KR100746993B1 - The expression and purification method of human protein tyrosine phosphatase using E.coli system - Google Patents
The expression and purification method of human protein tyrosine phosphatase using E.coli system Download PDFInfo
- Publication number
- KR100746993B1 KR100746993B1 KR1020050017676A KR20050017676A KR100746993B1 KR 100746993 B1 KR100746993 B1 KR 100746993B1 KR 1020050017676 A KR1020050017676 A KR 1020050017676A KR 20050017676 A KR20050017676 A KR 20050017676A KR 100746993 B1 KR100746993 B1 KR 100746993B1
- Authority
- KR
- South Korea
- Prior art keywords
- unitprot
- access number
- ptp
- access
- mbp
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
- C12N15/72—Expression systems using regulatory sequences derived from the lac-operon
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Enzymes And Modification Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
본 발명은 인간 단백질 타이로신 탈인산화효소(protein tyrosine phosphatase, PTP)를 대장균을 이용하여 생산하는 방법에 관한 것으로, 구체적으로는 여러 벡터를 이용하여 인간 PTP를 대장균에서 효소 활성을 가진 상태로 생산하는 방법에 관한 것이다. 본 발명의 방법에 의하여 생산된 다양한 인간 PTP는 PTP의 항체 생산 또는 PTP 관련 질병에 대한 약물 검색을 위하여 유용하게 사용될 수 있다. The present invention relates to a method for producing human protein tyrosine phosphatase (PTP) using Escherichia coli, specifically, a method for producing human PTP with enzymatic activity in Escherichia coli using various vectors. It is about. Various human PTPs produced by the methods of the present invention can be usefully used for antibody production of PTP or drug search for PTP related diseases.
단백질 타이로신 탈인산화 효소(PTP), 대장균 Protein Tyrosine Dephosphatase (PTP), Escherichia Coli
Description
도 1a는 His 표지, TEV(tobacco erch virus), PTP 유전자가 삽입될 벡터 pET28a-MBP(maltose binding protein)의 구조를 나타내는 모식도이고, Figure 1a is a schematic diagram showing the structure of the vector pET28a-MBP (maltose binding protein) to be inserted His label, tobacco erch virus (TEV), PTP gene,
도 1b는 PTP 유전자가 삽입될 과발현벡터 pET28a-MBP-HTs의 구조를 나타내는 모식도이고, 1B is a schematic diagram showing the structure of the overexpression vector pET28a-MBP-HTs into which the PTP gene is to be inserted;
MCS: 다중클로닝 부위(multi-cloning site) MCS: multi-cloning site
(His)6: hexa his-tag, MBP: MBP-표지(His) 6 : hexa his-tag, MBP: MBP-label
도 1c는 PTP가 삽입된 과발현벡터 중 PTP 생산에 성공한 벡터의 종류와 수를 나타낸 벤 다이어그램이고, FIG. 1C is a Venn diagram showing the number and types of PTP-produced overexpression vectors successfully produced.
도 2a는 pET28a-MBP-PTP 융합벡터를 전기영동하여 나타낸 젤(gel) 사진의 예이고, Figure 2a is an example of a gel picture shown by electrophoresis of the pET28a-MBP-PTP fusion vector,
좌측으로부터From the left
레인1:pET28a-MBP 벡터; 레인2:pET28a-MBP-pk4-1; 레인3:pET28a-MBP-pk4-2;Lane 1: pET28a-MBP vector; Lane 2: pET28a-MBP-pk4-1; Lane 3: pET28a-MBP-pk4-2;
레인4:pET28a-MBP-pk7-1; 레인5:pET28a-MBP-pk7-2; 레인6:pET28a-MBP-pk13-1;Lane 4: pET28a-MBP-pk7-1; Lane 5: pET28a-MBP-pk7-2; Lane 6: pET28a-MBP-pk13-1;
레인7:pET28a-MBP-pk13-2; 레인8:pET28a-MBP-pk16-1; 레인9:pET28a-MBP-pk16-2Lane 7: pET28a-MBP-pk13-2; Lane 8: pET28a-MBP-pk16-1; Lane 9: pet28a-MBP-pk16-2
레인10:pET28a-MBP-pk18-1; 레인11:pET28a-MBP-pk18-2; 레인12:pET28a-MBP-p19-1;Lane 10: pET28a-MBP-pk18-1; Lane 11: pET28a-MBP-pk18-2; Lane 12: pET28a-MBP-p19-1;
레인13:pET28a-MBP-p19-1; 레인14:pET28a-MBP-p24-1; 레인15:pET28a-MBP-p24-2;Lane 13: pET28a-MBP-p19-1; Lane 14: pET28a-MBP-p24-1; Lane 15: pET28a-MBP-p24-2;
레인16:pET28a-MBP-p25-1; 레인17:pET28a-MBP-p25-2; 레인18:pET28a-MBP 벡터Lane 16: pET28a-MBP-p25-1; Lane 17: pET28a-MBP-p25-2; Lane 18: pet28a-MBP vector
(레인 4와 5의 경우 융합벡터가 제대로 형성되지 않은 예이며, 추후 재실험하여 완성. 각 컨스트럭트의 맨 뒷자리 1과 2는 서로 다른 두 개의 콜로니로부터 얻어진 플라스미드 벡터임) (In the case of lanes 4 and 5, the fusion vector is not properly formed, and it is completed by retesting. The last 1 and 2 of each construct are plasmid vectors obtained from two different colonies.)
도 2b는 제한효소를 이용하여 pET28a-MBP-HTs-PTP 벡터를 절단하여 PTP가 삽입되었는지 확인한 결과를 나타낸 젤(gel) 사진의 예이고, Figure 2b is an example of a gel photograph showing the result of confirming that the PTP is inserted by cutting the pET28a-MBP-HTs-PTP vector using a restriction enzyme,
좌측으로부터From the left
레인1:마커; 레인2:pET28a-MBP-pk4-1; 레인3:pET28a-MBP-pk4-2; Lane 1: marker; Lane 2: pET28a-MBP-pk4-1; Lane 3: pET28a-MBP-pk4-2;
레인4:pET28a-MBP-pk13-1; 레인5:pET28a-MBP-pk13-2; Lane 4: pET28a-MBP-pk13-1; Lane 5: pET28a-MBP-pk13-2;
레인6:pET28a-MBP-pk16-1; 레인7:pET28a-MBP-pk16-2; Lane 6: pET28a-MBP-pk16-1; Lane 7: pET28a-MBP-pk16-2;
레인8:pET28a-MBP-pk18-1; 레인9:pET28a-MBP-pk18-2; 레인10:pET28a-MBP-p19-1; Lane 8: pET28a-MBP-pk18-1; Lane 9: pET28a-MBP-pk18-2; Lane 10: pET28a-MBP-p19-1;
레인11:pET28a-MBP-p19-2; 레인12:pET28a-MBP-p24-1; 레인13:pET28a-MBP-p24-2;Lane 11: pET28a-MBP-p19-2; Lane 12: pET28a-MBP-p24-1; Lane 13: pET28a-MBP-p24-2;
레인14:pET-28-MBP-p25-1; 레인15:pET-28-MBP-p25-2; 레인16:pET-28-MBP 벡터; Lane 14: pet-28-MBP-p25-1; Lane 15: pet-28-MBP-p25-2; Lane 16: pET-28-MBP vector;
레인16:마커 Lane 16: Marker
(레인1-15까지 Ndel/BamHI으로 제한효소 처리하였으며, 레인16은 pET28-MBP 벡터를 XbaI과 XhoI 제한효소로 처리한 것임. 각 컨스트럭트번호의 맨 뒷자리 1과 2는 서 로 다른 두 개의 콜로니로부터 얻어진 플라스미드 벡터임) Restriction enzyme was treated with Ndel / BamHI up to lanes 1-15, and
도 3은 인간 PTP의 발현에서 정제까지의 전과정을 나타낸 흐름도(flow diagram)이고, 3 is a flow diagram showing the whole process from expression of human PTP to purification,
도 4는 정제된 인간 PTP군의 SDS PAGE 결과를 나타낸 그림이고, 4 is a diagram showing the SDS PAGE results of purified human PTP group,
도 5는 본 발명의 방법에 의하여 생산된 정제된 인간 PTP의 상대적인 효소 활성을 나타낸 그래프이다. 5 is a graph showing the relative enzymatic activity of purified human PTP produced by the method of the present invention.
본 발명은 인간 단백질 타이로신 탈인산화 효소(protein tyrosine phosphatase, PTP)를 대장균을 이용하여 생산하는 방법에 관한 것으로, 보다 상세하게는 여러 벡터를 이용하여 인간 PTP를 대장균에서 효소 활성을 가진 상태로 생산하는 방법에 관한 것이다. The present invention relates to a method for producing human protein tyrosine phosphatase (PTP) using Escherichia coli, and more specifically, to produce human PTP with enzymatic activity in Escherichia coli using various vectors. It is about a method.
단백질 타이로신의 인산화-탈인산화 과정은 세포내 신호전달 체계에서 매우 중요한 수단으로 이용된다. 단백질 타이로신 포스파타제(PTP)는 단백질 내의 타이로신 잔기에 있는 인산기를 가수분해시키는 효소로서, 인간에게는 약 100여종의 PTP가 존재하며, 이 중 약 80~90 종이 실제 PTP로서의 효소 활성을 보이는 것으로 보고 되어 있다(Alonso A. et al. Cell, 117; 699-711, 2004)Phosphorylation-dephosphorylation of protein tyrosine is a very important means in intracellular signaling systems. Protein tyrosine phosphatase (PTP) is an enzyme that hydrolyzes phosphate groups in tyrosine residues in proteins. About 100 PTPs are present in humans, and about 80 to 90 of these have been reported to show enzymatic activity as actual PTPs. (Alonso A. et al. Cell, 117; 699-711, 2004)
세포내 신호전달 체계의 파괴는 쉽게 질병으로 이어지기 때문에 실제로 많은 PTP들이 질병과 관계되어 있다는 것이 알려져 왔고 몇몇 PTP들은 신약 개발의 표적이 되어 왔다(Current Topics in Med. Chem. 3: 739-835, 2003: 전권이 PTP 관련 review) 그러나 당뇨병치료제 개발의 표적효소인 PTP 1B의 경우를 보더라도 10년 이상 무수히 많은 노력을 들여 억제제 개발연구를 진행하여 왔으나 아직까지 치료제 개발에 성공한 예가 보고 되지 않고 있다(Tayler, S.D. Current Topics in Med. Chem. 3, 759-782, 2003) 여기에는 여러가지 이유가 있겠지만 대표적인 이유 중 하나는 약물이 동물이나 인체에 투여되었을 경우 표적 PTP 이외의 다른 PTP에 결합함으로써 예상치 못한 독성을 야기하기 때문일 것으로 생각된다. 이러한 문제를 최소화할 수 있는 방법은 동물실험에 적용하기 전에 약물후보물질에 대하여 가능한 모든 PTP를 대상으로 PTP 특이성 연구를 진행하는 것인데 약 90여종에 달하는 PTP들이 비슷한 활성부위 구조를 가지고 있기 때문에 각각의 PTP에 특이적인 억제제를 개발하는 데 어려움이 있다. It is known that many PTPs are actually associated with disease because disruption of the intracellular signaling system easily leads to disease, and some PTPs have been targeted for drug development (Current Topics in Med. Chem. 3: 739-835, However, even in the case of PTP 1B, which is the target enzyme for the development of diabetes treatments, the research on the development of inhibitors has been carried out with a great deal of effort for more than 10 years, but there have been no reports of successful development of the treatments (Tayler). , SD Current Topics in Med. Chem. 3, 759-782, 2003) There may be several reasons for this, but one of the representative reasons is that when a drug is administered to an animal or human body, it may bind to PTPs other than the target PTP, causing unexpected toxicity. It is thought to be caused. One way to minimize this problem is to conduct PTP specificity studies on all possible PTPs for drug candidates before applying them to animal experiments. Since about 90 PTPs have similar active site structures, There is a difficulty in developing inhibitors specific for PTP.
필요한 단백질을 대장균 발현시스템을 이용하여 발현, 정제하는 방법은 적은 비용과 노력으로 대량의 단백질을 얻을 수 있다는 장점을 가지고 있으나 포유동물과 세균의 세포내 환경 차이 때문에 대장균 시스템을 이용하여 여러 종류의 인간 단백질을 얻고자 할 때에는 각각의 단백질에 대하여 특정한 발현 및 정제조건을 확립할 필요가 있다. 그러나 현재까지는 일부의 PTP 만이 대량으로 발현, 정제될 뿐 대부분의 PTP들은 정제된 사례가 보고된 바 없어 전체 PTP에 대한 선택성 연구가 불가능한 실정이다. PTP가 제대로 정제되지 않는 이유는 본 발명자들이 일반적인 발현 조건을 이용하여 PTP를 정제한 경우, 단지 30종 미만의 PTP 만을 얻을 수 있었던 것과 같이, 일반적인 발현조건에서는 인간 PTP들이 제대로 발현 및 정제되지 않기 때문인 것으로 여겨진다. 이처럼 일반적인 방법으로는 인간 PTP를 대량으로 발현시키는 것이 어렵기 때문에 PTP 특이적인 항체 생산도 지연되고 있으며, 약물 개발 또한 어려움에 처해 있다. The method of expressing and purifying the necessary protein using E. coli expression system has the advantage of obtaining a large amount of protein at low cost and effort, but due to the difference in the intracellular environment of mammals and bacteria, In order to obtain proteins, it is necessary to establish specific expression and purification conditions for each protein. However, until now, only some PTPs are expressed and purified in large quantities, and most PTPs have not been reported to be purified. Therefore, it is impossible to study selectivity of the entire PTP. The reason why the PTP is not properly purified is because the human PTPs are not properly expressed and purified under the general expression conditions, as the inventors have obtained only 30 PTPs when the PTP is purified using the general expression conditions. It is considered to be. As a general method, it is difficult to express human PTP in large quantities, and thus, PTP-specific antibody production is delayed, and drug development is also difficult.
이에 본 발명자들은 각각의 PTP를 활성을 가진 상태로 생산하고자 노력한 결과, 인간 대장균 발현 시스템을 이용하여 각각의 PTP를 발현ㆍ정제하는 방법을 확립함으로써 본 발명을 완성하였다. Accordingly, the present inventors have completed the present invention by establishing a method of expressing and purifying each PTP using a human E. coli expression system as a result of efforts to produce each PTP in an active state.
본 발명의 목적은 암, 관절염, 당뇨병을 비롯한 각종 질병과 밀접한 관계가 있어 신약개발에 유용하게 사용될 수 있는 인간 단백질 인산화 타이로신 가수분해효소(protein tyrosine phosphatase, PTP)를 활성을 가진 채로 생산하는 방법을 제공하는 것이다. Disclosure of the Invention An object of the present invention is to provide a method for producing human protein tyrosine phosphatase (PTP) with activity, which is closely related to various diseases including cancer, arthritis, diabetes, and can be useful for drug development. To provide.
상기와 같은 목적을 달성하기 위하여, 본 발명은 In order to achieve the above object, the present invention
ⅰ) 인간 타이로신 가수분해효소(protein tyrosine phosphatase, PTP)의 발 현벡터를 제작하여 대장균을 형질전환시키는 단계;Iii) transforming Escherichia coli by preparing an expression vector of human tyrosine phosphatase (PTP);
ⅱ) 단계 ⅰ) 의 형질전환된 대장균을 배양하여 PTP의 발현을 유도하는 단계; 및Ii) culturing the transformed Escherichia coli of step iii) to induce expression of PTP; And
ⅲ) 단계 ⅱ)의 배양된 대장균으로부터 PTP를 정제하는 단계로 구성되는 인간 PTP를 활성을 가진 상태로 생산하는 방법을 제공한다.Iii) purifying PTP from the cultured Escherichia coli of step ii).
또한, 본 발명은 상기 단계ⅰ)에서 제작된 발현벡터 pET28a-MBP-His-TEV-PTP를 제공한다.In addition, the present invention provides an expression vector pET28a-MBP-His-TEV-PTP prepared in step iii).
또한, 본 발명은 상기 단계ⅰ)에서 제작된 발현벡터 pET28a-GST-PTP를 제공한다In addition, the present invention provides an expression vector pET28a-GST-PTP prepared in step iii)
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 ⅰ) 인간 타이로신 가수분해효소(protein tyrosine phosphatase, PTP)의 발현벡터를 제작하여 대장균을 형질전환시키는 단계;The present invention comprises the steps of transforming E. coli by preparing an expression vector of human tyrosine phosphatase (PTP);
ⅱ) 단계 ⅰ) 의 형질전환된 대장균을 배양하여 PTP의 발현을 유도하는 단계; 및Ii) culturing the transformed Escherichia coli of step iii) to induce expression of PTP; And
ⅲ) 단계 ⅱ)의 배양된 대장균으로부터 PTP를 정제하는 단계로 구성되는 인간 PTP를 활성을 가진 상태로 생산하는 방법을 제공한다.Iii) purifying PTP from the cultured Escherichia coli of step ii).
이제까지 단백질 타이로신 탈인산화효소(protein tyrosine phosphatase, PTP)의 절반 이상이 활성상태로 대량 정제된 예가 거의 없을 정도로 정제하기가 어 려운 단백질인데, 본 발명자들은 77 종의 PTP에 대해 대장균으로부터 발현 및 정제하는 방법을 밝혀내었다. 구체적으로 본 발명자들은 대량 생산을 위한 대장균 과발현 벡터인 pET28a에 77 종의 PTP(표 1 참조)를 삽입하여 발현 벡터를 제작하였다. 이 중 일반적인 방법으로 발현, 정제되는 26가지의 PTP를 제외한 나머지 PTP를 발현시키기 위하여 pET28a, pET16b를 기본벡터로 한 pET28a-GST-PTP와 pET28a-MBP-His-TEV-MCS-PTP, 즉 pET28a-MBP-HTs-PTP 발현벡터를 제작하였다. pET28a-GST-PTP는 PTP를 글루타치온 수지로 정제하기 위하여 GST로 표지한 발현벡터이고, pET28a-MBP-HTs-PTP는 불용성 봉입체를 형성하는 PTP를 대상으로, 대장균 발현 시스템에서 PTP의 발현, 접힘(folding) 및 용해도를 증가시키기 위하여 말토오스 결합부위(maltose binding protein, MBP)를 융합시킨 발현벡터이다. pET28a-MBP 벡터에는 MBP와 PTP 삽입부위 사이에 단백질 분해효소에 의하여 가수분해 될 수 있는 담배 식각 바이러스(tobacco erch virus) 서열을 삽입하여 정제 후, MBP 부위가 PTP로부터 분리되어 순수한 PTP만 회수할 수 있도록 하였다. So far, more than half of protein tyrosine phosphatase (PTP) is a protein that is difficult to purify to the extent that few cases have been purified in large quantities in an active state, and the present inventors expressed and purified from E. coli against 77 PTPs. I figured out how. Specifically, the present inventors prepared an expression vector by inserting 77 PTPs (see Table 1) into pET28a, an E. coli overexpression vector for mass production. Among them, pET28a-GST-PTP and pET28a-MBP-His-TEV-MCS-PTP, ie, pET28a-, based on pET28a and pET16b to express the remaining PTPs except 26 PTPs expressed and purified in a general manner. MBP-HTs-PTP expression vector was constructed. pET28a-GST-PTP is a GST-labeled expression vector to purify PTP with glutathione resin, and pET28a-MBP-HTs-PTP targets PTPs that form insoluble inclusion bodies. It is an expression vector in which maltose binding protein (MBP) is fused to increase folding and solubility. The pET28a-MBP vector is purified by inserting a tobacco erch virus sequence that can be hydrolyzed by protease between the MBP and the PTP insertion site, and then the MBP site is separated from the PTP to recover only pure PTP. It was made.
상기 재조합 발현벡터를 도입시킨 대장균 형질전환체를 제작하고 단계ⅱ)에서는 형질전환체 내에서 PTP의 발현을 유도하기 위하여, 여타의 단백질을 발현시키는 일반적인 방법으로 PTP의 발현을 유도하거나(발현조건 가) 불용성 봉입체를 형성하여 제대로 발현되지 않는 PTP의 경우에는 “발현조건 가”와 동일한 조건을 따르되, “발현조건 가”보다 IPTG(isopropyl-ß-D-thiogalacto pyranosid)의 농도를 증가시키거나(발현조건 나) 솔비톨(sorbitol)과 글라이신 베타인(glycin betain)을 첨가한 배지에서 대장균을 배양하거나(발현조건 다) “발현조건 다”와 동일한 조건을 따르되, “발현조건 다”에서 IPTG(isopropyl-ß-D-thiogalactopyranosid)의 농도를 감소시키거나(발현조건 라) 저온에서 발현을 유도하는 방법 중 각각의 PTP에 알맞은 방법을 선택하였다(발현조건 마)(표 1 참조). In E. coli transformants prepared by introducing the recombinant expression vector, and in step ii), in order to induce the expression of PTP in the transformant, the expression of other proteins is induced by inducing the expression of PTP (expression condition a) ) In case of PTP that forms insoluble inclusion bodies and is not properly expressed, follow the same condition as "expression condition A", but increase the concentration of isopropyl-ß-D-thiogalacto pyranosid (IPTG) than "expression condition A" (expression) Conditions b) E. coli is cultured in the medium to which sorbitol and glycine betain are added (expression condition c) or the same condition as “expression condition c”, but IPTG (isopropyl-) in “expression condition c” The method for reducing the concentration of ß-D-thiogalactopyranosid) or inducing expression at low temperature was selected for each PTP (expression condition e) (see Table 1). .
상기에서 일반적인 방법이라 함은 대장균 형질전환체를 배양하여 OD600 값이 0.12 이하, 바람직하게는 0.6 내지 0.8, 보다 바람직하게는 0.6이 되었을 때 배양액을 상온보다 낮은 농도, 바람직하게는 18℃ 로 냉각시키고 0.5 mM 이하의 IPTG로 발현을 유도하는 방법을 말한다.In the general method, the culture medium is cooled to a concentration lower than room temperature, preferably 18 ° C., when the E. coli transformant is cultured to an OD 600 value of 0.12 or less, preferably 0.6 to 0.8, more preferably 0.6. And induce expression with an IPTG of 0.5 mM or less.
“발현조건 가”의 IPTG 처리 농도는 최종농도 1.0 mM 미만이고 바람직하게는 0.5 mM 이다. “발현조건 나”의 IPTG 처리 농도는 최종농도 1.0 mM 이상이고 보다 바람직하게는 1.0 mM 이다. “발현조건 다”의 솔비톨과 글라이신 베타인을 첨가한 배지에서 최종 솔비톨 농도는 0.1 내지 1 M 이고, 최종 글라이신 베타인 농도는 1M 미만이고 바람직하게는 50 mM이다. “발현조건 라”의 IPTG 처리 농도는 최종농도가 “발현조건 다”의 IPTG 처리 농도보다 낮고 바람직하게는 20 μM이다. “발현조건 마”의 저온은 18℃ 미만이고 바람직하게는 4℃ 이하이며 “발현조건 마”에서 처리하는 IPTG의 최종농도는 0.5 mM 이하이고 바람직하게는 0.1 mM 이다. The IPTG treatment concentration of “expression condition a” is less than 1.0 mM and preferably 0.5 mM. The IPTG treatment concentration of “expression condition I” is at least 1.0 mM and more preferably 1.0 mM. The final sorbitol concentration is 0.1 to 1 M, and the final glycine betaine concentration is less than 1 M and preferably 50 mM in the medium to which sorbitol and glycine betaine are added. The IPTG treatment concentration of “expression condition d” is lower than the final IPTG treatment concentration of “expression condition c” and is preferably 20 μM. The low temperature of "expression condition e" is preferably less than 18 ° C, preferably 4 ° C. or lower, and the final concentration of IPTG treated in "expression condition e" is 0.5 mM or less and preferably 0.1 mM.
단계 ⅲ)에서는 단계 ⅱ)에서 발현 유도 후 회수한 균체를 파쇄하여 각각의 발현벡터에 알맞은 수지를 이용하여 PTP를 정제하였다. 구체적으로, pET28a-PTP에 대해서는 pET28a 벡터 내에 His 태그(tag)가 포함되어 있으므로 탈론(Talon®) 수지(ClonTech)를 이용하였고 pET28a-GST-PTP에 대해서는 GST 수지(정제방법 2)를, pET28a-MBP-HTs-PTP에 대해서는 아밀로즈(amylose) 수지(정제방법 1) 또는 탈론(Talon®) 수지(정제방법 3)를 사용하여 정제하였다. 아밀로즈 수지는 MBP(maltose binding protein)와 결합하며, 탈론 수지는 His 표지와 결합함으로 둘 다 PTP 정제에 이용될 수 있다(표 1 및 도 4 참조). In step iii), the cells recovered after induction of expression in step ii) were crushed to purify PTP using a resin suitable for each expression vector. Specifically, since his tag was included in the pET28a vector for pET28a-PTP, Talon® resin (ClonTech) was used, and for GET-PTP, GST resin (purification method 2) was used, and pET28a- MBP-HTs-PTP was purified using an amylose resin (purification method 1) or Talon® resin (purification method 3). The amylose resin binds to the maltose binding protein (MBP) and the talon resin binds to the His label so that both can be used for PTP purification (see Table 1 and FIG. 4).
상기의 방법으로 발현된 PTP에 대하여, 탈인산화 효소 활성 검사 물질인 6,8-다이플로로-4-메틸움벨리페릴 포스페이트(6,8-difluoro-4-methylumbelliferyl phosphate, DiFMUP)를 이용하여 활성 검사를 실시한 결과, 표 3 및 도 5에 나타난 바와 같이 본 발명의 발현 및 정제방법에 의하여 77종의 인간 PTP가 활성인 상태로 정제되었음을 확인하였다.PTP expressed by the above method was activated using 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP), which is a dephosphoryase activity test substance. As a result of the test, as shown in Table 3 and Figure 5, it was confirmed that 77 human PTP purified in the active state by the expression and purification method of the present invention.
상기에서 인간 PTP는 PTPRA(protein tyrosine phosphatase receptor type A, Unitprot 접근번호: P18433), PTPRB(Unitprot 접근번호: P23467), PTPRC(Unitprot 접근번호:Q5T5R0), PTPRD(Unitprot 접근번호: P23468), PTPRE(Unitprot 접근번호: P23469), PTPRF(Unitprot 접근번호: P10586), PTPRG(Unitprot 접근번호: P23470), PTPRH(Unitprot 접근번호:Q2NKN9), PTPRJ(Unitprot 접근번호: Q12913), PTPRK(Unitprot 접근번호: Q15262), PTPRM(Unitprot 접근번호: P28827), PTPRN(Unitprot 접근번호: Q16849), PTPRN2(type N polypeptide 2, Unitprot 접근번호: Q92932), PTPRO(Unitprot 접근번호: Q16827), PTPRR(Unitprot 접근번호: Q15256), PTPRS(Unitprot 접근번호: Q13332), PTPRT(Unitprot 접근번호: O14522), PTPRU(Unitprot 접근번호: Q92729), PTPRZ(Unitprot 접근번호: P23471), PTPN1(protein tyrosine phosphatase, non-receptor type 1, Unitprot 접근번호: P18031), PTPN2,(Unitprot 접근번호: P17706) PTPN3(Unitprot 접근번호: P26045), PTPN5(Unitprot 접근번호: P54829), PTPN6(Unitprot 접근번호: P29350), PTPN7(Unitprot 접근번호: P35236), PTPN11(Unitprot 접근번호: Q06214), PTPN12(Unitprot 접근번호: Q05209), PTPN13(Unitprot 접근번호: Q12923), PTPN14(Unitprot 접근번호: Q15678), PTPN18(Unitprot 접근번호: Q99952), PTPN21(Unitprot 접근번호: Q16825), PTPN22(Unitprot 접근번호: Q9Y2R2), PTPN23(Unitprot 접근번호: Q9H3S7), DUSP1(dual specificity phosphatase 1, Unitprot 접근번호: P28562), DUSP2(Unitprot 접근번호: Q05923), DUSP4(Unitprot 접근번호: Q9PW71), DUSP5(Unitprot 접근번호: Q16690), DUSP6(Unitprot 접근번호: Q16828), DUSP7(Unitprot 접근번호: Q16829), DUSP8(Unitprot 접근번호: Q13202), DUSP9(Unitprot 접근번호: Q99956), DUSP10(Unitprot 접근번호: Q9Y6W6), DUSP16(Unitprot 접근번호: Q9BY84), MK-STYX(Map kinase phosphatase-like protein, Unitprot 접근번호: Q9Y6J8), DUSP3(Unitprot 접근번호: P51452), DUSP11(Unitprot 접근번호: O75319), DUSP12(Unitprot 접근번호: Q9UN16), DUSP13A(Unitprot 접근번호:Q9UII6 )DUSP13B(Unitprot 접근번호:Q9QYJ7), DUSP14(Unitprot 접근번호: O95147), DUSP15(Unitprot 접근번호: Q9H1R2), DUSP18(Unitprot 접근번호: Q8NEJ0), DUSP19(Unitprot 접근번호: Q8WTR2), DUSP21(Unitprot 접근번호: Q9H596), DUSP22(Unitprot 접근번호: Q9NRW4), DUSP23(Unitprot 접근번호: Q9BVJ7), DUSP24(Unitprot 접근번호: Q9Y6JB), DUSP25(Unitprot 접근번호:Q9Y216), DUSP26(Unitprot 접근번호:Q4GOw2), EPM2A(epilepsy progressive myoclonus type 2A, Unitprot 접근번호: O95278), SSH1(slingshot homolog 1, Unitprot 접근번호: Q8WYLO), SSH2(Unitprot 접근번호: Q76176), SSH3(Unitprot 접근번호: Q8TE77), PTP4A1(protein tyrosine phosphatase 4a1, Unitprot 접근번호: Q93096), PTP4A2(Unitprot 접근번호: Q12974), PTP4A3(Unitprot 접근번호: O75365), CDC14B(CDC14 cell division cycle 14 homolog B,Unitprot 접근번호: O60729), TPTE(transmembrane phosphoinositide 3-phosphatase and tensin homolog 2, Unitprot 접근번호: Q4R6N0), TENC1(tensin like C1 domain containing phosphatase, Unitprot 접근번호: Q2NL80), MTMR1(myotubularin related protein 1,Unitprot 접근번호: Q13613), MTMR3(Unitprot 접근번호: Q13615, MTMR7(Unitprot 접근번호: Q9Y216), MTMR8, ACP1(acid phosphatase 1 soluble, Unitprot 접근번호: P24666), CDC25A(cell division cycle 25B, Unitprot 접근번호: P30304), CDC25B(Unitprot 접근번호: P30305), CDC25C(Unitprot 접근번호: P30307)로 구성되는 군으로부터 선택되는 PTP이다(표 1 참조).Human PTP is a protein tyrosine phosphatase receptor type A, Unitprot accession number: P18433, PTPRB (Unitprot accession number: P23467), PTPRC (Unitprot accession number: Q5T5R0), PTPRD (Unitprot accession number: P23468), PTPRE (PTPRA) Unitprot access number: P23469), PTPRF (Unitprot access number: P10586), PTPRG (Unitprot access number: P23470), PTPRH (Unitprot access number: Q2NKN9), PTPRJ (Unitprot access number: Q12913), PTPRK (Unitprot access number: Q15262 ), PTPRM (Unitprot access number: P28827), PTPRN (Unitprot access number: Q16849), PTPRN2 (type N polypeptide 2, Unitprot access number: Q92932), PTPRO (Unitprot access number: Q16827), PTPRR (Unitprot access number: Q15256) ), PTPRS (Unitprot access number: Q13332), PTPRT (Unitprot access number: O14522), PTPRU (Unitprot access number: Q92729), PTPRZ (Unitprot access number: P23471), PTPN1 (protein tyrosine phosphatase, non-receptor type 1, Unitprot access number: P18031), PTPN2, (Unitprot access number: P17706) PTPN3 (Unitprot access number: P26045), PTPN5 (Unitprot access Number: P54829), PTPN6 (Unitprot access number: P29350), PTPN7 (Unitprot access number: P35236), PTPN11 (Unitprot access number: Q06214), PTPN12 (Unitprot access number: Q05209), PTPN13 (Unitprot access number: Q12923), PTPN14 (Unitprot access number: Q15678), PTPN18 (Unitprot access number: Q99952), PTPN21 (Unitprot access number: Q16825), PTPN22 (Unitprot access number: Q9Y2R2), PTPN23 (Unitprot access number: Q9H3S7), DUSP1 (duase specificityphosph 1, Unitprot access number: P28562, DUSP2 (Unitprot access number: Q05923), DUSP4 (Unitprot access number: Q9PW71), DUSP5 (Unitprot access number: Q16690), DUSP6 (Unitprot access number: Q16828), DUSP7 (Unitprot access number : Q16829), DUSP8 (Unitprot access number: Q13202), DUSP9 (Unitprot access number: Q99956), DUSP10 (Unitprot access number: Q9Y6W6), DUSP16 (Unitprot access number: Q9BY84), MK-STYX (Map kinase phosphatase-like protein) , Unitprot access number: Q9Y6J8), DUSP3 (Unitprot access number: P51452), DUSP11 (Unitprot access number: O75319), DUSP12 (Unitprot access number No .: Q9UN16), DUSP13A (Unitprot access number: Q9UII6) DUSP13B (Unitprot access number: Q9QYJ7), DUSP14 (Unitprot access number: O95147), DUSP15 (Unitprot access number: Q9H1R2), DUSP18 (Unitprot access number: Q8NEJ19) (Unitprot access number: Q8WTR2), DUSP21 (Unitprot access number: Q9H596), DUSP22 (Unitprot access number: Q9NRW4), DUSP23 (Unitprot access number: Q9BVJ7), DUSP24 (Unitprot access number: Q9Y6JB), DUSP25 (Unitprot access number: Q9Y216), DUSP26 (Unitprot access number: Q4GOw2), EPM2A (epilepsy progressive myoclonus type 2A, Unitprot access number: O95278), SSH1 (slingshot homolog 1, Unitprot access number: Q8WYLO), SSH2 (Unitprot access number: Q76176), SSH3 (Unitprot accession number: Q8TE77), PTP4A1 (protein tyrosine phosphatase 4a1, Unitprot accession number: Q93096), PTP4A2 (Unitprot accession number: Q12974), PTP4A3 (Unitprot accession number: O75365), CDC14B (CDC14 cell division cycle 14 homolog B, Unitprot accession number: O60729), TPTE (transmembrane phosphoinositide 3-phosphatase and tensin homolog 2, Unitprot Access number: Q4R6N0), TENC1 (tensin like C1 domain containing phosphatase, Unitprot access number: Q2NL80), MTMR1 (myotubularin related protein 1, Unitprot access number: Q13613), MTMR3 (Unitprot access number: Q13615, MTMR7 (Unitprot access number: Q9Y216), MTMR8, ACP1 (acid phosphatase 1 soluble, Unitprot access number: P24666), CDC25A (cell division cycle 25B, Unitprot access number: P30304), CDC25B (Unitprot access number: P30305), CDC25C (Unitprot access number: P30307) PTP selected from the group consisting of (see Table 1).
또한, 본 발명은 상기 단계ⅰ)에서 제작된 발현벡터 pET28a-MBP-HTs-PTP를 제공한다.In addition, the present invention provides an expression vector pET28a-MBP-HTs-PTP prepared in step iii).
본 발명자들은 대장균 발현 시스템에서 불용성 봉입체를 형성하는 PTP의 용해도를 증가시키기 위하여 PTP의 N-말단에 말토오스 결합부위(maltose 결합부위)를 융합시키기로 하였다. 이를 위하여 pET28a의 다중 제한효소 작용부위(multi-cloning site, MCS) 바로 앞에 MBP 유전자를 도입한 재조합 벡터를 제작하였다. 또한, 정제 후 MBP 없이 순수한 PTP만을 회수하기 위하여 담배 식각 바이러스(tobacco etch virus, TEV) 단백질 분해효소에 의하여 가수분해 될 수 있는 부분을 MBP의 뒤쪽(downstream)에 도입하고 pET28a-MBP 벡터에서 MBP의 N-말단에 부착되어있는 His 표지가 종종 제 기능을 발휘하지 못하는 단점을 보완하기 위하여 MBP 와 TEV 단백질 분해효소 사이에 6개의 히스티딘(His tag)을 추가로 도입함으로써 pET28a-MBP-His-TEV 벡터, 즉 서열번호 5로 기재되는 pET28a-MBP-HTs를 제작하였다(도 1b 참조). We decided to fuse the maltose binding site to the N-terminus of PTP to increase the solubility of PTP forming an insoluble inclusion body in the E. coli expression system. To this end, a recombinant vector was prepared in which the MBP gene was introduced immediately before the multi-cloning site (MCS) of pET28a. In addition, in order to recover only pure PTP without MBP after purification, a portion that can be hydrolyzed by tobacco etch virus (TEV) protease is introduced downstream of the MBP and the MBP in the pET28a-MBP vector. To complement the disadvantage that His labels attached to the N-terminus often fail, the pET28a-MBP-His-TEV vector is introduced by the addition of six histidines between the MBP and TEV proteases. That is, pET28a-MBP-HTs described in SEQ ID NO: 5 was prepared (see FIG. 1B).
또한, 본 발명은 상기 단계ⅰ)에서 제작된 발현벡터 pET28a-GST-PTP를 제공한다. In addition, the present invention provides an expression vector pET28a-GST-PTP prepared in step iii).
본 발명자들은 불용성 봉입체를 형성하는 PTP 중 불용성 정도가 심하지 않은 PTP에 대해서는 pET28a-MBP-HTs-PTP 벡터가 아닌 pET28a-GST 벡터를 이용하여 pET28a-GST-PTP 발현벡터를 제작하였다. GST(glutathione S-transferase) 즉 글루타치온 S 전이효소로 표지할 경우 GST의 크기가 작아 발현된 PTP에 별다른 영향을 미치지 않으므로 정제한 후에도 MBP와 같은 제거과정을 거치지 않아도 된다. 따라서 불용성 정도가 심하지 않은 PTP의 경우에는 pET28a-GST-PTP 발현벡터를 제작하여 PTP를 정제하였다.The present inventors constructed a pET28a-GST-PTP expression vector using a pET28a-GST vector rather than a pET28a-MBP-HTs-PTP vector for PTPs having a low degree of insolubility among PTPs forming an insoluble inclusion body. Labeling with glutathione S-transferase (GST), that is, glutathione S transferase, does not significantly affect the expressed PTP due to the small size of GST. Therefore, in the case of PTP that is not severely insoluble, a PET28a-GST-PTP expression vector was constructed to purify the PTP.
이하, 본 발명을 실시예에 의해 상세히 설명한다. Hereinafter, the present invention will be described in detail by way of examples.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다.However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited by the following examples.
<실시예 1> MBP 융합벡터 제작Example 1 MBP Fusion Vector Fabrication
<1-1> pET28a-PTP 융합벡터 제작<1-1> pET28a-PTP Fusion Vector Construction
표 1에 기재된 77개의 PTP 활성도메인에 해당하는 유전자들을 Nde I, Nhe I, BamH I, Xho I 등의 제한효소부위를 이용하여 pET28a 벡터(Novagen)에 삽입함으로써 과발현벡터(overexpression vector) pET28a-PTP를 제작하였다.The genes corresponding to the 77 PTP activity domains described in Table 1 were inserted into the pET28a vector (Novagen) using restriction enzymes such as Nde I, Nhe I, BamH I, and Xho I, thereby overexpression vector pET28a-PTP Was produced.
<1-2> pET28a-MBP 융합 발현벡터의 제작 <1-2> Construction of pET28a-MBP Fusion Expression Vector
대장균 발현시스템에서 PTP의 발현, 접힘(folding)과 용해도를 증가시키기 위하여 PTP의 N-말단에 말토오스 결합부위(maltose binding protein, MBP)를 융합시켰다. 이를 위하여, 시판 중인 MBP 벡터를 이용하는 방법이 있으나, MBP 벡터는 상기 <실시예 1>에서 PTP를 삽입한 과발현 벡터인 pET28a 벡터(Novagen)와는 다른 제한효소 작용부위(multi-cloning site: MCS)를 가지고 있어서, 재조합 벡터를 제조하는데 어려움이 있었다. 따라서, pET28a 벡터의 다중 제한효소 작용부위의 바로 앞에 MBP 유전자를 도입한 재조합 벡터를 제작하기로 하였다 In order to increase the expression, folding and solubility of PTP in an E. coli expression system, maltose binding protein (MBP) was fused to the N-terminus of PTP. To this end, there is a method using a commercially available MBP vector, but the MBP vector is a multi-cloning site (MCS) different from the pET28a vector (Novagen), which is an overexpression vector inserted with PTP in <Example 1> As a result, there was a difficulty in preparing a recombinant vector. Therefore, a recombinant vector in which the MBP gene was introduced immediately before the multiple restriction enzyme site of the pET28a vector was prepared.
pET28a-MBP 벡터제작에 필요한 MBP DNA는 pIVEX-MBP 융합벡터(Roche)로부터 제한효소 XbaI과 NdeI을 사용하여 잘라내었다. 이어서 T4 DNA 접합효소(ligase)를 이용하여 잘라낸 MBP DNA와 동일한 제한효소로 처리된 pET28a 벡터를 16℃에서 4 시간 접합반응시킴으로써 pET28a-MBP 벡터를 제작하였다(도 1a) MBP DNA for pET28a-MBP vector production was cut out from pIVEX-MBP fusion vector (Roche) using restriction enzymes XbaI and NdeI. Subsequently, pET28a-MBP vector was prepared by conjugating the pET28a vector treated with the same restriction enzyme as MBP DNA cut out using T4 DNA ligase at 16 ° C. for 4 hours (FIG. 1A).
<1-3> pET28a-MBP-HTs 발현벡터의 제작<1-3> Construction of pET28a-MBP-HTs Expression Vector
정제한 단백질로부터 MBP를 제거하고 순수한 PTP 도메인만을 얻기 위하여, tobacco etch virus(TEV) 단백질 분해효소에 의하여 가수분해 될 수 있는 부분을 MBP의 뒤쪽에 도입하였다. In order to remove MBP from the purified protein and obtain only pure PTP domain, a portion that can be hydrolyzed by tobacco etch virus (TEV) protease was introduced at the back of MBP.
먼저, 서열번호 1과 2로 각각 기재되는 정방향 프라이머와 역방향 프라이머, pProEX HTb 벡터(Invitrogen)를 주형으로 하여, 얻어진 PCR 산물울 NcoI/Ndel으로 처리한 후 pET28a 벡터에 삽입하여 pET28a-TEV 벡터를 완성하였다. 이어서, PacI 제한효소 작용부위를 포함하고 각각 서열번호 3으로 기재되는 정방향 프라이머와 서열번호 4로 기재되는 역방향 프라이머, 그리고 pET28a-TEV 벡터를 주형으로 PCR한 후 생성물을 PacI과 Xho I 제한효소로 처리한 후 pET28a-MBP에 삽입함으로써 pET28a-MBP-TEV 벡터를 제작하였다(도 1b) 위에 사용된 두 종류의 PCR 반응조건은 DNA 중합효소(Pfu polymerase , 솔젠트사)를 사용하여 상기에 기재된 프라미어 쌍과 주형을 94℃에서 5분 동안 변성시키고, 가. 94℃에서 1분, 나. 55℃에서 1분, 다. 72℃에서 2분간 중합반응하는 과정(가~다)을 30회 반복하고, 마지막으로 72℃에서 10분간 중합반응을 시켜서 완결하였다. 또한, pET28a-MBP 벡터에서 MBP의 N-말단에 부착되어있는 His 표지가 종종 제 기능을 발휘하지 못하는 단점을 보완하기 위하여 MBP와 TEV 단백질 분해효소 사이에 6개의 히스티딘(His tag)을 추가로 도입함으로써 서열번호 5로 기재되는 pET28a-MBP-His-TEV-MCS 벡터를 제작하였으며 이를 간단히 pET28a-MBP-HTs 벡터라고 명명하였다(도 1b). First, the PCR product obtained by using a forward primer, a reverse primer, and a pProEX HTb vector (Invitrogen) described in SEQ ID NOs: 1 and 2 as a template, and then treated with NcoI / Ndel, was inserted into a pET28a vector to complete a pET28a-TEV vector. It was. Subsequently, PCR was carried out with the PacI restriction enzyme agonist and the forward primer of SEQ ID NO: 3, the reverse primer of SEQ ID NO: 4, and the pET28a-TEV vector as a template, and the product was treated with PacI and Xho I restriction enzyme. Then, pET28a-MBP-TEV vector was prepared by inserting into pET28a-MBP (FIG. 1B). The two kinds of PCR reaction conditions used above were the primers described above using DNA polymerase (Pfu polymerase, Solgent). Denature the pair and the template at 94 ° C. for 5 minutes, and 1 minute at 94 ° C., b. 1 minute at 55 ° C. The procedure of polymerizing the reaction at 72 ° C. for 2 minutes (a ~ da) was repeated 30 times, and finally, the polymerization reaction was completed at 72 ° C. for 10 minutes. In addition, six histidines were introduced between the MBP and TEV proteases to compensate for the weakness of the His label attached to the N-terminus of MBP in the pET28a-MBP vector. Thus, the pET28a-MBP-His-TEV-MCS vector described in SEQ ID NO: 5 was prepared, which was simply named pET28a-MBP-HTs vector (FIG. 1B).
<1-4> pET28a-MBP-HTs-PTP 재조합 컨스트럭트 제작<1-4> Construction of pET28a-MBP-HTs-PTP Recombinant Construct
77개 중 일반적인 조건에서도 발현이 가능한 실시예 <1-1>의 26 개의 PTP 유전자를 제외한 나머지 63 개의 PTP 유전자를 pET28a-PTP 과발현 벡터로부터 제한효 소 (Nde I, Nhe I, BamH I, 혹은 Xho I)를 사용하여 PTP 유전자를 잘라내었다. 각각의 유전자들과 해당 제한효소로 처리된 pET28-PTP와 pET28-MBP-HTs 벡터를 T4 DNA 접합효소(ligase)로 16℃에서 4 시간 처리함으로써 pET28a-MBP-HTs-PTP 발현벡터를 제작하였다. 상기 벡터로 대장균 DH5a를 형질전환 시키고 30mg/mL의 카나마아신이 포함된 LB 아가(agar) 배지에 도말하여 37℃에서 하룻밤 동안 배양하였다. 도 2a는 형질전환시킨 대장균으로부터 재조합 플라스미드를 분리하여 아가로스 젤 전기영동을 함으로써 제작된 pET28a-MBP-PTP 벡터를 확인한 예이다. 도 2b는 정제된 pET28a-MBP-HTs-PTP를 해당 제한효소를 사용하여 37℃에서 2시간 이중 절단(double digestion)한 후, 1% DNA 아가로스 젤 전기영동하여, PTP 유전자가 삽입되었는지 확인한 예이다. Except for the 26 PTP genes of Example <1-1> , which can be expressed under general conditions among 77, 63 PTP genes were restricted from the pET28a-PTP overexpression vector (Nde I, Nhe I, BamH I, or Xho). I) was used to cut out the PTP gene. PET28a-MBP-HTs-PTP expression vector was prepared by treating each gene with the corresponding restriction enzyme pET28-PTP and pET28-MBP-HTs vector at 16 ° C. for 4 hours. E. coli DH5a was transformed with the vector and plated in LB agar medium containing 30 mg / mL kanamacin and incubated overnight at 37 ° C. Figure 2a is an example confirming the pET28a-MBP-PTP vector prepared by separating the recombinant plasmid from the transformed E. coli and agarose gel electrophoresis. Figure 2b is an example of double digestion of purified pET28a-MBP-HTs-PTP at 37 ℃ using the restriction enzyme, followed by 1% DNA agarose gel electrophoresis, confirming that the PTP gene is inserted to be.
<실시예 2> 대장균 내에서 pET28a-MBP-PTP 의 발현Example 2 Expression of pET28a-MBP-PTP in Escherichia Coli
<2-1> 일반적인 조건에서 PTP 발현(발현조건 가)<2-1> PTP expression under normal conditions (expression condition a)
실시예<1-3>에서 제작한 pET28a-MBP-PTP나 pET28a-MBP-HTs-PTP 벡터로 대장균 BL21(DE3) Codon Plus(Stratagene) 혹은 E.coli Rosetta DE3(Novagen)를 형질전환시키고 카나마이신을 포함한 LB 고체 배지를 이용하여 37℃에서 18 시간 동안 배양하였다. 이 때 형성된 단일 콜로니(colony)를 LB 배지(50 mL, 30 mg/mL kanamycin 포함)에 접종하고, 섭씨 37도에서 16시간 배양한 후 적당량을 취하여 LB 배지(1 L, 30 mg/mL kanamycin 포함)에 접종하였다. 대장균 배양액의 양을 조절 하여 OD600이 0.12 이하가 되도록 하고 같은 온도에서 계속 배양하여 OD600이 0.6~0.8에 도달하였을 때, 배양액을 18 ℃로 냉각시킨다. 이어서, 발현유도물질인 IPTG(isopropyl-ß-D-thiogalactopyranosid)를 첨가하여 IPTG의 최종농도가 0.5 mM 이 되도록 하고, 18 ℃에서 18 시간 더 배양하여 MBP 융합 PTP의 발현을 유도하였다.E. coli Rosetta DE3 (Novagen) or E. coli Rosetta DE3 (Novagen) were transformed with pET28a-MBP-PTP or pET28a-MBP-HTs-PTP vector prepared in Example It was incubated for 18 hours at 37 ℃ using the included LB solid medium. A single colony (colony) formed at this time was inoculated in LB medium (including 50 mL, 30 mg / mL kanamycin), incubated for 16 hours at 37 degrees Celsius, and then an appropriate amount was taken for LB medium (1 L, 30 mg / mL kanamycin included). ) Was inoculated. Adjust the amount of E. coli culture so that the OD 600 is 0.12 or less and continue to incubate at the same temperature, when the OD 600 reaches 0.6 ~ 0.8, the culture is cooled to 18 ℃. Subsequently, IPTG (isopropyl-ß-D-thiogalactopyranosid), which is an expression inducing substance, was added to bring the final concentration of IPTG to 0.5 mM, and further cultured at 18 ° C. for 18 hours to induce the expression of MBP fused PTP.
상기 배양액을 원심분리하여 침전된 균체를 40 mL 세포 용해 완충용액(lysis buffer; PMSF 1mM, pH7.5 50 mM Tris, 200 mM NaCl)에 현탁하고 초음파 발생기로 용해시켰다. 이를 원심분리하여 상층액을 아밀로즈 수지(amylose resin)에 로딩(loading)하고 아래 기술한 배치(batch) 방법으로 정제하였다. 배치방법을 이용한 단백질 정제를 상세히 기술하면 다음과 같다. 10 mL의 컬럼 완충용액(50 mM Tris pH7.5, 200mM NaCl, 5% glycerol, 0.05% β-mercaptoethanol)으로 아밀로즈 레진(1 mL)을 2번 씻어서 활성화시킨 후, 위에서 분리한 상층액을 가하여 4℃ 에서 3시간 동안 천천히 진탕하여 단백질을 레진에 흡착시킨다. 수용액을 여과 제거한 후, 레진을 컬럼(10 mL)로 두 번 씻어 준 후 10 mL의 용출 완충용액(elution buffer: 500 mM 말토오즈를 포함한 컬럼 완충용액)을 가한 후 다시 1 시간 천천히 진탕(rocking)한 후 여과하여, 목표 단백질을 회수한다. 5 mL의 용출 완충용액을 사용하여 한 번 더 반복한 후 합하고 10% SDS-PAGE 젤을 통해 단백질의 크기를 추정함으로써 목표 단백질이 용출되었음을 확인하였다. The cultured cells were centrifuged and the precipitated cells were suspended in 40 mL lysis buffer (PMSF 1 mM, pH7.5 50 mM Tris, 200 mM NaCl) and lysed by an ultrasonic generator. This was centrifuged to load the supernatant into amylose resin and purified by the batch method described below. The protein purification using the batch method is described in detail as follows. After washing and activating amylose resin (1 mL) twice with 10 mL of column buffer (50 mM Tris pH7.5, 200 mM NaCl, 5% glycerol, 0.05% β-mercaptoethanol), the supernatant separated above was added The protein is adsorbed onto the resin by shaking slowly at 4 ° C. for 3 hours. After the aqueous solution was filtered off, the resin was washed twice with column (10 mL), and then 10 mL of elution buffer (column buffer containing 500 mM maltose) was added and then slowly shaken for 1 hour. After filtering, the target protein is recovered. The target protein was eluted by repeating it once more with 5 mL of elution buffer and estimating the size of the protein via a 10% SDS-PAGE gel.
상기 과정 중 여러 개의 MBP-PTP 융합단백질 발현시 불용성 봉입체 (inclusion body)를 형성하였는데 이러한 PTP들은 0.5 ~ 1 M 소비톨과 50 mM 글라이신 베타인(glycine betaine)을 포함한 LB 배지를 사용하거나, 저온에서 발현시킴으로써 수용성으로 얻었다(표 1)During the process, the insoluble inclusion body was formed upon the expression of several MBP-PTP fusion proteins. These PTPs were prepared using LB medium containing 0.5-1 M sorbitol and 50 mM glycine betaine, or at low temperature. Obtained water-soluble by expressing (Table 1)
<2-2> IPTG 농도 증가(발현조건 나)<2-2> IPTG concentration increase (expression condition b)
상기 실시예 <2-1>의 결과, 발현속도가 느린 PTP들을 대상으로 실시예 <2-1>의 발현 조건 중 IPTG의 농도를 0.5 mM 에서 1.0 mM로 높인 후 단백질을 발현시켰다. Example <2-1> was expressed in the result, and then, increase the concentration of the expression conditions of Example <2-1> that the expression of slow speed PTP targeted IPTG at 0.5 mM to 1.0 mM protein.
<2-3> 소비톨(Sorbitol) 배지 조건에서의 단백질 발현(발현조건 다)<2-3> Protein Expression in Sorbitol Medium (C)
상기 실시예 <2-1>와 같은 방법으로 접종한 후 하룻밤 배양한 50 mL LB 배지 중 10 mL을 취하여 1L 소비톨 배지(LB 배지에 30 mg/mL kanamycin, 1 M sorbitol 및 50 mM betain 포함)에 넣고 O.D600 = 0.6이 될 때까지 37 ℃에서 배양한다. 인큐베이터(Incubator)를 18℃로 내려 20분간 냉각한 후 IPTG를 가하고 같은 온도에서 24 시간 동안 배양하였다. 소비톨(sorbitol) 배지에서는 자라는 속도가 많이 느리므로 37 ℃에서 8시간 이상 키우고 중간에 O.D를 재어 O.D600 = 0.6까지 자랐는지 확인하였다. 집균 및 단백질 정제는 위의 실시예 <2-1>에 기술된 방법과 동일하다. Inoculate in the same manner as in Example <2-1> and take 10 mL of 50 mL LB medium incubated overnight, and then 1 L sorbitol medium (including 30 mg / mL kanamycin, 1 M sorbitol and 50 mM betain in LB medium). Incubate at 37 ° C until OD 600 = 0.6. After the incubator was cooled to 18 ° C. for 20 minutes, IPTG was added thereto and incubated at the same temperature for 24 hours. In the sorbitol medium, the growth rate is very slow, so it was grown at 37 ° C. for more than 8 hours, and the OD was measured in the middle to confirm that the OD 600 = 0.6. Aggregates and protein purification are the same as those described in Example <2-1> above.
<2-4> 발현조건 다보다 IPTG 농도 감소(발현조건 라)<2-4> Reduction of IPTG Concentration under Expression Conditions (D)
실시예 <2-1>의 조건 중 IPTG 농도를 20 μM 로 조절하여 단백질을 발현시켰다. The protein was expressed by adjusting the IPTG concentration to 20 μM under the conditions of Example <2-1> .
<2-5> 저온에서의 단백질 발현(발현조건 마)<2-5> Protein expression at low temperature (expression condition e)
<2-1>와 같은 방법으로 접종한 후 하루 밤 배양된 50 mL LB 배지 중 10 mL을 취하여 lℓ LB 배지에 가한 후 O.D600 = 0.6이 될 때까지 37 ℃에서 배양하였다. After inoculation in the same manner as in <2-1> , 10 mL of 50 mL LB medium incubated overnight was added to the L LB medium and incubated at 37 ° C until OD 600 = 0.6.
배양액을 4 ℃ 진탕기로 옮긴 후 진탕하여 배양액의 온도를 4 ℃ 로 냉각한 후 최종농도 0.1 mM가 되도록 IPTG를 넣어 3일 간 배양하였다. 집균 및 단백질 정제는 실시예 <2-1>에 기술된 방법과 동일하다. The culture solution was transferred to a shaker at 4 ° C. and shaken to cool the temperature of the culture solution to 4 ° C., and then incubated for 3 days by adding IPTG to a final concentration of 0.1 mM. Aggregates and protein purification are the same as those described in Example <2-1> .
<실시예 3> 단백질 정제Example 3 Protein Purification
<3-1> 아밀로즈 수지(Amylose resin) 이용(정제방법 1)<3-1> Amylose resin (purification method 1)
원심분리에 의하여 침전된 균체를 25 mL의 세포 용해 완충용액(pH7.5, 50 mM Tris, 200 mM NaCl)에 현탁하고 단백질 분해 효소의 활성을 억제하기 위하여 1 mM PMSF(phenylmethylsulfonyl fluoride)를 첨가하였다. 여기에 초음파를 가하여 세포를 용해시킨 후 30 분간 원심분리하여 상등액을 10 mL의 증류수와 10 mL의 세포 용해 완충용액으로 씻어서 미리 활성화 시킨 아밀로즈 수지 2 mL에 상기 상등액을 넣어 혼합한 후, 진탕기(rocker)를 사용하여 4 ℃에서 5시간 동안 천천히 진탕하는 방법으로 단백질을 수지에 결합시켰다. 상등액을 제거한 후 각각 10 mM 말토오즈(maltose)를 포함한 세포 용해 완충용액(10 mL)을 넣어 10분간 수지를 세척하였다. 마지막으로 용리 완충용액(elution buffer; 500 mM 말토오즈를 포함한 세포 용해 완충용액) 10 mL를 넣고 2 시간 동안 진탕한 후 상등액만 회수하여 목표 단백질을 획득하였다(도 4).The cells precipitated by centrifugation were suspended in 25 mL of cell lysis buffer (pH7.5, 50 mM Tris, 200 mM NaCl) and 1 mM PMSF (phenylmethylsulfonyl fluoride) was added to inhibit the activity of proteolytic enzymes. . After lysing the cells by sonication, centrifugation was performed for 30 minutes, and the supernatant was washed with 10 mL of distilled water and 10 mL of cell lysis buffer, and the supernatant was added to 2 mL of amylose resin, which had been activated, and mixed. The protein was bound to the resin by slow shaking at 4 ° C. for 5 hours using a rocker. After removing the supernatant, the cells were added to a cell lysis buffer (10 mL) containing 10 mM maltose, and the resin was washed for 10 minutes. Finally, 10 mL of elution buffer (cell lysis buffer containing 500 mM maltose) was added thereto, shaken for 2 hours, and only the supernatant was recovered to obtain a target protein (FIG. 4).
<3-2> 글루타치온 수지(Glutathione resin) 이용(정제방법 2)<3-2> Using glutathione resin (purification method 2)
GST 표지된 단백질들은 1 x 4 cm 글루타치온 컬럼(column)을 사용하여 실시예 <4-1>과 같이 정제하였다. 20 mM 글루타치온, pH 7.5, 50 mM Tris, 200 mM NaCl 을 포함한 용리 완충용액을 사용하여 수지로부터 목표 단백질을 포함한 분액을 용리시켰다(도 4).GST labeled proteins were purified as in Example <4-1> using a 1 × 4 cm glutathione column. Elution buffer containing 20 mM glutathione, pH 7.5, 50 mM Tris, 200 mM NaCl was used to elute the aliquots containing the target protein from the resin (FIG. 4).
<3-3> 탈론 수지(Talon resin) 이용(정제방법 3)<3-3> Use of Talon resin (purification method 3)
원심분리에 의하여 침전된 세포를 25 mL의 세포 용해 완충용액(pH7.5, 50 mM Tris, 200 mM NaCl, 5% glycerol, 0.05% β-mercaptoethanol)에 현탁하고 단백질 분해를 억제하기 위하여 1 mM PMSF를 첨가하였다. 초음파를 이용하여 세포를 부순 후 3013 G에서 30분간 원심분리하여 상등액을 증류수 10 mL과 세포 용해 완충용액으로 씻어서 미리 활성화 시킨 1 mL의 탈론 수지와 상기 상등액을 혼합한 후, 진탕기를 사용하여 4 ℃에서 1시간 동안 천천히 진탕하여 단백질을 수지에 결합시켰다. 상등액을 제거한 후 각각 10 mL의 세포 용해 완충용액과 10 mM 이미다졸 완충용액 (imidazole buffer)을 이용하여 10분 간 진탕하여 수지를 씻어주었다. 마지막으로 100 mM 이미다졸을 포함한 세포 용해 완충용액 10 mL를 넣고 1시간 동안 진탕한 후 여과하여 목표 단백질을 회수하였다(도 4).The cells precipitated by centrifugation were suspended in 25 mL of cell lysis buffer (pH7.5, 50 mM Tris, 200 mM NaCl, 5% glycerol, 0.05% β-mercaptoethanol) and 1 mM PMSF to inhibit proteolysis. Was added. After crushing the cells using ultrasonic waves, centrifuged at 3013 G for 30 minutes, the supernatant was washed with 10 mL of distilled water and cell lysis buffer, and the activated supernatant was mixed with 1 mL of talon resin and the supernatant, followed by shaking using a shaker at 4 ° C. The protein was bound to the resin by shaking slowly for 1 h at. After removing the supernatant, the resin was washed by shaking with 10 mL of cell lysis buffer and 10 mM imidazole buffer for 10 minutes, respectively. Finally, 10 mL of cell lysis buffer containing 100 mM imidazole was added and shaken for 1 hour, followed by filtration to recover the target protein (FIG. 4).
(88개의 발현 정제를 시도하였으나 77개의 PTP만 성공하였음)(88 expression purification attempts but only 77 PTPs were successful)
<실시예 4> 단백질의 활성평가Example 4 Protein Activity Evaluation
문헌의 예(Pastula C. et al. Comb Chem High Throughput Screen. 6, 341-6, 2003; Welte S et al., Anal. Biochem. 338, 32-38, 2005)를 따라 시판중인 DiFMUP(50~100 mM)와 pNPP(50 mM)를 사용하여 PTP의 효소 활성을 측정하였다(표 2 및 도 5). DiFMUP commercially available according to the example of Pastula C. et al. Comb Chem High Throughput Screen. 6, 341-6, 2003; Welte S et al., Anal. Biochem. 338, 32-38, 2005. 100 mM) and pNPP (50 mM) were used to measure the enzyme activity of PTP (Table 2 and FIG. 5).
* 상기 표에서 PTP 코드는 발명자가 임의로 실험순서에 따라 명명* PTP code in the table is named by the inventor in accordance with the experimental order
* Ref.는 Alonso A. et al. Cell, 117, 699-711, 2004* Ref. Is described by Alonso A. et al. Cell, 117, 699-711, 2004
상기에서 살펴본 바와 같이, 본 발명의 대장균 발현시스템을 이용하여 인간 단백질 인산화 타이로신 가수분해효소(protein tyrosine phosphatase, PTP)를 활성을 가진 채로 정제하는 방법은 현재, 많은 PTP들이 암, 관절염, 당뇨병을 비롯한 각종 질병과 밀접한 관계가 있는 것으로 알려져 있고 새로운 기능이 계속 밝혀지고 있으므로 본 발명의 방법에 따라 정제된 PTP는 신약개발을 위한 새로운 표적효소로 이용될 수 있고 고효율 약물검색에 사용될 수 있다.As described above, a method for purifying human protein phosphorylated tyrosine phosphatase (PTP) using the E. coli expression system of the present invention is currently active, many PTPs including cancer, arthritis, diabetes Since it is known to be closely related to various diseases and new functions are continuously revealed, PTP purified according to the method of the present invention can be used as a new target enzyme for new drug development and can be used for high-efficiency drug search.
서열목록 전자파일 첨부 Attach sequence list electronic file
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050017676A KR100746993B1 (en) | 2005-03-03 | 2005-03-03 | The expression and purification method of human protein tyrosine phosphatase using E.coli system |
PCT/KR2006/000641 WO2006093380A1 (en) | 2005-03-03 | 2006-02-24 | The expression and purification method of human protein tyrosine phosphatase using e.coli system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050017676A KR100746993B1 (en) | 2005-03-03 | 2005-03-03 | The expression and purification method of human protein tyrosine phosphatase using E.coli system |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20060098528A KR20060098528A (en) | 2006-09-19 |
KR100746993B1 true KR100746993B1 (en) | 2007-08-08 |
Family
ID=36941396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020050017676A KR100746993B1 (en) | 2005-03-03 | 2005-03-03 | The expression and purification method of human protein tyrosine phosphatase using E.coli system |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR100746993B1 (en) |
WO (1) | WO2006093380A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101946789B1 (en) | 2018-01-26 | 2019-02-12 | (주)휴온스 | Recombination vector comprising Disulfide Bond Isomerase signal peptide and use thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100916651B1 (en) * | 2007-12-04 | 2009-09-08 | 한국생명공학연구원 | Method for diagnosis of disease using quantitative monitoring of protein tyrosine phosphatase |
CN105148259B (en) * | 2015-09-29 | 2018-12-14 | 武汉大学 | Dual specificity phosphatase enzyme 12(DUSP12) treating function and application in myocardial hypertrophy |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040185528A1 (en) * | 2001-07-06 | 2004-09-23 | Uwe Horn | Method for improved protein expression in bacteria by monitoring and modulating protein folding |
-
2005
- 2005-03-03 KR KR1020050017676A patent/KR100746993B1/en active IP Right Grant
-
2006
- 2006-02-24 WO PCT/KR2006/000641 patent/WO2006093380A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040185528A1 (en) * | 2001-07-06 | 2004-09-23 | Uwe Horn | Method for improved protein expression in bacteria by monitoring and modulating protein folding |
Non-Patent Citations (4)
Title |
---|
Glycoconj J., Vol.22(1-2):1 (2005.2) * |
Glycoconj J., Vol.22(1-2):1 (2005.2.) * |
Protein Sci., Vol.7(2):508-511 (1998.2.) * |
Protein Sci., Vol.7(2):508-511 Feb 1998(1998.2.) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101946789B1 (en) | 2018-01-26 | 2019-02-12 | (주)휴온스 | Recombination vector comprising Disulfide Bond Isomerase signal peptide and use thereof |
Also Published As
Publication number | Publication date |
---|---|
WO2006093380A1 (en) | 2006-09-08 |
KR20060098528A (en) | 2006-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102606680B1 (en) | S. Pyogenes ACS9 mutant gene and polypeptide encoded thereby | |
KR102647766B1 (en) | Class II, type V CRISPR systems | |
JP6408914B2 (en) | Modified CASCADE ribonucleoproteins and their uses | |
Nurnberger et al. | Induction of an extracellular ribonuclease in cultured tomato cells upon phosphate starvation | |
US20020072087A1 (en) | Molecule assigning genotype to phenotype and use thereof | |
Margulies et al. | Ribosomes bound to chloroplast membranes in Chlamydomonas reinhardtii | |
WO2010011961A9 (en) | Prokaryotic rnai-like system and methods of use | |
Rorbach et al. | Polyadenylation in bacteria and organelles | |
EP3976770A1 (en) | Methods and compositions for manufacturing polynucleotides | |
KR100746993B1 (en) | The expression and purification method of human protein tyrosine phosphatase using E.coli system | |
Khandekar et al. | The conserved upstream region of lscB/C determines expression of different levansucrase genes in plant pathogen Pseudomonas syringae | |
EP2718430B1 (en) | Sequence-specific engineered ribonuclease h and the method for determining the sequence preference of dna-rna hybrid binding proteins | |
Tosarini et al. | Cloning, expression and purification of kinase domains of cacao PR-1 receptor-like kinases | |
EP4347808A2 (en) | Synthetic cas proteins | |
CN111534495B (en) | Method for improving soluble expression of recombinant N-acetylglucosamine transferase II | |
Dori-Bachash et al. | Bacterial intein-like domains of predatory bacteria: a new domain type characterized in Bdellovibrio bacteriovorus | |
US20190276501A1 (en) | Engineered microcompartment protein and related methods and systems of engineering bacterial systems for non-native protein expression and purification | |
RU2558295C1 (en) | RECOMBINANT PLASMID DNA pGST/ART/X, CODING FUSED CHIMERIC POLYPEPTIDE GST/ART/X FOR HIGH SPECIFIC SELECTION OF APTAMERS TO TARGET PROTEIN X IN POLYPEPTIDE COMPOSITION | |
Walter | Characterization of DNA Polymerase Gamma in the basidiomycetous yeast, Cryptococcus neoformans | |
Ichioka et al. | A novel N-acetylglucosamine-6-phosphate deacetylase that is essential for chitin utilization in the chitinolytic bacterium, Chitiniphilus shinanonensis | |
JPWO2004031243A1 (en) | Protein polymer and method for producing the same | |
JP4171805B2 (en) | Glycosyltransferase | |
RU2592860C2 (en) | RECOMBINANT PLASMID DNA pER-TB4GyrA-AcSer CODING SERINE ACETYLTRANSFERASE CAPABLE OF in vivo ACETYLATION OF N-TERMINAL SERINE DEACETYL-THYMOSIN β4 AND HYBRID PROTEIN CAPABLE OF AUTOCATALYTIC BREAKDOWN TO FORM HUMAN THYMOSIN β4, STRAIN OF Eschrichia coli C3030/pER-TB4GyrA-AcSer PRODUCER OF SAID PROTEINS AND METHOD OF PRODUCING GENETICALLY ENGINEERED HUMAN THYMOSIN | |
Yuzbasheva et al. | Protein display on the Yarrowia lipolytica yeast cell surface using the cell wall protein YlPir1 | |
Zhao | A Proteomic Study of Plant Messenger RNA Cleavage and Polyadenylation Specificity Factors and the Establishment of an In Vitro Cleavage Assay System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
G170 | Re-publication after modification of scope of protection [patent] | ||
FPAY | Annual fee payment |
Payment date: 20120719 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20130802 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20140804 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20151103 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20151209 Year of fee payment: 18 |