KR100750780B1 - Development of regenerated protein fiber from collagen and water-soluble polymer complex - Google Patents

Development of regenerated protein fiber from collagen and water-soluble polymer complex Download PDF

Info

Publication number
KR100750780B1
KR100750780B1 KR1020060024614A KR20060024614A KR100750780B1 KR 100750780 B1 KR100750780 B1 KR 100750780B1 KR 1020060024614 A KR1020060024614 A KR 1020060024614A KR 20060024614 A KR20060024614 A KR 20060024614A KR 100750780 B1 KR100750780 B1 KR 100750780B1
Authority
KR
South Korea
Prior art keywords
collagen
water
crosslinking
soluble polymer
weight
Prior art date
Application number
KR1020060024614A
Other languages
Korean (ko)
Inventor
김훈희
이상철
신은철
김원주
Original Assignee
한국신발피혁연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국신발피혁연구소 filed Critical 한국신발피혁연구소
Priority to KR1020060024614A priority Critical patent/KR100750780B1/en
Application granted granted Critical
Publication of KR100750780B1 publication Critical patent/KR100750780B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F4/00Monocomponent artificial filaments or the like of proteins; Manufacture thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof
    • C08L89/04Products derived from waste materials, e.g. horn, hoof or hair
    • C08L89/06Products derived from waste materials, e.g. horn, hoof or hair derived from leather or skin, e.g. gelatin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/50Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyalcohols, polyacetals or polyketals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2211/00Protein-based fibres, e.g. animal fibres
    • D10B2211/01Natural animal fibres, e.g. keratin fibres
    • D10B2211/06Collagen fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/06Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated alcohols, e.g. polyvinyl alcohol, or of their acetals or ketals

Abstract

A method for manufacturing a regenerated protein fiber is provided to supplement the material property of the protein fiber, by adding polyvinyl alcohol and alginic acid into collagen protein so as to form a spinning solution for the protein fiber. A spinning solution is formed by mixing collagen protein, polyvinyl alcohol, and a cross-linking material, wherein the collagen protein is obtained by using saving scrap as a raw material. The spinning solution is wet-spun within a coagulation bath containing two or more kinds of coagulation material. The resultant material is chemically cross-lined within a cross-linking bath containing a cross-linking material. The spinning solution is formed by mixing the collagen protein, the polyvinyl alcohol, the cross-linking material, and alginic acid of 0.1~10 wt%.

Description

콜라겐과 수용성 고분자 복합체를 이용한 재생 단백질 섬유의 제조방법{development of regenerated protein fiber from collagen and water-soluble polymer complex}Development of regenerated protein fiber from collagen and water-soluble polymer complex

본 발명은 단백질 섬유의 제조방법에 관한 것으로서, 더욱 상세하게는 콜라겐과 수용성 고분자 복합체를 이용한 물성이 증진된 재생 단백질 섬유를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing protein fibers, and more particularly, to a method for producing regenerated protein fibers having improved physical properties using collagen and a water-soluble polymer complex.

잘 알려진 바와 같이, 재생 콜라겐 단백질 섬유는 일반적으로 동물의 가죽이나 원료로부터 알카리나 효소등을 처리하여 콜라겐의 텔로펩티드 부분을 분해하여 제거함으로서 수용성 콜라겐 단백질을 얻어 습식방사 방법을 통해 무기염을 함유하는 응고조로 토출하여 제조한다.As is well known, regenerated collagen protein fiber is generally treated with alkalis or enzymes from animal skins or raw materials to decompose and remove the telopeptide portion of collagen to obtain water-soluble collagen protein, which contains inorganic salts by wet spinning. Manufactured by discharging into a coagulation bath.

섬유제조에 사용하는 콜라겐 단백질은 추출 조건(예를 들어, 온도, 시간, 약품 종류, 약품 사용량 등)에 따라 분자량이 크게 달라지며, 따라서 섬유의 물성과 방사용 도프(Dope)의 성질이 크게 틀려지게 된다.Collagen proteins used in fiber manufacturing vary greatly in molecular weight depending on extraction conditions (eg, temperature, time, type of drug, amount of chemicals used, etc.), and therefore, the physical properties of the fiber and the properties of the spinning dope are greatly different. You lose.

일반적으로 분자량이 크면 섬유 물성이 증진되고 분자량이 작으면 물성 또한 저하되는 경향을 가지고 있어 세이빙 스크랩(Shaving scrap)으로부터 콜라겐 단백질을 분리할 때 온도와 사용약품의 사용에 유의하여야 한다. 이렇게 섬유가 제조되는 과정에서 높은 온도에서 재용해되는 콜라겐 단백질의 단점으로 인해 응고욕의 온도를 낮게 해주어야 하고, 이로 인해 무기염의 농도가 낮아져 콜라겐 단백질을 섬유화 하는데 어려움이 있을 뿐만 아니라 강도도 약하여 연신이 어려운 단점이 있다.In general, when the molecular weight is large, the physical properties of the fiber are enhanced, and when the molecular weight is small, the physical properties also tend to be deteriorated. Therefore, care should be taken in using the temperature and the drug when separating the collagen protein from the shaving scrap. Due to the drawback of collagen protein re-dissolving at high temperatures in the process of manufacturing fibers, the temperature of the coagulation bath must be lowered, which leads to a lower concentration of inorganic salts, making it difficult to fiberize the collagen protein as well as weak strength. It has a hard disadvantage.

한편 폴리비닐 알코올(Polyvinyl alcohol: 이하 "PVA"라 함)은 비닐에스테르계열 고분자를 산이나 알칼리에 의해 비누화시켜 제조되는 히드록시기 함유 선형 결정성 고분자로서 그 제조과정에서 알 수 있듯이 우수한 내용제성과 내유성을 가지고 있다. 또한 상기 PVA는 분자량과 비누화도 및 입체 규칙성에 따라 호제, 의류나 산업용 섬유, 편광 및 포장용 필름, 분리용 필터 및 의학용 고분자에 이르기까지 광범위한 활용 범위를 갖고 있으며 높은 극한강도와 폴리에틸렌과 함께 최고 수준의 탄성률을 보유하고 있으므로 이로부터 제조된 섬유는 우수한 기계적 성질을 가지고 있으며 다른 고분자에 비해 월등히 우수한 내 알칼리성, 해수 저항성, 산소차단성 및 접착성을 가지고 있다. 최근에는 환경친화성과 연관된 생분해성이 대두됨으로 광범위한 분야에서 그 활용성이 높아져 가고 있다. On the other hand, polyvinyl alcohol (hereinafter referred to as "PVA") is a hydroxy group-containing linear crystalline polymer prepared by saponifying a vinyl ester polymer with an acid or an alkali, and as shown in the manufacturing process, excellent solvent resistance and oil resistance Have. The PVA also has a wide range of applications, ranging from gels, clothing or industrial textiles, polarizing and packaging films, separation filters and medical polymers, depending on molecular weight, degree of saponification and stereoregularity. Because of its elastic modulus, the fibers made from it have excellent mechanical properties and have excellent alkali resistance, seawater resistance, oxygen barrier properties and adhesion compared to other polymers. Recently, biodegradability associated with environmental friendliness has emerged, and its utility in a wide range of fields is increasing.

또 한편으로 알긴산(Alginic acid)은 일반적으로 갈조류에서 추출되는 다당류로써 콜라겐 단백질(Collagen protein) 및 PVA와 마찬가지로 분자량에 따라서 다양한 물성을 나타낸다. 일반적으로 수십만에서 수백만 돌턴(Dalton)으로 분자량이 매우 커서 소량의 사용으로도 높은 점도의 상승을 얻을 수 있으며 금속과의 특이적 인 결합으로 3차원적 가교를 형성하는 특성을 지니고 있어 식품산업, 제지, 염색공업, 필름, 캡슐 등에 이용되고 있다.On the other hand, alginic acid is a polysaccharide that is generally extracted from brown algae, and shows various physical properties according to molecular weight like collagen protein and PVA. In general, the molecular weight is very large, ranging from hundreds of thousands to millions of Daltons, so that a high viscosity increase can be obtained even with a small amount of use. It is used in dyeing industry, film and capsule.

또한 제조된 콜라겐 단백질 섬유는 물에 가용이어서 이러한 성질을 개질화하기 위한 다양한 방법들로 알데히드 화합물(포름알데히드, 글루타르알데히드 등)로 처리하는 방법, 각종 금속염(크롬염, 알루미늄염, 지르코늄염 등)으로 처리하는 방법, 에폭시 화합물로 처리하는 방법 및 이러한 방법을 혼합처리하는 방법들이 이미 교시되어 있지만 섬유 제조 후에 장시간 침지(Dipping)에 의한 방법으로 작업의 연속성이 떨어지고 생산성이 저하되는 문제점을 가지고 있다.In addition, the prepared collagen protein fibers are soluble in water and treated with aldehyde compounds (formaldehyde, glutaraldehyde, etc.) in various ways to modify these properties, various metal salts (chromium salts, aluminum salts, zirconium salts, etc.) ), A method of treating with an epoxy compound, and a method of mixing and treating such methods have already been taught, but there is a problem in that continuity of work is reduced and productivity is decreased by a method of dipping for a long time after fiber production. .

따라서, 상기한 바와 같은 문제점을 해결하기 위한 본 발명의 목적은 피혁폐기물인 세이빙 스크랩(Shaving scrap)으로부터 추출된 고분자의 콜라겐 단백질과 폴리비닐 알코올(Polyvinyl alcohol)과 알긴산(Alginic acid) 및 가교물질을 혼합하여 방사함으로써 2종 이상의 응고물질이 함유된 응고조(Coagulation bath) 및 가교물질이 함유된 가교조(Cross-linking bath)를 연속적으로 거쳐 생산성과 작업성이 향상된 천연 콜라겐 단백질 섬유(fiber)를 제조하는 방법을 제공함에 있다.Accordingly, an object of the present invention for solving the above problems is to use a collagen protein, polyvinyl alcohol, alginic acid and crosslinking material of a polymer extracted from a shaving scrap which is a leather waste. By mixing and spinning, a collagen protein fiber containing two or more coagulants and a cross-linking bath containing a crosslinking material are continuously used to obtain natural collagen protein fibers having improved productivity and workability. It is to provide a method of manufacturing.

또한 본 발명의 다른 목적은 피혁제조 공정 폐기물을 활용함으로써 단백질 자원의 재활용 차원에서 폐기 처리시 발생될 수 있는 환경오염을 감소시키고 추출된 콜라겐 단백질을 재차 섬유화하여 용도에 적합한 소재를 제공함에 있다.In addition, another object of the present invention is to reduce the environmental pollution that may occur during the disposal process in terms of recycling of protein resources by utilizing the leather manufacturing process waste, and to provide a material suitable for use by re-fiberizing the collagen protein extracted.

이하 본 발명에 따른 바람직한 실시 예를 상세히 설명하면 다음과 같다. 하기의 설명에서는 본 발명의 콜라겐 단백질 섬유의 제조방법을 이해하는데 필요한 부분만이 설명되며 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않도록 생략될 것이라는 것을 유의하여야 한다.Hereinafter, a preferred embodiment according to the present invention will be described in detail. In the following description, it should be noted that only parts necessary for understanding the method for producing collagen protein fibers of the present invention will be described, and descriptions of other parts will be omitted so as not to distract from the gist of the present invention.

본 발명에 사용되는 콜라겐 단백질의 원료는 피혁 제조 공정 중 불가피하게 발생하는 세이빙 스크랩(Shaving scrap)으로 이것은 가죽의 두께(Thickness) 조절을 위해 가죽의 뒷면을 기계적으로 제거하는 과정에서 얻어진다. 이러한 세이빙 스크랩은 생피(生皮)와 마찬가지로 대부분이 불용성 콜라겐 단백질로 이루어져 있지만 동물성 상태의 단백질을 광물성으로 전환시키기 위해서 사용되는 크롬이 함유되어 있어 제거하는 공정을 거쳐야 한다. The raw material of the collagen protein used in the present invention is a shaving scrap inevitably generated during the leather manufacturing process, which is obtained in the process of mechanically removing the back side of the leather to control the thickness of the leather. Most of these shaving scraps are made of insoluble collagen protein, like raw hides, but they contain chromium, which is used to convert animal proteins into minerals.

또한 이미 불순물 제거 공정을 거친 가죽이라 할지라도 불용성 콜라겐 단백질 이외의 지질, 당단백질, 알부민 등 함유되어 있으므로 섬유화 할 때 방사 안정성과 섬유의 강도 및 품질에 영향을 고려하여 생화학적 처리 및 여과처리를 통해 제거하여야만 한다.In addition, even leather that has already undergone an impurity removal process contains lipids, glycoproteins, and albumins other than insoluble collagen protein, so that biochemical and filtration treatments can be carried out in consideration of the radiation stability and the strength and quality of the fiber. Must be removed.

그리고 상기와 같이 처리된 세이빙 스크랩에 가용화 처리하여 콜라겐 단백질을 얻는 방법에는 산 처리법, 알카리 처리법 및 효소 처리법 등이 있다. 그러나 산 처리법을 통해 얻어지는 콜라겐 단백질은 회수율이 떨어지고, 효소 처리법은 균일화된 분자량을 얻기에는 적합하지만 단백질이 저분자화되는 경향이 있어 본 발명에서는 알카리 처리법의 단독 적용이 가장 적당하다. 또한 상기와 같이 처리하여 얻어진 콜라겐 단백질을 섬유화 하였을 때 균일한 물성 분포를 갖게 하기 위해 여과 처리를 통해 저분자의 콜라겐 단백질을 제거함이 바람직하다.The solubilization treatment to the above-mentioned shaving scraps to obtain collagen proteins include acid treatment, alkali treatment and enzyme treatment. However, the collagen protein obtained through the acid treatment has a low recovery rate, and the enzyme treatment method is suitable for obtaining a homogenized molecular weight, but the protein tends to be low molecular weight, so the application of alkali treatment alone is most suitable in the present invention. In addition, it is preferable to remove the collagen protein of low molecular weight through filtration in order to have a uniform physical distribution when the collagen protein obtained by the treatment as described above is fiberized.

이와 같이 얻어진 콜라겐 단백질은 첨가 및 혼합되어지는 수용성 고분자 화합물인 폴리비닐 알코올(Polyvinyl alcohol) 및 알긴산(Alginic acid)과의 콜로이드의 농도차이에 의해 발생되는 코아세르베이션(Coacervation) 현상의 방지를 위해 포름산(Formic acid), 아세트산(Acetic acid), 젖산(Lactic acid) 등의 유기산으로 pH 1.0~5.0으로 조정된 산성 수용액에 콜라겐 단백질과 PVA의 혼합비가 1:1, 1:2, 1:3의 비율로 5~60중량%의 농도로, 바람직하게는 10~50중량%의 농도로 용해한다. 사용되는 PVA는 분자량 1,500~3,500의 것을 사용하여야만 섬유화 하였을 때 물성이 우수하며 1,500 미만일 경우에는 강도 저하의 문제점이 발생한다. 첨가되는 알긴산의 혼합비는 용해도 및 교반성을 고려할 때 0.1~10%가 가장 바람직하다. 용해 온도는 콜라겐 단백질의 분자량 파괴 및 변성 방지를 위해 30~70℃, 바람직하게는 35~60℃의 온도에서 용해한다.The collagen protein thus obtained is formic acid for the prevention of coacervation caused by the difference in concentration of colloids with polyvinyl alcohol and alginic acid, which are water-soluble high molecular compounds to be added and mixed. The ratio of collagen protein and PVA is 1: 1, 1: 2, 1: 3 in an acidic aqueous solution adjusted to pH 1.0 ~ 5.0 with organic acids such as (formic acid), acetic acid, and lactic acid. Furnace at a concentration of 5 to 60% by weight, preferably at a concentration of 10 to 50% by weight. PVA to be used must have a molecular weight of 1,500 ~ 3,500 only when the fiber is excellent in physical properties, if less than 1,500 the problem of strength degradation occurs. The mixing ratio of the alginic acid to be added is most preferably 0.1 to 10% in consideration of solubility and agitation. Dissolution temperature is dissolved at a temperature of 30 ~ 70 ℃, preferably 35 ~ 60 ℃ to prevent molecular weight destruction and denaturation of collagen protein.

또한 점도의 조절 및 가교능력을 증진시키기 위해서 가교물질을 0.001~0.02중량% 첨가해주며, 0.02중량%이상일 때는 과농도로 인한 콜라겐 단백질과 PVA가 교반중에 가교반응을 일으켜 엉기는 현상이 발생할 수 있다. 불용성 성분의 제거를 위해 여과를 행하고 교반 중에 생긴 기포를 제거하여 탈포를 행하여 방사과정 중에 발생할 수 있는 섬유의 끊김 현상을 미연에 방지한다.In addition, in order to control viscosity and enhance crosslinking ability, 0.001 to 0.02% by weight of a crosslinking material is added, and when it is more than 0.02% by weight, collagen protein and PVA due to excessive concentration may cause crosslinking reaction during stirring, causing entanglement. . Filtration is carried out to remove insoluble components, and bubbles generated during stirring are removed to degas, thereby preventing breakage of fibers that may occur during the spinning process.

콜라겐과 폴리비닐 알코올 및 알긴산으로 이루어진 혼합물을 방사 노즐을 통해 무기염 수용액 속으로 토출함으로써 섬유화가 가능한데 응고조(Coagulation bath)에 들어갈 응고물질로는 황산나트륨, 황산알루미늄, 염화나트륨, 황산암모늄, 붕산나트륨, 초산나트륨 등의 금속염과 붕산 등이 사용 가능하며, 금속염의 농도는 10~50중량%로 사용하고, 특히 황산나트륨을 20~40중량%로 사용하는 것이 가장 바람직하며 붕산 0.5~1.0M을 병용하여 사용하는 것이 가장 바람직하다. 무기염 수용액의 pH는 콜라겐 단백질의 탈수 조건이 가장 좋은 등전점 부근인 pH 3.0~6.0 사이가 가장 양호하다. 또한 무기염 수용액의 수온은 응고된 섬유가 재용해되지 않으면서 무기염의 최대 용해도를 가질 수 있는 30~36℃의 조건이 가장 좋다.The mixture of collagen, polyvinyl alcohol, and alginic acid is discharged into an aqueous inorganic salt solution through a spinning nozzle, and fiberization is possible. Metal salts such as sodium acetate and boric acid can be used, and the concentration of metal salts is 10 to 50% by weight, and it is most preferable to use sodium sulfate at 20 to 40% by weight, in combination with 0.5 to 1.0M boric acid. Most preferably. The pH of the aqueous inorganic salt solution is best between pH 3.0 and 6.0, near the isoelectric point where collagen protein is dehydrated best. In addition, the water temperature of the inorganic salt aqueous solution is best the condition of 30 ~ 36 ℃ that can have the maximum solubility of the inorganic salt without re-dissolving the coagulated fiber.

상기의 무기염이 포함된 응고조를 통과하여 응고된 콜라겐 단백질 섬유에 부착된 염성분을 제거하기 위해서 곧바로 수세(Washing) 공정을 거치게 되면 섬유가 재용해되므로 반드시 가교(Cross-linking) 과정을 거친 후에 수세과정을 수행하여야 한다. 그러므로 응고된 콜라겐 섬유를 곧바로 글루타르 알데히드 0.1~5.0중량%, 붕산 0.5~1.0M, 방사유제 1.0~6.0중량%가 포함된 가교조로 통과시켜 가교시키고 섬유의 수율 및 강도의 증진을 위한 연신공정을 병행하여 진행한다. The cross-linking process is required since the fiber is redissolved immediately after washing to remove salts attached to the coagulated collagen protein fiber through the coagulation tank containing the inorganic salt. The washing process should be performed later. Therefore, the coagulated collagen fibers are immediately crosslinked through a crosslinking bath containing 0.1 to 5.0% by weight of glutaraldehyde, 0.5 to 1.0M of boric acid, and 1.0 to 6.0% by weight of an emulsion, and a drawing process is performed to increase the yield and strength of the fiber. Proceed in parallel.

또한 가교 처리된 콜라겐 섬유의 가교결합을 안정화하기 위해 30~60℃에서 예비 건조 공정을 거친 후 80~100℃에서 2~3 시간 숙성과정을 거친다. 또한 섬유에 부착된 무기염의 제거를 위해 필요에 따라 수세공정을 거칠 수 있다.In addition, in order to stabilize the crosslinking of the cross-linked collagen fibers are subjected to a pre-drying process at 30 ~ 60 ℃ and then aged 2 to 3 hours at 80 ~ 100 ℃. In addition, the washing process may be performed as necessary to remove the inorganic salts attached to the fibers.

이하 본 발명의 바람직한 실시 예에 의거 상세히 설명하겠는 바, 상기 본 발명이 실시예에 의해 한정되는 것은 아니며 습식방사 공정 등의 자세한 설명 및 설비 도면은 생략하기로 한다.Hereinafter, the present invention will be described in detail with reference to the preferred embodiments. However, the present invention is not limited to the embodiments, and detailed descriptions such as wet spinning processes and equipment drawings will be omitted.

{실시예 1}{Example 1}

세이빙 스크랩(Shaving scrap)을 원료로 하여 알카리로 가용화한 크롬 함유량이 5ppm 이하이며 분자량이 약 100,000 Da인 콜라겐 단백질과 분자량 1,700인 PVA를 1:1의 비율로 포름산(Formic acid)로 pH 1.0~5.0으로 조정한 수용액에 10~50중량%로 용해하여 방사용액을 제조하였다.Alkali-solubilized chromium content containing less than 5 ppm of alkali-soluble chromium, with a molecular weight of about 100,000 Da and PVA having a molecular weight of 1,700 in a ratio of 1: 1 with formic acid, pH 1.0-5.0 It was dissolved in 10 to 50% by weight in an aqueous solution adjusted to prepare a spinning solution.

여과 및 탈포를 거친 후 습식 방사 장치의 60℃로 고정된 방사용액 저장탱크에 투입하고, 기어 펌프로 일정량씩 지름이 0.1mm, 홀 수가 330개인 노즐을 통해, 황산나트륨 20~40중량%와 붕산(Boric acid) 0.5~1.0M을 함유하는 수온인 30~36℃인 응고조로 5~10m/분의 속도로 토출하여 안정된 방사성 및 작업성이 개선된 천연 콜라겐 섬유를 제조하였다.After filtration and defoaming, it is put into a spinning solution storage tank fixed at 60 ° C. of a wet spinning device, and 20-40% by weight of sodium sulfate and boric acid (through a nozzle having a diameter of 0.1 mm and a hole number of 330 by a gear pump). Boric acid) was discharged at a rate of 5 ~ 10m / min in a coagulation bath of 30 ~ 36 ℃ water temperature containing 0.5 ~ 1.0M to prepare a natural collagen fiber with improved radioactivity and workability.

{실시예 2}{Example 2}

방사용액의 제조시 알긴산(Alginic acid)를 0.1~10중량% 첨가시키고, 응고조를 지나 글루타르 알데히드 0.1~5.0%, 소르비탄 모노올레이트(Sorbitan monooleate) 1.0~6.0%, 붕산(Boric acid) 0.5~1.0M을 함유하는 가교조를 거쳐 권취기의 권취속도와 중간 이송 롤러와의 회전수 차이를 이용한 연신을 실시한 것 이외에 상기 실시예 1과 동일하게 진행하여 연신비가 우수하고 가교처리 공정을 간소화하여 생산성이 증대된 천연 콜라겐 섬유를 제조하였다.Alginic acid (Alginic acid) is added 0.1 ~ 10% by weight in the preparation of the spinning solution, glutaraldehyde 0.1 ~ 5.0%, sorbitan monooleate 1.0 ~ 6.0%, boric acid (Boric acid) Through the crosslinking tank containing 0.5-1.0M, the drawing was carried out using the difference in the rotation speed between the winding speed of the winding machine and the intermediate feed roller. To produce a natural collagen fiber with increased productivity.

{실시예 3}{Example 3}

방사용액의 제조시 가교물질인 24% 글루타르알데히드를 0.001~0.02중량% 첨가시키고, 응고조를 지나 글루타르 알데히드 0.1~5.0%, 소르비탄 모노올레이트(Sorbitan monooleate) 1.0~6.0%, 붕산(Boric acid) 0.5~1.0M을 함유하는 가교조를 거쳐 권취기의 권취속도와 중간 이송 롤러와의 회전수 차이를 이용한 연신을 실시한 것 이외에 상기 실시예 2와 동일하게 진행하여 연신비 및 물성이 증대되고 가교처리 공정을 간소화하여 생산성이 증대된 천연 콜라겐 섬유를 제조하였다.To prepare the spinning solution, add 0.001 ~ 0.02% by weight of crosslinking material, 24% glutaraldehyde, 0.1 ~ 5.0% glutaraldehyde through a coagulation bath, and sorbitan monooleate Proceed in the same manner as in Example 2 except that stretching was performed using a winding speed of the winding machine and the rotational speed of the intermediate feed roller through a crosslinking tank containing 1.0 to 6.0% and boric acid 0.5 to 1.0 M. To increase the draw ratio and physical properties and to simplify the cross-linking process to produce a natural collagen fiber with increased productivity.

{실시예 4}{Example 4}

방사용액의 제조시 가교물질인 24% 글루타르알데히드를 0.001~0.02중량% 첨가시키고, 가교공정을 거쳐 제조된 콜라겐 섬유를 30~60℃의 열풍식 건조기에 2시간 건조시키고, 80~100℃에서 2~3시간 열처리한 것 이외에 상기 실시예 3과 동일하게 진행하여 우수한 내수성 및 물성을 가진 천연 콜라겐 섬유를 제조하였다.In the preparation of the spinning solution, 0.001 to 0.02 wt% of 24% glutaraldehyde, which is a crosslinking material, was added, and the collagen fibers prepared through the crosslinking process were dried in a hot air dryer at 30 to 60 ° C for 2 hours, and then at 80 to 100 ° C. In addition to the heat treatment for 2-3 hours in the same manner as in Example 3 to prepare a natural collagen fiber with excellent water resistance and physical properties.

{실시예 5}{Example 5}

크롬 함유량이 5ppm 이하이고 분자량이 약 100,000 Da인 콜라겐 단백질과 분자량 1,700인 PVA를 1:2의 비율로 10~50중량%로 24% 글루타르알데히드 0.001~0.02중량%가 포함되고 포름산(Formic acid)로 pH 1.0~5.0으로 조정한 수용액에 용해하고 알긴산(Alginic acid) 0.1~10중량%를 재용해하여 방사용액을 제조하였다.10% to 50% by weight of collagen protein having a chromium content of 5 ppm or less and a molecular weight of about 100,000 Da and a PVA having a molecular weight of 1,700 in a ratio of 1: 2, 24% glutaraldehyde, 0.001 to 0.02% by weight, and formic acid It was dissolved in an aqueous solution adjusted to pH 1.0 ~ 5.0 and re-dissolve 0.1 ~ 10% by weight of alginic acid to prepare a spinning solution.

여과 및 탈포를 거친 후 습식 방사 장치의 60℃로 고정된 방사용액 저장탱크에 투입하고 기어 펌프로 일정량씩 지름이 0.1mm, 홀 수가 330개인 노즐을 통해, 황산나트륨 20~40중량%와 붕산(Boric acid) 0.5~1.0M을 함유하는 수온인 30~35℃인 응고조로 5~10m/분의 속도로 토출하였다.After filtration and defoaming, it is put into a spinning solution storage tank fixed at 60 ° C of a wet spinning device, and a gear pump pumps a nozzle with a diameter of 0.1mm and a hole number of 330 through 20-40% by weight of sodium sulfate and boric acid (Boric acid) It was discharged at a rate of 5 ~ 10m / min to a coagulation bath of 30 ~ 35 ℃ water temperature containing 0.5 ~ 1.0M.

응고조를 통과하여 글루타르 알데히드 0.1~5.0%, 소르비탄 모노올레이트(Sorbitan monooleate) 1.0~6.0%, Boric acid 0.5~1.0M을 함유하는 가교조를 거쳐 권취기의 권취속도와 중간 이송 롤러와의 회전수 차이를 이용한 연신을 실시하였 다.Glutar aldehyde 0.1 ~ 5.0%, Sorbitan monooleate through coagulation bath Stretching was performed using the difference between the winding speed of the winder and the rotational speed of the intermediate feed roller through a cross-linking tank containing 1.0 ~ 6.0% and 0.5 ~ 1.0M boric acid.

제조된 콜라겐 섬유를 30~60℃의 열풍식 건조기에 2~3시간 건조시키고, 80~100℃에서 2~3시간 열처리하여 연신비가 우수하고 신축성이 뛰어난 천연 콜라겐 섬유를 제조하였다.The prepared collagen fibers were dried in a hot air dryer at 30 to 60 ° C. for 2 to 3 hours, and heat-treated at 80 to 100 ° C. for 2 to 3 hours to prepare natural collagen fibers having excellent stretch ratio and excellent elasticity.

이상으로 살펴본 바와 같이, 본 발명은 피혁 제조 공정 중 불가피하게 발생하는 세이빙 스크랩을 생화학적 처리 및 여과를 통해 크롬 함유량이 5ppm 이하인 고분자량의 콜라겐 단백질을 추출하여 가교물질 0.001~0.02중량%를 포함하고 포름산(Formic acid), 아세트산(Acetic acid), 젖산(Lactic acid) 등의 유기산으로 pH 1.0~5.0으로 조정된 30~70℃의 온도의 산성 수용액에 콜라겐 단백질, PVA 및 알긴산(Alginic acid)를 혼합 및 용해하여 방사용액의 점도와 강도를 증가시켜 방사 안정성의 증대 및 2종 이상의 고농도의 응고물질로 인해 응고되는 속도가 상승되어 안정화되고 향상된 작업을 수행할 수 있는 잇점이 있다.As described above, the present invention comprises a 0.001 ~ 0.02% by weight of crosslinking material by extracting a high molecular weight collagen protein having a chromium content of 5 ppm or less through biochemical treatment and filtration of the shaving scrap inevitably generated during the leather manufacturing process Collagen protein, PVA, and alginic acid are mixed in an acidic aqueous solution of 30 ~ 70 ℃ adjusted to pH 1.0 ~ 5.0 with organic acid such as formic acid, acetic acid, and lactic acid. And dissolving to increase the viscosity and strength of the spinning solution to increase spinning stability and to increase the solidification rate due to two or more high concentrations of coagulants, thereby stabilizing and improving work.

또한 인체에 무해한 수용성 고분자인 PVA 및 알긴산(Alginic acid)의 첨가를 통해 콜라겐 단백질 섬유의 부족한 물성을 보완하는 동시에 다양한 용도로의 적용을 꾀할 수 있으며, 응고공정 후에 가교처리와 연신을 동시에 진행함으로서 습식방사 공정에서 문제시 되어 오던 작업의 효율성 및 생산성 증대의 효과가 있다.In addition, by adding PVA and alginic acid, which are harmless polymers to the human body, it is possible to compensate for the insufficient properties of collagen protein fibers and to apply them for various purposes. There is an increase in the efficiency and productivity of the work that has been a problem in the spinning process.

이와 같이 생산된 콜라겐 단백질 섬유는 폐기 시 문제시 되던 유해 폐기물을 이용함으로써 환경보호 효과와 천연의 콜라겐 섬유를 의류용, 산업용 등으로 이용 을 통해 각광받을 수 있다. The collagen protein fiber produced in this way can be spotlighted through the use of environmentally harmful effects and natural collagen fibers for apparel, industrial use, etc. by using hazardous waste that was a problem when discarding.

Claims (5)

피혁제조 공정 중 폐기물인 세이빙 스크랩을 원료로 한 콜라겐 단백질과 폴리비닐 알코올 및 가교물질을 혼합하여 방사용액을 제조하여 2종 이상의 응고물질이 함유된 응고조 및 가교물질이 포함된 가교조를 거쳐 제조하는 과정으로 이루어짐을 특징으로 하는 콜라겐과 수용성 고분자 복합체를 이용한 재생 단백질 섬유의 제조방법.During the leather manufacturing process, a spinning solution is prepared by mixing collagen protein, a polyvinyl alcohol, and a crosslinking material, which is used as a waste scrap, as a raw material, followed by a coagulation bath containing two or more coagulants and a crosslinking tank containing a crosslinking material. Method for producing regenerated protein fibers using collagen and a water-soluble polymer composite, characterized in that the process consisting of. 피혁제조 공정 중 폐기물인 세이빙 스크랩을 원료로 한 콜라겐 단백질과 폴리비닐 알코올 및 가교물질에 0.1~10중량% 알긴산을 혼합하여 방사용액을 제조하여 2종 이상의 응고물질이 함유된 응고조 및 가교물질이 포함된 가교조를 거쳐 제조하는 과정으로 이루어짐을 특징으로 하는 콜라겐과 수용성 고분자 복합체를 이용한 재생 단백질 섬유의 제조방법.During the leather manufacturing process, a spinning solution was prepared by mixing collagen protein, a polyvinyl alcohol, and crosslinking material with 0.1 to 10% by weight of alginic acid as a raw material, which is a waste scrap. Method for producing regenerated protein fibers using collagen and a water-soluble polymer composite, characterized in that the process made through the included cross-linking bath. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2, 상기 세이빙 스크랩에서 알카리 처리에 의해서만 추출되어지며, 크롬 함유량이 5ppm 이하이고 분자량이 100,000 Da 이상인 콜라겐 단백질과 분자량이 1,500~5,000사이의 고분자량의 폴리비닐 알코올을 혼합하여 제조하는 과정으로 이루어짐을 특징으로 하는 콜라겐과 수용성 고분자 복합체를 이용한 재생 단백질 섬유의 제조방법.It is extracted only by the alkali treatment in the shaving scrap, characterized in that the process consisting of producing a mixture of high molecular weight polyvinyl alcohol having a molecular weight of 1,500 ~ 5,000 and a collagen protein having a chromium content of 5ppm or less and a molecular weight of 100,000 Da or more Method for producing regenerated protein fibers using collagen and water-soluble polymer complex. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2, 상기 가교물질인 글루타르알데히드가 0.001~0.02중량% 함유된 포름산, 아세트산, 젖산으로 pH 1.0~5.0으로 조정된 용매에 콜라겐 단백질과 폴리비닐 알코올의 혼합비가 1:1~9이며 5~60중량%로 용해시킨 방사용액을 통해 제조함을 특징으로 하는 콜라겐과 수용성 고분자 복합체를 이용한 재생 단백질 섬유의 제조방법.The mixing ratio of collagen protein and polyvinyl alcohol in a solvent adjusted to pH 1.0-5.0 with formic acid, acetic acid and lactic acid containing 0.001 to 0.02% by weight of glutaraldehyde, which is the crosslinking material, is 1 to 9 and 5 to 60% by weight Method for producing regenerated protein fibers using collagen and a water-soluble polymer composite, characterized in that it is prepared through a spinning solution dissolved in water. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2, 응고물질이 20~40중량% 황산나트륨(Na2SO4)과 0.5~1.0M 붕산(H3BO3)이 혼합된 pH 3.0~6.0의 수온이 30~35℃인 응고조 및 가교조의 조성이 글루타르 알데히드 0.1~5.0%, 소르비탄 모노올레이트(Sorbitan monooleate) 1.0~6.0%, 붕산 0.5~1.0M을 함유하고 응고조의 다음에 위치하여 가교 공정을 거치며 30~60℃의 열풍식 건조기에 2~3시간 건조시키고 80~100℃에서 2~3시간 열처리하여 제조함을 특징으로 하는 콜라겐과 수용성 고분자 복합체를 이용한 재생 단백질 섬유의 제조방법.The composition of the coagulation bath and crosslinking bath is 30-35 ° C. with a water temperature of pH 3.0-6.0 in which 20-40% by weight of sodium sulfate (Na 2 SO 4 ) and 0.5-1.0M boric acid (H 3 BO 3 ) are mixed. It contains 0.1 ~ 5.0% of tar aldehyde, 1.0 ~ 6.0% of sorbitan monooleate, 0.5 ~ 1.0M of boric acid, and it is placed next to the coagulation bath and crosslinking process, and it is 2 ~ in a hot air dryer of 30 ~ 60 ℃. Method for producing regenerated protein fibers using collagen and water-soluble polymer composite, characterized in that the drying for 3 hours and heat-treated at 80 ~ 100 ℃ for 2 to 3 hours.
KR1020060024614A 2006-03-17 2006-03-17 Development of regenerated protein fiber from collagen and water-soluble polymer complex KR100750780B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060024614A KR100750780B1 (en) 2006-03-17 2006-03-17 Development of regenerated protein fiber from collagen and water-soluble polymer complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060024614A KR100750780B1 (en) 2006-03-17 2006-03-17 Development of regenerated protein fiber from collagen and water-soluble polymer complex

Publications (1)

Publication Number Publication Date
KR100750780B1 true KR100750780B1 (en) 2007-08-20

Family

ID=38614962

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060024614A KR100750780B1 (en) 2006-03-17 2006-03-17 Development of regenerated protein fiber from collagen and water-soluble polymer complex

Country Status (1)

Country Link
KR (1) KR100750780B1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100796099B1 (en) 2007-03-08 2008-01-21 한국신발피혁연구소 Development of spun-dyed regenerated protein fiber from collagen and water-soluble polymer complex
KR100940345B1 (en) * 2007-12-20 2010-02-04 최용규 Method of producing fabric gel from fabric powder, using method and paper used thereby
CN102181959A (en) * 2011-04-07 2011-09-14 北京服装学院 Fish collagen composite fibers and preparation method thereof
KR101073224B1 (en) * 2008-11-04 2011-10-12 전북대학교산학협력단 Fiber made after somatic structure and manufacturing method thereby
US20160015852A1 (en) * 2014-07-15 2016-01-21 Industrial Technology Research Institute Composite material
KR20170138450A (en) * 2015-04-16 2017-12-15 칭다오 유니버시티 Manufacturing method of salt tolerant, anti-seizing and seaweed fiber
KR102046263B1 (en) * 2018-11-07 2019-11-18 주식회사 파이버엔텍 Process Of Producing Regenerated Protain Fiber Having Excellent Water-fastness
KR102232767B1 (en) * 2020-01-14 2021-03-26 주식회사 제네웰 Method for preparing adm collagen fiber, adm collagen fiber prepared therefrom, and device for manufacturing the same
KR102340081B1 (en) 2020-06-26 2021-12-17 한국신발피혁연구원 Method for manufacturing processing agent for fibers using collagen peptide extracted from leather by-products
CN115584638A (en) * 2022-10-20 2023-01-10 浙江大能纺织印染有限公司 Fragrant microcapsule blended antibacterial cotton fiber and preparation method thereof
WO2023080307A1 (en) * 2021-11-04 2023-05-11 주식회사 티엔솔루션 Porous collagen peptide nanofiber nonwoven fabric and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01221506A (en) * 1988-02-29 1989-09-05 Toa Nenryo Kogyo Kk Fibrous formed product
JPH05171510A (en) * 1991-12-26 1993-07-09 Kanegafuchi Chem Ind Co Ltd Production of regenerated collagen fiber
US5616689A (en) 1994-07-13 1997-04-01 Collagen Corporation Method of controlling structure stability of collagen fibers produced form solutions or dispersions treated with sodium hydroxide for infectious agent deactivation
KR20020036833A (en) * 1999-07-14 2002-05-16 다케다 마사토시 Regenerated collagen fiber with excellent heat resistance
KR20040072698A (en) * 2002-01-04 2004-08-18 관키 리 Phytoprotein synthetic fibre and the method of making the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01221506A (en) * 1988-02-29 1989-09-05 Toa Nenryo Kogyo Kk Fibrous formed product
JPH05171510A (en) * 1991-12-26 1993-07-09 Kanegafuchi Chem Ind Co Ltd Production of regenerated collagen fiber
US5616689A (en) 1994-07-13 1997-04-01 Collagen Corporation Method of controlling structure stability of collagen fibers produced form solutions or dispersions treated with sodium hydroxide for infectious agent deactivation
KR20020036833A (en) * 1999-07-14 2002-05-16 다케다 마사토시 Regenerated collagen fiber with excellent heat resistance
KR20040072698A (en) * 2002-01-04 2004-08-18 관키 리 Phytoprotein synthetic fibre and the method of making the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100796099B1 (en) 2007-03-08 2008-01-21 한국신발피혁연구소 Development of spun-dyed regenerated protein fiber from collagen and water-soluble polymer complex
KR100940345B1 (en) * 2007-12-20 2010-02-04 최용규 Method of producing fabric gel from fabric powder, using method and paper used thereby
KR101073224B1 (en) * 2008-11-04 2011-10-12 전북대학교산학협력단 Fiber made after somatic structure and manufacturing method thereby
CN102181959A (en) * 2011-04-07 2011-09-14 北京服装学院 Fish collagen composite fibers and preparation method thereof
US20160015852A1 (en) * 2014-07-15 2016-01-21 Industrial Technology Research Institute Composite material
KR101966354B1 (en) * 2015-04-16 2019-04-08 칭다오 유니버시티 Manufacturing method of salt tolerant, anti-seizing and seaweed fiber
KR20170138450A (en) * 2015-04-16 2017-12-15 칭다오 유니버시티 Manufacturing method of salt tolerant, anti-seizing and seaweed fiber
KR102046263B1 (en) * 2018-11-07 2019-11-18 주식회사 파이버엔텍 Process Of Producing Regenerated Protain Fiber Having Excellent Water-fastness
KR102232767B1 (en) * 2020-01-14 2021-03-26 주식회사 제네웰 Method for preparing adm collagen fiber, adm collagen fiber prepared therefrom, and device for manufacturing the same
KR102340081B1 (en) 2020-06-26 2021-12-17 한국신발피혁연구원 Method for manufacturing processing agent for fibers using collagen peptide extracted from leather by-products
WO2023080307A1 (en) * 2021-11-04 2023-05-11 주식회사 티엔솔루션 Porous collagen peptide nanofiber nonwoven fabric and method for producing same
CN115584638A (en) * 2022-10-20 2023-01-10 浙江大能纺织印染有限公司 Fragrant microcapsule blended antibacterial cotton fiber and preparation method thereof
CN115584638B (en) * 2022-10-20 2024-04-02 浙江大能纺织印染有限公司 Aromatic microcapsule blended antibacterial cotton fiber and preparation method thereof

Similar Documents

Publication Publication Date Title
KR100750780B1 (en) Development of regenerated protein fiber from collagen and water-soluble polymer complex
KR100765549B1 (en) Method for producing natural protein fiber
Ravi Kumar Chitin and chitosan fibres: a review
CN1282773C (en) Method for preparing regenerative cellulose fiber by two-step coagulating bath process
CN110129923B (en) Method for continuously preparing chitin/chitosan fibers with different deacetylation degrees
CN1134732A (en) Process for producing a cellulose moulding
EP2922905B1 (en) Processing of cotton-polyester waste textile
CN104726963A (en) Chitosan fiber and preparation method thereof
CZ281926B6 (en) Process for producing cellulose shaped bodies
US20140053995A1 (en) Method for spinning anionically modified cellulose and fibres made using the method
KR100796099B1 (en) Development of spun-dyed regenerated protein fiber from collagen and water-soluble polymer complex
KR101904771B1 (en) The lyocell fibers and The method for produce it
CN109680350B (en) Preparation method of collagen fiber
US4999149A (en) Production of high strength cellulose fiber using zinc chloride, organic solvents and aqueous solution
CN113242894B (en) Separation of fibers
US8883056B2 (en) Method for preparing cellulose-based film and cellulose-based film
JPS6318601B2 (en)
Wang et al. Preparation and properties of new regenerated cellulose fibers
CN103816817B (en) Alkali-resistant cellulose membrane and preparation method thereof
Wawro et al. Strong cellulosic film cast from ionic liquid solutions
KR100430920B1 (en) Manufacturing method of cellulose molded body
JP6931210B2 (en) Insolubilizing free silk fibroin material
KR101862855B1 (en) Chitosan fiber ion bonded with AU and the manufacturing of the same
KR20000067612A (en) The chitosan fiber having high degree of strength and elasticity
CN102002762A (en) Method for preparing high-strength special-shape cellulose fiber

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130703

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140714

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150707

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee