain weave. In addition, the content of the carbon fiber in the composite is preferably in the range of 25 to 75% of the total thickness of the composite.

또한 상기 탄소섬유는 적층각도를 0°, 90°및 이의 혼합배열로 하고, 유리섬유는 적층각도를 0°, 90°, -45°~45°및 이의 혼합배열로 하여 적층되도록 할 수 있다. In addition, the carbon fibers may be laminated at a lamination angle of 0 °, 90 °, and a mixed array thereof, and the glass fibers may be laminated at a lamination angle of 0 °, 90 °, -45 ° to 45 °, and a mixed array thereof.

이하, 상기한 바와 같은 풍력발전 터빈 블레이드용 탄소-유리섬유 하이브리 드 복합체 제조방법을 첨부된 도면을 참조로 상세하게 설명한다.Hereinafter, a method of manufacturing a carbon-glass fiber hybrid composite for a wind turbine blade as described above will be described in detail with reference to the accompanying drawings.

본 발명의 제조방법은 VARTM (Vacuum Assisted Resin Transfer Molding) 공법을 사용하여 하이브리드 복합체를 제조하는 것으로, 적층단계와, 밀봉단계와, 진공단계와, 수지주입단계와, 경화단계를 포함하여 이루어진다.The manufacturing method of the present invention is to produce a hybrid composite using VARTM (Vacuum Assisted Resin Transfer Molding) method, and comprises a lamination step, a sealing step, a vacuum step, a resin injection step, and a curing step.

상기 적층단계(S1)는, 두종류의 섬유를 사용하여 복합체를 형성하는 것으로 사용되는 섬유는 높은 특성계수와 높은 가격을 갖는 흑연이나 보론 (boron) 섬유와 반대로 낮은 특성계수를 갖는 케블라 (Kevla), E-glass 또는 S-glass 섬유 등이 사용될 수 있으며, 여기에서 높은 특성계수를 갖는 섬유는 강성과 내하중 특성을 높이며, 낮은 특성계수를 갖는 섬유는 손상저항 특성 향상과 제조단가 저하에 기여하게 된다. 따라서 상기 두 섬유를 혼합사용하되 각 섬유의 적층위치를 한정하여 각 섬유의 장점을 수취함과 동시에 생산비를 절감시킬 수 있는 것이다. 즉, 일반적으로는 낮은 특성계수를 갖는 유리섬유나 높은 특성계수를 갖는 탄소섬유 중 한 종류만을 사용하고 있으나, 본 발명에서는 두 종류의 섬유를 적층 사용하고 있다. 상기 유리섬유와 탄소섬유의 직조형태는 평직 (plain weave) 또는 일방향 (unidirectional)으로 직조된 것을 사용할 수 있는 것으로, 두 직조 형태를 혼용하여 사용할 수 있다.In the lamination step (S1), the fiber used to form a composite using two kinds of fibers has a low characteristic coefficient as opposed to graphite or boron fibers having a high characteristic coefficient and a high price. , E-glass or S-glass fibers can be used, where the fibers with high coefficients of properties increase the stiffness and load-bearing properties, and the fibers with low coefficients of properties contribute to improved damage resistance and reduced manufacturing cost. do. Therefore, by using the two fibers mixed, it is possible to reduce the production cost while receiving the advantages of each fiber by limiting the stacking position of each fiber. That is, generally, only one kind of glass fiber having a low characteristic coefficient or carbon fiber having a high characteristic coefficient is used, but in the present invention, two kinds of fibers are laminated. The weave form of the glass fiber and carbon fiber may be a plain weave or unidirectional weave can be used, two weave forms can be used in combination.

상기 유리섬유와 탄소섬유는 이형제 처리를 한 후 건조시킨 금형 위에 탄소섬유가 가운데 오도록 중간에 적층하고 위아래에는 유리섬유를 적층하며, 이 때 위쪽의 유리섬유 두께와 아래쪽의 유리섬유의 두께는 동일하게 적층한다. 또한, 가운데 탄소섬유의 양은 전체 두께 대비 25~75%이고, 탄소섬유의 장수는 짝수가 되도록 하여 두께 방향으로 대칭되게 적층한다.The glass fiber and the carbon fiber are laminated in the middle so that the carbon fiber is centered on the dried mold after the release agent treatment, and the glass fiber is laminated on the upper and lower sides, wherein the thickness of the upper glass fiber and the lower glass fiber are the same. Laminated. In addition, the amount of the carbon fiber in the middle is 25 to 75% of the total thickness, the number of carbon fibers to be even numbered to be laminated symmetrically in the thickness direction.

다음으로 상기 밀봉단계(S2)는, 적층이 완료된 섬유의 가장 위쪽에는 이형처리가 되어 있는 나일론 fabric으로 성형공정 완료 후 떼어낼 수 있어 표면을 매끄럽게 해주는 기능이 있는 필 플라이 (peel ply) 직포를 덮고, 수지의 흐름을 좋게 하기 위하여 직조가 매우 성긴 polypropylene fabric으로 수지의 흐름을 돕는 기능을 가지고 있는 매트인 알디엠 (RDM, Resin Distribution Mat)을 한 장 적층한다. Next, the sealing step (S2) is a nylon fabric that is released at the top of the fiber is laminated, can be peeled off after completion of the molding process to cover the peel ply (woven ply) fabric having a function to smooth the surface In order to improve the flow of resin, a laminating polypropylene fabric is laminated with a sheet of RDM (Resin Distribution Mat), which has a function of helping resin flow.

그 후, 진공을 적용하기 위한 투명 나일론 bagging film을 밀봉재로 사용해 몰드 전체를 덮고 밀봉한다. 이때, 밀봉 전에 수지 주입라인인 수지주입구와, 진공을 잡기 위한 라인인 진공구를 확보 해 놓는다.Thereafter, a transparent nylon bagging film for applying vacuum is used as a sealing material to cover and seal the entire mold. At this time, before sealing, a resin inlet, which is a resin injection line, and a vacuum hole, which is a line for catching a vacuum, are secured.

상기 진공단계(S3)는, 수지 주입 쪽의 라인을 막은 상태에서 진공을 잡아 적층된 섬유들이 서로 잘 압착되도록 하는 공정이다. 이때 적용하는 진공의 압력은 1기압 정도로서 약 15분간 진공에 의해 섬유적층체를 압착하는 것이다.The vacuum step (S3) is a process to hold the vacuum in the state of blocking the line on the resin injection side so that the laminated fibers are pressed well together. At this time, the applied vacuum pressure is about 1 atmosphere, and the fiber laminated body is pressed by vacuum for about 15 minutes.

상기 수지주입단계(S4)는 몰드 내를 진공한 상태에서 수지주입구를 열어 진공 압력에 의하여 수지가 진공백 내부의 섬유내로 주입되도록 한다. 수지 주입은 내부의 섬유가 모두 수지에 함침 되었을 때 끝내며, 공기가 유입되지 않도록 수지 주입 라인을 막는다. 이때 사용된 수지로는 상온 경화형 저점도 에폭시가 사용되었다.The resin injection step S4 opens the resin inlet in a state in which the mold is vacuumed so that the resin is injected into the fiber inside the vacuum bag by vacuum pressure. Resin injection ends when all of the fibers inside are impregnated with the resin and blocks the resin injection line to prevent air from entering. At this time, the room temperature curing type low viscosity epoxy was used as the resin.

또한, 상기 경화단계(S5)는 수지 주입구를 막고, 진공압력을 계속 가하면서 경화 시키는 공정으로 완전 경화가 진행될 때까지 진공은 계속 적용해서 내부의 기공을 최소화시켜 성형체의 치밀화를 유도하는 것이다.In addition, the curing step (S5) is a process of blocking the resin inlet, and while continuing to apply a vacuum pressure to continue to apply the vacuum until the complete curing proceeds to minimize the pores in the interior to induce densification of the molded body.

한편, 복합재료의 적층 각도는 풍력 터빈 블레이드의 적층방법인 주하중 방향에 대하여 0°, 90°및 -45°~45°로 적층하게 된다. 상기 주 하중 방향은 루트 부위부터 팁으로의 방향이며, 블레이드의 경우 이 주하중 방향으로 주로 하중이 발생하므로 일방향으로 섬유를 강화하고, 블레이드 소재의 안정성 확보를 위해 -45°~45°로 적층 섬유를 소량 사용하여 구조를 강화시키는 것이다.Meanwhile, the stacking angle of the composite material is laminated at 0 °, 90 °, and -45 ° to 45 ° with respect to the main load direction, which is a method of stacking the wind turbine blades. The main load direction is the direction from the root portion to the tip, and in the case of the blade, since the load is mainly generated in the main load direction, the fiber is reinforced in one direction and the laminated fiber is -45 ° to 45 ° to secure the stability of the blade material. A small amount is used to strengthen the structure.

실시예1 Example 1

도 2를 참고한 바와 같이 내부 탄소섬유의 배열량과 외부의 유리섬유의 배열량을 각각 달리하여 복합체를 제조하였다. 즉, G100은 유리섬유 100%로 이루어지고, G0은 유리섬유가 포함되지 않고 탄소섬유로만 제조된 것으로 표시하였다.As shown in FIG. 2, the composite was prepared by varying the arrangement of the inner carbon fibers and the arrangement of the glass fibers outside. That is, G100 is made of 100% glass fiber, G0 is represented as being made of carbon fiber only does not contain glass fiber.

각 성분 혼합량에 따른 복합체의 밀도를 측정한 결과 (도 3 참조), 탄소섬유의 첨가가 증가될수록 복합체 전체의 밀도는 낮아짐을 알 수 있다. 또한, 굽힘강도 실험 (도 4 참조)에서는 유리섬유 없이 탄소섬유만 100%로 제조된 G0 이 가장 낮은 218MPa의 강도를 나타냈으며, 다음으로 G100 이 241MPa, G25 가 243MPa, G75 가 275MPa, G50 이 298MPa의 강도를 갖는 것으로 측정되었다. 따라서, 상기 유리섬유와 탄소섬유의 혼합은 전체 복합체에 대해 탄소섬유의 혼합을 25~75% 범위로 하는 것이 바람직하며, 더 바람직하게는 유리섬유와 탄소섬유를 각각 50%로 혼합사용하는 것이다.As a result of measuring the density of the composite according to the mixing amount of each component (see FIG. 3), it can be seen that as the addition of carbon fiber increases, the density of the entire composite becomes lower. In addition, in the bending strength test (see FIG. 4), G0 made of 100% carbon fiber without glass fiber showed the lowest strength of 218 MPa, followed by G100 of 241 MPa, G25 of 243 MPa, G75 of 275 MPa, and G50 of 298 MPa. It was measured to have an intensity of. Therefore, the mixing of the glass fiber and the carbon fiber is preferably in the range of 25 to 75% of the mixture of carbon fibers relative to the entire composite, and more preferably using 50% of the glass fibers and carbon fibers, respectively.

한편, 상기 서술한 예는, 본 발명을 설명하고자하는 예일 뿐이다. 따라서 본 발명이 속하는 기술분야의 통상적인 전문가가 본 상세한 설명을 참조하여 부분변경 사용한 것도 본 발명의 범위에 속하는 것은 당연한 것이다.In addition, the above-mentioned example is only an example to demonstrate this invention. Therefore, it is obvious that the ordinary skilled in the art to which the present invention pertains uses the partial change with reference to the detailed description.

이상과 같이 본 발명의 풍력발전 터빈 블레이드용 탄소-유리섬유 하이브리드 복합체 제조방법은,The carbon-glass fiber hybrid composite manufacturing method for a wind turbine blade of the present invention as described above,

기존 유리섬유 복합체의 중심부에 탄소섬유를 배열함으로써 굽힘강도가 정점인 탄소섬유의 함유량을 제시함과 아울러 밀도는 기존 유리섬유 복합체보다 약 10% 이상 감소되도록 하는 등 강성과 강도를 향상시키고, 밀도는 감소시킨 하이브리드 복합체를 제공하는 것으로, 대형이면서 복잡한 제품의 성형이 가능하고 짧은 공정시간으로 생산성을 향상시킬 수 있다. 즉, 금형 치수 그대로의 성형체 제조가 가능하기 때문에 터빈 블레이드와 같이 대형인 제품을 단일공정으로 전체 형상화가 가능하다.By arranging the carbon fiber in the center of the existing glass fiber composite, the carbon fiber with the highest bending strength is suggested, and the density is reduced by about 10% more than the existing glass fiber composite. By providing a reduced hybrid composite, it is possible to mold large and complex products and improve productivity with a short process time. That is, since the molded product can be manufactured as it is, the overall shape of a large product such as a turbine blade can be formed in a single process.

또한, 성형체 표면상태가 매우 우수하기 때문에 다른 방법에 비해 2차 접합공정 적용 시 가장 유리하며, 모든 작업이 폐쇄금형 내에서 진행되기 때문에 유해가스의 배출없이 작업이 이루어지는 환경친화적인 제조방법이다.In addition, since the surface state of the molded article is very excellent, it is most advantageous when applying the secondary bonding process compared to other methods, and since all operations are performed in the closed mold, it is an environmentally friendly manufacturing method in which the operation is performed without releasing harmful gas.

또한 전도성을 갖지 않는 유리섬유를 외부에 위치하도록 하여 낙뢰에 의한 피해로부터 블레이드 구조물을 보호하는 구조를 갖는 제조방법의 제공이 가능하게 되었다.In addition, it is possible to provide a manufacturing method having a structure that protects the blade structure from damage caused by lightning by placing the glass fibers having no conductivity outside.

Claims (6)

탄소-유리섬유 제조방법에 있어서,In the carbon-glass fiber manufacturing method, VARTM 공법으로 유리섬유와 탄소섬유를 이형제 처리하고, 건조시킨 금형위에 중간층에는 탄소섬유가 위치하도록 하고 상하부층에는 유리섬유가 동일한 두께로 적층되도록 하여 복합체를 형성하는 적층단계(S1)와;A laminating step (S1) of forming a composite by treating a glass fiber and a carbon fiber by a VARTM method, placing a carbon fiber on an intermediate layer on the dried mold, and laminating the glass fiber on the upper and lower layers with the same thickness; 상기 상부층을 형성하는 유리섬유의 상측으로 이형처리된 필 플라이 (peel ply) 직포와 수지의 흐름을 향상시키기 위한 매트를 순차적으로 적층하고, 몰드에는 수지 주입구과 진공구를 제외한 다른 부분을 투명 나일론 배깅 필름 (bagging film)을 밀봉재로 덮어 밀봉시키는 밀봉단계(S2)와;Lay out the peel ply fabric releasing to the upper side of the glass fiber forming the upper layer and the mat to improve the flow of the resin in sequence, and in the mold other parts except the resin inlet and vacuum port transparent nylon bagging film a sealing step (S2) of sealing a covering film with a sealing material; 상기 밀봉된 몰드에는 수지주입구을 밀폐시키고 진공구를 통해 1기압 이상으로 감압하여 적층된 섬유가 서로 잘 압착되도록 하는 진공단계(S3)와;The sealed mold has a vacuum inlet (S3) to seal the resin inlet and to reduce the pressure to the pressure of 1 atm or more through the vacuum port so that the laminated fibers are pressed well together; 상기 압착된 상태에서 수지주입구를 개방하여 진공압력에 의해 수지가 밀봉된 몰드 내로 주입되도록 하여 내부의 섬유가 수지에 함침되도록 한 후 공기의 유입을 차단하기 위해 수지주입구를 밀폐시키는 수지주입단계(S4)와;Resin injection step of opening the resin inlet in the compressed state so that the resin is injected into the mold sealed by the vacuum pressure so that the fibers inside are impregnated in the resin and then seal the resin inlet to block the inflow of air (S4). )Wow; 몰드 내에 진공압력을 계속 가하면서 경화시키는 경화단계(S5);를 포함하여 이루어짐을 특징으로 하는 풍력발전 터빈 블레이드용 탄소-유리섬유 하이브리드 복합체 제조방법.The curing step (S5) to continue to apply the vacuum pressure in the mold; carbon-glass fiber hybrid composite manufacturing method for a wind turbine blade comprising a. 제 1항에 있어서,The method of claim 1, 상기 유리섬유는 E-glass, S-glass로 이루어진 군으로부터 일종 선택사용하고, 상기 탄소섬유는 Rayon계, PAN계로 이루어진 군으로부터 일종 선택사용하는 것을 특징으로 하는 풍력발전 터빈 블레이드용 탄소-유리섬유 하이브리드 복합체 제조방법.The glass fiber is selected from the group consisting of E-glass, S-glass, and the carbon fiber is selected from the group consisting of Rayon-based, PAN-based carbon-glass fiber hybrid for wind turbine blades Composite manufacturing method. 제 1항에 있어서,The method of claim 1, 상기 유리섬유와 탄소섬유는 일방향 (unidirectional) 형태로 직조됨을 특징으로 하는 풍력발전 터빈 블레이드용 탄소-유리섬유 하이브리드 복합체 제조방법.The glass fiber and carbon fiber is a unidirectional (unidirectional) form, characterized in that for manufacturing a carbon-glass fiber hybrid composite for wind turbine blades. 제 1항에 있어서,The method of claim 1, 상기 유리섬유와 탄소섬유는 평직 (plain weave) 형태로 직조됨을 특징으로 하는 풍력발전 터빈 블레이드용 탄소-유리섬유 하이브리드 복합체 제조방법.The glass fiber and carbon fiber is a weave in the form of plain weave (plain weave) characterized in that the carbon-glass fiber hybrid composite manufacturing method for a wind turbine blade. 제 1항에 있어서,The method of claim 1, 상기 탄소섬유의 함유량은 복합체 전체 두께의 25 ~ 75% 범위가 되도록 한 것을 특징으로 하는 풍력발전 터빈 블레이드용 탄소-유리섬유 하이브리드 복합체 제조방법.The carbon fiber content of the carbon-glass fiber hybrid composite manufacturing method for a wind turbine blade, characterized in that the content of the range of 25 to 75% of the total thickness of the composite. 제 1항에 있어서,The method of claim 1, 상기 탄소섬유는 적층각도를 0°, 90°및 이의 혼합배열로 하고, 유리섬유는 적층각도를 0°, 90°, -45°~45°및 이의 혼합배열로 하여 적층됨을 특징으로 하는 풍력발전 터빈 블레이드용 탄소-유리섬유 하이브리드 복합체 제조방법. The carbon fiber is a laminated angle of 0 °, 90 ° and a mixed arrangement thereof, the glass fiber is laminated by the lamination angle of 0 °, 90 °, -45 ° ~ 45 ° and a mixed arrangement thereof Method for producing a carbon-glass fiber hybrid composite for a turbine blade.
KR1020060124850A 2006-12-08 2006-12-08 Manufacturing method of carbon-glass fiber hybrid composites for wind turbine blade KR100759595B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060124850A KR100759595B1 (en) 2006-12-08 2006-12-08 Manufacturing method of carbon-glass fiber hybrid composites for wind turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060124850A KR100759595B1 (en) 2006-12-08 2006-12-08 Manufacturing method of carbon-glass fiber hybrid composites for wind turbine blade

Publications (1)

Publication Number Publication Date
KR100759595B1 true KR100759595B1 (en) 2007-09-18

Family

ID=38738153

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060124850A KR100759595B1 (en) 2006-12-08 2006-12-08 Manufacturing method of carbon-glass fiber hybrid composites for wind turbine blade

Country Status (1)

Country Link
KR (1) KR100759595B1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011028271A2 (en) * 2009-09-04 2011-03-10 Bayer Materialscience Llc Automated processes for the production of polyurethane wind turbine blades
EP2295235A1 (en) * 2009-08-20 2011-03-16 Siemens Aktiengesellschaft Fiber reinforced plastic-structure and a method to produce the fiber reinforced plastic-structure
CN102555241A (en) * 2012-01-16 2012-07-11 迪皮埃复材构件(太仓)有限公司 Blade root prefabrication mold for wind power generator and method for prefabricating blade root
CN101435406B (en) * 2007-11-06 2013-05-01 通用电气公司 Wind turbine blades and methods for forming same
KR101276236B1 (en) * 2011-02-22 2013-06-20 한국원자력연구원 Preparation method of fiber-reinforced composites for wind turbine blade
KR101337593B1 (en) 2011-07-26 2013-12-06 한국세라믹기술원 Bicycle frame haing the carbon fiber and the packed layer
CN103437965A (en) * 2013-08-29 2013-12-11 长春市雷力机械制造有限公司 Wind power blade made of carbon-fiber and glass-fiber mixed materials
KR101443894B1 (en) * 2012-11-22 2014-09-25 주식회사 윈드밸리 Method for manufacturing a wind blade
KR101445569B1 (en) 2013-01-21 2014-09-29 주식회사 디아이디 Infusion Molding Method using UV Curable Resin Composition
KR20150128665A (en) * 2013-01-10 2015-11-18 웨첼 엔지니어링, 인코포레이티드 Triaxial fiber-reinforced composite laminate
KR20160024041A (en) * 2014-08-22 2016-03-04 호서대학교 산학협력단 Method of molding fiber-reinforced plastic product
WO2017104879A1 (en) * 2015-12-14 2017-06-22 한국해양과학기술원 Bonding method and structure of glass fiber reinforced plastic composite pipes, and bonding method of glass fiber reinforced plastic composite structures
CN113738572A (en) * 2021-10-13 2021-12-03 吉林重通成飞新材料股份公司 Novel wind-powered electricity generation blade girder, wind-powered electricity generation blade
KR20220040608A (en) * 2020-09-24 2022-03-31 창원대학교 산학협력단 Method of Surface Retarding Flame of Natural Fiber Composite and Natural Fiber Composite Manufactured Using the Same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4311661A (en) 1980-05-05 1982-01-19 Mcdonnell Douglas Corporation Resin impregnation process
US4942013A (en) 1989-03-27 1990-07-17 Mcdonnell Douglas Corporation Vacuum resin impregnation process
KR970000925B1 (en) * 1993-06-28 1997-01-21 국방과학연구소 The method for preparation of impact plastic with reinforcing fibers
US20030102604A1 (en) 2001-07-23 2003-06-05 Mack Patrick E. Three-dimensional spacer fabric resin interlaminar infusion media process and vacuum-induced reinforcing composite laminate structures
KR100562336B1 (en) 2005-08-30 2006-03-17 주식회사 씨케이아이 Boat hull and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4311661A (en) 1980-05-05 1982-01-19 Mcdonnell Douglas Corporation Resin impregnation process
US4942013A (en) 1989-03-27 1990-07-17 Mcdonnell Douglas Corporation Vacuum resin impregnation process
KR970000925B1 (en) * 1993-06-28 1997-01-21 국방과학연구소 The method for preparation of impact plastic with reinforcing fibers
US20030102604A1 (en) 2001-07-23 2003-06-05 Mack Patrick E. Three-dimensional spacer fabric resin interlaminar infusion media process and vacuum-induced reinforcing composite laminate structures
KR100562336B1 (en) 2005-08-30 2006-03-17 주식회사 씨케이아이 Boat hull and method for manufacturing the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101435406B (en) * 2007-11-06 2013-05-01 通用电气公司 Wind turbine blades and methods for forming same
EP2295235A1 (en) * 2009-08-20 2011-03-16 Siemens Aktiengesellschaft Fiber reinforced plastic-structure and a method to produce the fiber reinforced plastic-structure
WO2011028271A2 (en) * 2009-09-04 2011-03-10 Bayer Materialscience Llc Automated processes for the production of polyurethane wind turbine blades
WO2011028271A3 (en) * 2009-09-04 2011-07-28 Bayer Materialscience Llc Automated processes for the production of polyurethane wind turbine blades
KR101276236B1 (en) * 2011-02-22 2013-06-20 한국원자력연구원 Preparation method of fiber-reinforced composites for wind turbine blade
KR101337593B1 (en) 2011-07-26 2013-12-06 한국세라믹기술원 Bicycle frame haing the carbon fiber and the packed layer
CN102555241A (en) * 2012-01-16 2012-07-11 迪皮埃复材构件(太仓)有限公司 Blade root prefabrication mold for wind power generator and method for prefabricating blade root
KR101443894B1 (en) * 2012-11-22 2014-09-25 주식회사 윈드밸리 Method for manufacturing a wind blade
KR20150128665A (en) * 2013-01-10 2015-11-18 웨첼 엔지니어링, 인코포레이티드 Triaxial fiber-reinforced composite laminate
KR102048508B1 (en) * 2013-01-10 2019-11-25 더블유이아이세븐 엘엘씨 Triaxial fiber-reinforced composite laminate
KR101445569B1 (en) 2013-01-21 2014-09-29 주식회사 디아이디 Infusion Molding Method using UV Curable Resin Composition
CN103437965A (en) * 2013-08-29 2013-12-11 长春市雷力机械制造有限公司 Wind power blade made of carbon-fiber and glass-fiber mixed materials
KR20160024041A (en) * 2014-08-22 2016-03-04 호서대학교 산학협력단 Method of molding fiber-reinforced plastic product
KR101626664B1 (en) 2014-08-22 2016-06-02 호서대학교 산학협력단 Method of molding fiber-reinforced plastic product
WO2017104879A1 (en) * 2015-12-14 2017-06-22 한국해양과학기술원 Bonding method and structure of glass fiber reinforced plastic composite pipes, and bonding method of glass fiber reinforced plastic composite structures
KR20220040608A (en) * 2020-09-24 2022-03-31 창원대학교 산학협력단 Method of Surface Retarding Flame of Natural Fiber Composite and Natural Fiber Composite Manufactured Using the Same
KR102396494B1 (en) * 2020-09-24 2022-05-09 창원대학교 산학협력단 Method of Surface Retarding Flame of Natural Fiber Composite and Natural Fiber Composite Manufactured Using the Same
CN113738572A (en) * 2021-10-13 2021-12-03 吉林重通成飞新材料股份公司 Novel wind-powered electricity generation blade girder, wind-powered electricity generation blade
CN113738572B (en) * 2021-10-13 2023-08-08 吉林重通成飞新材料股份公司 Wind-powered electricity generation blade girder, wind-powered electricity generation blade

Similar Documents

Publication Publication Date Title
KR100759595B1 (en) Manufacturing method of carbon-glass fiber hybrid composites for wind turbine blade
US9234500B2 (en) Method of producing a composite shell structure
CN102166826B (en) Forming process of fiber reinforced thermoplastic composite material
US8420002B2 (en) Method of RTM molding
EP2295235B1 (en) Fiber reinforced plastic-structure and a method to produce the fiber reinforced plastic-structure
CN102975374B (en) The manufacture method of carbon fiber composite material main beam cap for fan blade and manufacturing installation
US20130287589A1 (en) Fibre reinforced composite moulding
JP2013504454A (en) Improved manufacturing method and apparatus for composite materials
CN105881932A (en) Method for forming large-sized composite material box
CN103057126A (en) Large-scale composite material integral molding blade and molding process thereof
CN107521124A (en) Carbon fiber dual platen reinforced structure part and its manufacture method
EP2918398B1 (en) A fiber-reinforced composite, a component and a method
CN106794641A (en) For gas-turbine engine, the guide vane that is made up of composite and its manufacture method
CN109808196A (en) Fiber laminated composite material containing high-orientation-degree carbon nano tubes between layers and preparation method thereof
JP4805375B2 (en) Method for manufacturing FRP structure
CN106218146A (en) Composite that a kind of case and bag flexible material is toughness reinforcing and preparation thereof and application
US20070194491A1 (en) Manufacturing method with sliding layer
JP4338550B2 (en) Method for manufacturing FRP structure
KR101276236B1 (en) Preparation method of fiber-reinforced composites for wind turbine blade
CN102555316B (en) Fiber fabric with high buckling resistance and method for preparing fiber composite material part with high buckling resistance
CN107000333B (en) Improved laminate
JP2002248620A (en) Base material for molding fiber-reinforced plastic and molding method of fiber-reinforced plastic
KR20050108834A (en) Method of molding fiber-resin composite using plane heater
KR101237614B1 (en) Zipper lock type silicone bag for molding composite materials
JP4371671B2 (en) Resin transfer molding method and sandwich laminate manufacturing method

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110816

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20120824

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140912

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150910

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170921

Year of fee payment: 11