KR100741567B1 - Surface-conditioning compositions containing manganese hydrogen phosphate hydrate and their manufacturing methods - Google Patents
Surface-conditioning compositions containing manganese hydrogen phosphate hydrate and their manufacturing methods Download PDFInfo
- Publication number
- KR100741567B1 KR100741567B1 KR1020060083113A KR20060083113A KR100741567B1 KR 100741567 B1 KR100741567 B1 KR 100741567B1 KR 1020060083113 A KR1020060083113 A KR 1020060083113A KR 20060083113 A KR20060083113 A KR 20060083113A KR 100741567 B1 KR100741567 B1 KR 100741567B1
- Authority
- KR
- South Korea
- Prior art keywords
- manganese
- water
- composition
- hydrogen phosphate
- dispersed
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/14—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2202/00—Metallic substrate
- B05D2202/10—Metallic substrate based on Fe
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Chemical Treatment Of Metals (AREA)
Abstract
Description
도 1은 표면조정공정이 생략된 인산망간 피막화 공정처리 시편(비교예 1)의 전자현미경(SEM) 사진이다.1 is an electron microscope (SEM) photograph of a manganese phosphate encapsulation process treated specimen (Comparative Example 1) in which the surface adjustment process is omitted.
도 2는 분말형 망간계 표면조정 처리 후의 인산망간 피막화 공정시편(비교예 2)의 SEM 사진이다.FIG. 2 is a SEM photograph of a manganese phosphate coating process specimen (Comparative Example 2) after a powder manganese-based surface adjustment treatment.
도 3은 본 발명의 실시예 1에 의한 수분산 표면조정 조성물 처리후 성장된 인산망간 결정성 피막의 SEM 사진이다.Figure 3 is a SEM photograph of the manganese phosphate crystalline coating grown after the water dispersion surface adjustment composition treatment according to Example 1 of the present invention.
도 4는 본 발명의 실시예 2에 의한 수분산 표면조정 조성물 처리후 성장된 인산망간 결정성 피막의 SEM 사진이다.Figure 4 is a SEM photograph of the manganese phosphate crystalline coating grown after the water dispersion surface adjustment composition treatment according to Example 2 of the present invention.
도 5는 고굴곡 표면에서의 본 발명의 실시예 3에 의한 표면조정 조성물 처리후 형성된 인산망간 피막의 SEM 사진이다.5 is a SEM photograph of a manganese phosphate coating formed after the surface adjustment composition treatment according to Example 3 of the present invention at a high bending surface.
본 발명은 수분산형 망간계 표면조정 조성물에 관한 것이다.The present invention relates to a water-dispersible manganese-based surface adjustment composition.
철제 금속의 부식을 억제하기 위한 표면처리공정은 탈지, 수세, 건조, 표면조정, 피막, 수세, 방청 등의 일련의 공정 단계를 포함하여 이루어진다. 또한 철제 금속의 부식 방지를 위하여 철 표면을 도금하기도 한다. 그러나, 최근에는 크롬 도금이 규제되면서 이와 유사한 성능을 나타내는 부식억제 표면처리 기술이 관련시장에서 요구되고 있다. The surface treatment process for suppressing the corrosion of the ferrous metal includes a series of process steps such as degreasing, washing with water, drying, adjusting the surface, coating, washing with water, and rust prevention. In addition, the iron surface is plated to prevent corrosion of the iron metal. However, in recent years, as chromium plating is regulated, corrosion inhibiting surface treatment technology having similar performance is required in related markets.
이에, 철 표면의 부식을 억제 또는 방지하기 위한 방법의 일환으로 철제 금속의 표면에 인산염 피막을 생성시키는 방법을 도입하기도 하였으며, 이러한 인산염 피막시 인산 망간계 피막 또는 인산 아연계 피막을 주로 형성하였다.Thus, as a method of suppressing or preventing corrosion of the iron surface, a method of generating a phosphate film on the surface of the iron metal was introduced, and a manganese phosphate film or zinc phosphate film was mainly formed during the phosphate film.
철 표면에 인산망간 피막 또는 인산아연 피막을 치밀하게 성장시키고 방청 공정 후에 신뢰성이 있는 내부식성 특성을 나타내도록 하기 위해서는, 해당 피막 결정이 거시적인 균질 상태로 성장하여야 하고, 미시적으로는 균일한 도메인(domain) 또는 그레인(grain) 크기를 가지도록 통제된 환경에서 피막을 성장시켜야 한다. In order to grow the manganese phosphate film or zinc phosphate film on the iron surface densely and show reliable corrosion resistance after the rust prevention process, the film crystals must be grown in a macroscopic homogeneous state and microscopically uniform domain ( The film must be grown in a controlled environment to have a domain or grain size.
이를 위하여 표면조정제(surface modifier 또는 surface conditioner)가 피막 형성 공정의 전처리 단계에서 활용된다.For this purpose, a surface modifier or surface conditioner is used in the pretreatment step of the film forming process.
한편, 망간계 표면조정제는 망간을 포함하는 여러 가지 종류의 인산염의 침전물을 제트밀(jet mill)과 같은 기계적 파쇄 공정을 거쳐 넓은 입도 범위를 가지는 분말 성상의 제품들로서, 인산망간 피막을 치밀하게 성장시키고 피막의 두께 방 향으로의 과잉성장을 억제할 수 있도록 설계된다. Meanwhile, manganese-based surface modifiers are powder-like products having a wide particle size range through a mechanical crushing process such as a jet mill, which deposits various types of phosphate deposits including manganese, and grows manganese phosphate coatings densely. It is designed to suppress excessive growth in the thickness direction of the film.
기계적 파쇄 공정을 거친 최종 분말은 수 미크론에서 수십 미크론의 평균 입경과 넓은 입도 범위를 나타내며, 이를 인산망간 피막형성에 결정핵(nucleus)로서 작용하는 관점에서 보면 그 입도 범위가 넓고, 표면 조정의 공정에 투입된 표면조정제의 공정 이용 효율이 매우 낮게 되며, 투입된 대부분의 표면조정제 물질은 공정 폐수 또는 공정 폐기 슬러지 형태로 방출되게 된다. 또한, 입도 범위가 매우 넓기 때문에 표면에 생성되는 결정피막 출발핵의 크기 측면에서 불균일성이 매우 커서, 표면조정제의 원래 사용 목적인 균일한 결정성 피막 성장의 유도에 부정적인 영향을 줄 수 있다. The final powder, which has undergone mechanical crushing, exhibits an average particle diameter and a wide particle size range of several microns to several tens of microns. From the viewpoint of acting as a nucleus in the formation of manganese phosphate coating, the particle size range is wide and the surface adjustment process is performed. The process utilization efficiency of the surface modifier added to the reactor becomes very low, and most of the surface modifier material added is released in the form of process wastewater or process waste sludge. In addition, since the particle size range is very wide, the nonuniformity is very large in terms of the size of the crystal film starting nucleus formed on the surface, which may negatively influence the induction of uniform crystalline film growth, which is the original purpose of the surface modifier.
통상적인 기존의 표면조정 공정에서는 분말형 망간계 표면 조정제의 경우 표면조정 공정 침지액 중에 0.1 ∼ 1 중량%의 고형분을 투입하여야 표면조정에 의한 비교적 균일한 인산망간염 피막을 형성시킬 수 있는 것으로 알려져 있으며, 또한, 상기와 같은 분말형 망간계 표면 조정제의 투입에 의한 인산망간염 피막의 그레인 크기도 1 ∼ 10 ㎛ 가량으로 크게 나타나는 것이 일반적인 것으로 알려져 있다.In the conventional conventional surface adjustment process, it is known that in the case of powdered manganese-based surface control agent, 0.1 to 1% by weight of solid content is added to the surface adjustment process immersion liquid to form a relatively uniform manganese phosphate coating by surface adjustment. In addition, it is generally known that the grain size of the manganese phosphate coating due to the addition of the powdered manganese-based surface conditioner is also largely about 1 to 10 µm.
위에 설명한 바와 같이 종래의 표면조정제 및 표면조정제의 적용 기술은 활성 성분의 사용량이 과다함에도 불구하고, 극도로 미세한 표면 조정의 효과를 기대하기 어려우므로 정밀한 가공 표면에 대한 효용성이 매우 제한적이며 과량의 투입에 의한 환경처리 부담 등이 가중되어 결과적으로 전체 공정의 공정 비용을 불필요하게 증가시키며, 경제성을 저하시킨다. As described above, conventional surface modifiers and application techniques of surface modifiers, despite the excessive use of the active ingredient, it is difficult to expect the effect of extremely fine surface adjustment is very limited in the utility of precisely processed surface and the input of excessive amount As a result, the burden of environmental treatment is increased, and as a result, the process cost of the entire process is unnecessarily increased and economical efficiency is lowered.
이에, 본 발명의 발명자들은 상기와 같은 종래의 망간계 표면조정제와 그 사용에 의하여 형성되는 인산망간 피막의 결정 특성상의 단점들을 해결하기 위하여 연구노력한 결과, 제이인산망간염 수화물(MnHPO4·2.25H2O, Manganese Hydrogen Phosphate Hydrate)을 습식 분쇄하여 나노 크기화한 후 계면활성제를 함유하는 수용액 매체에서 균일하게 분산시킨 수분산 조성물을, 인산 망간 피막 공정의 전처리 단계에 투입하여 사용할 경우 망간 조정제를 소량 사용하여도 효율적인 핵생성이 가능하게 하며, 균일한 인산망간 피막 결정의 성장을 유도할 수 있음을 알게되어 본 발명을 완성하였다.Accordingly, the inventors of the present invention have made efforts to solve the shortcomings in the crystal characteristics of the conventional manganese-based surface modifiers and the use of the manganese phosphate film formed by the use, as a result, manganese phosphate dihydrate (MnHPO 4 · 2.25H 2 O, Manganese Hydrogen Phosphate Hydrate) was wet-pulverized and nanosized, and then a small amount of manganese modifier was used when a water dispersion composition uniformly dispersed in an aqueous solution medium containing a surfactant was used in the pretreatment step of the manganese phosphate coating process. The present invention has been found to enable efficient nucleation and to induce the growth of uniform manganese phosphate coating crystals.
따라서, 본 발명은 발생하는 슬러지 폐기물을 저감할 수 있고, 미세 굴곡 정밀가공 부분에 대한 피막성장 특성을 향상시키며, 또 인산망간 피막 결정체의 입도를 균일하게 하고, 인산망간 피막 결정체의 크기 범위가 미세하게 성장되는 효과를 나타내는 수분산형 망간계 표면처리 조성물을 제공하는데 그 목적이 있다.Therefore, the present invention can reduce the sludge waste generated, improve the film growth characteristics for the fine bending precision processing portion, and uniformize the particle size of the manganese phosphate coating crystals, and the size range of the manganese phosphate coating crystals is fine It is an object of the present invention to provide a water-dispersed manganese-based surface treatment composition exhibiting an effect of growing quickly.
본 발명은 평균 입경 0.03 ∼ 0.8 ㎛ 범위인 제이인산망간염 수화물(MnHPO4·2.25H2O, Manganese Hydrogen Phosphate Hydrate)이 음이온성 계면활성제와 물을 포함하는 액상 매체에 분산된 수분산형 망간계 표면조정 조성물을 그 특징으로 한다.The present invention relates to a water-dispersed manganese surface in which manganese phosphate dihydrate (MnHPO 4 · 2.25H 2 O, Manganese Hydrogen Phosphate Hydrate) having an average particle diameter of 0.03 to 0.8 μm is dispersed in a liquid medium containing an anionic surfactant and water. It is characterized by the adjustment composition.
이하 본 발명을 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.
본 발명은 나노 크기화한 제이인산망간염 수화물(MnHPO4·2.25H2O, Manganese Hydrogen Phosphate Hydrate)을 계면활성제가 일정량 포함된 수용액 매체에서 균일하게 분산시킨 수분산형 망간계 표면 조정 조성물로서, 이를 인산 망간 피막 공정의 전처리 단계에 투입하여 사용할 경우 소량만 사용하여도 효율적인 핵생성이 가능하게 하며, 철 표면에 성장하는 인산망간 결정체의 입도와 피막의 치밀도 및 균질성(uniformity)을 향상시킬 수 있는 효과를 기대할 수 있다.The present invention provides a water-dispersed manganese-based surface control composition in which nano-sized manganese phosphate hydrate (MnHPO 4 .2.25H 2 O, Manganese Hydrogen Phosphate Hydrate) is uniformly dispersed in an aqueous medium containing a certain amount of a surfactant. When used in the pretreatment stage of the manganese phosphate coating process, it enables efficient nucleation using only a small amount, and can improve the particle size, film density, and uniformity of the manganese phosphate crystals growing on the iron surface. You can expect the effect.
이하 본 발명의 수분산형 망간계 표면조정 조성물을 구성성분별로 구체적으로 설명한다.Hereinafter, the water-dispersed manganese-based surface adjustment composition of the present invention will be described in detail for each component.
본 발명의 수분산형 망간계 표면조정 조성물은 평균 입경 0.03 ∼ 0.8 ㎛ 범위인 제이인산망간염 수화물(MnHPO4·2.25H2O, Manganese Hydrogen Phosphate Hydrate)을 포함한다.The water-dispersed manganese-based surface adjustment composition of the present invention comprises manganese phosphate dihydrate (MnHPO 4 .2.25H 2 O, Manganese Hydrogen Phosphate Hydrate) having an average particle diameter of 0.03 to 0.8 μm.
상기의 제이인산망간염 수화물(MnHPO4·2.25H2O, Manganese Hydrogen Phosphate Hydrate)을 나노 수분산하기 위하여, 합성하여 건조된 분말을 액상 매체에 혼합하여 습식 미분쇄하는데, 이때 분산제로서 계면활성제를 혼합한다. 상기한 습식 미분쇄를 선택함으로써, 이와 비교되는 여러 종류의 건식 분쇄법과는 달리 미세 분쇄와 재응집 방지, 액체 매질내 균질 분산 등의 특성을 얻을 수 있다.In order to nano-disperse the above manganese phosphate hydrate (MnHPO 4 .2.25H 2 O, Manganese Hydrogen Phosphate Hydrate), the synthesized and dried powder is mixed in a liquid medium and wet-pulverized, whereby a surfactant is used as a dispersant. Mix. By selecting the above-mentioned wet pulverization, it is possible to obtain characteristics such as fine pulverization and reaggregation prevention, and homogeneous dispersion in a liquid medium, unlike various kinds of dry pulverization methods.
습식 미분쇄 과정은 일단계 분쇄(single stage milling) 또는 다단계 분쇄(multistage milling) 과정을 거칠 수 있으며, 어트리션밀(attrition mill), 디 스크-비드밀(disc-and-bead mill), 핀밀(pin mill)과 같은 미분쇄 장비들을 단일 사용 또는 조합 사용에 의하여 습식 미분쇄 과정을 진행할 수 있다. 즉, 본 발명에서 상기 미분쇄 수행에 있어 분쇄 단계가 일단계, 다단계, 순환형 등의 어떠한 공정 운전 방식을 적용하여 수행되어도 무방하며, 또한 상기 미분쇄시에 사용하는 미분쇄 파쇄 장치의 유형에 제한을 두지 않는다.The wet milling process may be subjected to single stage milling or multistage milling, and may include attrition mills, disc-and-bead mills and pin mills. Grinding equipment such as a pin mill can be used for the wet grinding process by single use or combination use. That is, in the present invention, the pulverizing step may be performed by applying any process operation method such as one step, multi-step, circulating type, and the like to the type of pulverized crushing device used in the pulverizing. There is no limit.
다만, 최종 미분쇄된 제이인산망간염 수화물(MnHPO4·2.25H2O, Manganese Hydrogen Phosphate Hydrate)의 평균 입도가 0.03 ∼ 0.8 ㎛, 바람직하기로는 0.6㎛ 이하가 되도록 조정하는 것이 좋으며, 이때, 평균입도가 0.8 ㎛ 보다 크면 인산 망간 피막 공정에 무해한 분산제들을 사용하여 분산 안정성을 확보하기 어려운 경향이 있다. 또한 제이인산망간염 수화물(MnHPO4·2.5H2O)의 입도분포 측면에서 입도분포 1㎛ 이상의 분율이 10 % 미만이 되도록 조정하도록 하는 것이 장기 분산 안정성의 확보와 최종 형성된 인산 피막의 균일성과 치밀도 측면에서 바람직하다.However, the final finely pulverized manganese phosphate hydrate (MnHPO 4 · 2.25H 2 O, Manganese Hydrogen Phosphate Hydrate) may be adjusted to have an average particle size of 0.03 to 0.8 μm, preferably 0.6 μm or less, in which case the average If the particle size is larger than 0.8 μm, it is difficult to secure dispersion stability using dispersants that are harmless to the manganese phosphate coating process. In addition, in the aspect of particle size distribution of manganese phosphate dihydrate (MnHPO 4 · 2.5H 2 O), adjusting to make the fraction of particle size distribution of 1 μm or more is less than 10% to secure long-term dispersion stability and uniformity and tightness of the final formed phosphate film. It is preferable from the side.
이러한 제이인산망간염 수화물(MnHPO4·2.25H2O, Manganese Hydrogen Phosphate Hydrate)은 고형분 함량을 기준으로 전체 조성물 중 0.1 ∼ 55 중량%, 바람직하기로는 0.2 ∼ 30 중량%, 보다 바람직하기로는 0.4 ∼ 15 중량% 범위로 포함한다. 상기 제이인산망간염 수화물(MnHPO4·2.25H2O, Manganese Hydrogen Phosphate Hydrate)의 함량이 0.1 중량% 미만으로 유지되면 표면 조정, 즉 핵생성 유발효과가 미미해지고, 반대로 55 중량%를 초과하여 과잉 공급되면 과량의 핵생성을 통하여 결정의 길이방향 성장비율(aspect ratio)이 너무 커져 기계적 강도가 약 해질 수 있으며, 잉여의 제이인산망간염 수화물(MnHPO4·2.25H2O, Manganese Hydrogen Phosphate Hydrate)이 부생하여 폐기된다. 또한, 실제적으로 후속 피막 공정에 의하여 사용 가능한 계면활성제의 종류와 양이 엄격하게 제약을 받기 때문에 고형분 함량을 높여 제품의 장기 보관 안정성을 확보하는 것도 쉽지 않다.Manganese phosphate dihydrate (MnHPO 4 .2.25H 2 O, Manganese Hydrogen Phosphate Hydrate) is 0.1 to 55% by weight, preferably 0.2 to 30% by weight, more preferably 0.4 to 0.4% by weight, based on the solid content of the composition. 15 weight percent. When the content of the manganese phosphate dihydrate (MnHPO 4 .2.25H 2 O, Manganese Hydrogen Phosphate Hydrate) is maintained below 0.1% by weight, surface adjustment, that is, nucleation-inducing effect is insignificant, on the contrary, exceeds 55% by weight When supplied, excessive nucleation can result in too large a crystal's longitudinal aspect ratio, resulting in weak mechanical strength, and excess manganese phosphate dihydrate (MnHPO 4 · 2.25H 2 O, Manganese Hydrogen Phosphate Hydrate). This is a by-product and discarded. In addition, since the types and amounts of surfactants that can be used by the subsequent coating process are strictly restricted, it is also difficult to secure long-term storage stability of the product by increasing the solid content.
한편, 표면 조정의 효과는 결정 성장 핵의 수(population of nuclei)와 결정성장 방향성에 크게 영향을 미치게 되는데, 상기와 같이 조절되어 사용하는 제이인산망간염 수화물(MnHPO4·2.25H2O, Manganese Hydrogen Phosphate Hydrate)에 의하여 결정핵의 수를 제어할 수 있게 된다. On the other hand, the effect of surface adjustment significantly affects the population of nuclei and the direction of crystal growth. The manganese phosphate dihydrate (MnHPO 4 .2.25H 2 O, Manganese) is controlled and used as described above. Hydrogen Phosphate Hydrate) allows the control of the number of nuclei.
본 발명의 수분산형 망간계 표면조정 조성물은 상기한 제이인산망간염 수화물(MnHPO4·2.25H2O, Manganese Hydrogen Phosphate Hydrate)을 액상 매체에 나노 분산시킨 것이다.The water-dispersed manganese-based surface adjustment composition of the present invention is a nano-dispersed manganese phosphate hydrate (MnHPO 4 · 2.25H 2 O, Manganese Hydrogen Phosphate Hydrate) in a liquid medium.
이때, 상기 액상 매체는 제이인산망간염 수화물(MnHPO4·2.25H2O, Manganese Hydrogen Phosphate Hydrate)의 장기 분산성을 향상시키고, 고형분 함량(solid content)을 높이기 원하는 경우에는 계면활성제의 일종인 분산제를 소량 첨가할 수도 있다. In this case, the liquid medium is a dispersant which is a kind of surfactant when it is desired to improve long-term dispersibility of manganese phosphate dihydrate (MnHPO 4 .2.25H 2 O, Manganese Hydrogen Phosphate Hydrate) and to increase solid content. A small amount can also be added.
그러나, 앞에서 언급한 바와 같이 이러한 분산제의 사용에는 제약조건이 따르는 데, 분산제에 의하여 후속 피막화 공정이 영향을 받을 수 있으므로 선택의 범위는 매우 협소하게 제한된다. However, as mentioned above, the use of such dispersants is subject to constraints, and the range of choice is very narrowly limited since the subsequent encapsulation process may be affected by the dispersant.
이에, 본 발명에서는 상기 제이인산망간염 수화물(MnHPO4·2.25H2O, Manganese Hydrogen Phosphate Hydrate)의 분산 안정성의 측면과, 인산 망간 피막 형성의 관점에서 상기한 분산제로서 음이온성 계면활성제를 선택 사용한다. 상기 음이온성 계면활성제로는 카르복시산기 및 카르복시산 염 중에서 선택된 하나 또는 둘 이상의 관능기를 함유하는 것을 사용한다. 이때, 양이온성 계면활성제를 사용할 경우에는 미세하고 치밀한 인산 망간 피막 형성에 부정적 영향을 미치거나, 공정 침지액의 장기 사용시 겔화를 유도할 수 있는 경우가 관찰 되었고, 비이온성 계면활성제를 사용하는 경우에는 인산 망간 피막의 성장 속도를 지연시키거나 불완전한 피막 형성을 유도하기도 하고 또는 분산제로서의 효능이 취약한 경향이 있다.Accordingly, in the present invention, anionic surfactant is selected and used as the dispersant in view of the dispersion stability of the manganese phosphate dihydrate (MnHPO 4 .2.25H 2 O, Manganese Hydrogen Phosphate Hydrate) and the formation of manganese phosphate coating. do. As the anionic surfactant, those containing one or two or more functional groups selected from carboxylic acid groups and carboxylic acid salts are used. At this time, it was observed that the use of cationic surfactant negatively affects the formation of fine and dense manganese phosphate coating, or induce gelation in the long-term use of the process immersion liquid, and in the case of using a nonionic surfactant It tends to slow the growth rate of manganese phosphate coatings or to lead to incomplete coating formation or to be poor in efficacy as a dispersant.
그러나, 본 발명의 경우와 같이 음이온성 계면활성제를 선택 사용함으로써 목적으로 하는 인산망간 미세 피막을 치밀하게 성장시키는 데 영향을 미치지 않고 조성물의 장기 분산 안정성을 확보할 수 있다.However, by using an anionic surfactant as in the case of the present invention, it is possible to ensure long-term dispersion stability of the composition without affecting dense growth of the target manganese phosphate microfilm.
상기한 음이온성 계면활성제는 전체 조성물 중 0.05 ∼ 5 중량% 사용할 수 있으며, 바람직하기로는 0.1 ∼ 3 중량% 사용할 수 있다. 이때, 음이온성 계면활성제의 사용량이 0.05 중량% 미만이면 상기 제이인산망간염 수화물(MnHPO4·2.25H2O, Manganese Hydrogen Phosphate Hydrate)의 효과적인 분산 안정성을 기대할 수 없고, 사용량이 5 중량%를 초과하면 계면활성제의 속성에 따라 공정처리 대상인 피착물의 표면에 과잉 부착하여 인산망간 피막의 성장에 속도론(kinetics)적으로 또 형태학(morphology)적으로 영향을 미칠 수 있다.The anionic surfactant may be used in an amount of 0.05 to 5% by weight of the total composition, preferably 0.1 to 3% by weight. At this time, when the amount of the anionic surfactant is less than 0.05% by weight, the effective dispersion stability of the manganese phosphate dihydrate (MnHPO 4 .2.25H 2 O, Manganese Hydrogen Phosphate Hydrate) cannot be expected, and the amount is more than 5% by weight. If the surfactant is excessively adhered to the surface of the process object to be processed depending on the nature of the surfactant can be kinematically and morphologically affect the growth of the manganese phosphate coating.
상기와 같이 본 발명의 수분산형 망간계 표면조정 조성물은 음이온성 계면활성제가 포함되는 물을 액상매체로 하고, 여기에 일정 크기를 가지는 제이인산망간염 수화물(MnHPO4·2.25H2O, Manganese Hydrogen Phosphate Hydrate)이 나노 분산되어 존재한다.As described above, the water-dispersed manganese-based surface adjustment composition of the present invention uses water containing an anionic surfactant as a liquid medium, and the manganese phosphate dihydrate (MnHPO 4 · 2.25H 2 O, Manganese Hydrogen) having a certain size therein. Phosphate Hydrate) is nano-dispersed.
한편, 본 발명의 수분산형 망간계 표면조정 조성물은 산(acid)을 추가적으로 포함할 수 있다. 이러한 산의 사용으로 결정성장의 방향성을 더욱 쉽게 통제할 수 있다. 즉, 표면조정제인 제이인산망간염 수화물(MnHPO4·2.25H2O, Manganese Hydrogen Phosphate Hydrate)의 분산 매체가 반드시 순수한 물일 필요는 없다.On the other hand, the water-dispersible manganese-based surface adjustment composition of the present invention may further include an acid (acid). The use of these acids makes it easier to control the direction of crystal growth. That is, the dispersion medium of manganese phosphate dihydrate (MnHPO 4 .2.25H 2 O, Manganese Hydrogen Phosphate Hydrate), which is a surface modifier, is not necessarily pure water.
상기 산(acid)으로는 피로인산, 인산, 제일인산 또는 제이인산 등을 선택사용할 수 있으며, 산의 사용량은 전체 조성물 중 0.1 ∼ 30 중량%, 바람직하기로는 1 ∼ 10 중량% 사용할 수 있다. 이때, 사용량이 30 중량%를 초과하면 장기 보관시 첨가된 고형분과 계면활성제에서 매우 느린 화학적 변질 반응에 의한 색상과 같은 외관상의 변화를 일으킬 수 있으므로 주의한다.As the acid, pyrophosphoric acid, phosphoric acid, monophosphoric acid, or diphosphoric acid may be selected and used. The amount of acid may be used in an amount of 0.1 to 30% by weight, preferably 1 to 10% by weight, in the total composition. At this time, if the amount of use exceeds 30% by weight, it may be a change in appearance, such as color due to a very slow chemical alteration reaction in the solids and surfactant added during long-term storage.
상기 산 외에 본 발명의 수분산형 망간계 표면조정 조성물은 본 발명의 목적을 저해하지 않는 범위 내에서 당업자의 선택에 의하여 당 분야에서 통상적으로 사용하는 기능성 첨가물을 추가적으로 사용할 수 있음은 자명하다.In addition to the acid, it is apparent that the water-dispersible manganese-based surface adjustment composition of the present invention may additionally use functional additives commonly used in the art by the choice of those skilled in the art within the scope of not impairing the object of the present invention.
이하, 실시예에 의하여 본 발명을 구체적으로 설명하겠는바, 다음 실시예에 의하여 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited by the following Examples.
비교예Comparative example 1 One
탄소강(carbon steel) 시편 표면을 탈지 처리하고 수세하여 17 %의 염산으로 산세한 후, 어떤 종류의 표면 조정제도 투입하지 않고 직접 인산망간 피막을 성장시켰다. 이렇게 성장된 인산망간 피막 시편의 주사전자현미경(scanning electron microscope)사진을 첨부도면 도 1에 나타내었다. The surface of the carbon steel specimen was degreased, washed with water and pickled with 17% hydrochloric acid, and the manganese phosphate coating was grown directly without adding any surface conditioner. A scanning electron microscope photograph of the grown manganese phosphate coating specimen is shown in FIG. 1.
도 1에서 보는 바와 같이, 규칙성이 없는 무정형의 인산망간 피막체가 표면에 형성된 것을 확인할 수 있다.As shown in FIG. 1, it can be seen that an amorphous manganese phosphate coating body having no regularity is formed on the surface.
비교예Comparative example 2 2
제이인산망간염 수화물 분말을 이용하여 탄소강 표면을 상기 비교예 1과 같이 탈지, 수세, 산세 처리한 후 표면 조정 처리하였다. 이때 표면조정제로서 제이인산망간염 수화물 분말 0.3 중량%와 피로인산 0.3 중량%를 물과 혼합하여 사용하였다. 이렇게 만들어진 표면조정액에 전처리된 탄소강 시편을 담근 후, 피막화 공정을 진행하여 인산망간 결정성 피막을 형성시켰으며, 얻어진 해당 처리 시편의 주사전자현미경 사진을 첨부도면 도 2에 나타내었다. Using manganese phosphate hydrate powder, the carbon steel surface was subjected to degreasing, washing with water, and pickling as in Comparative Example 1, followed by surface adjustment treatment. At this time, 0.3 wt% manganese phosphate dihydrate powder and 0.3 wt% pyrophosphate were mixed with water as a surface conditioner. After soaking the pretreated carbon steel specimen in the surface adjustment liquid thus prepared, a film forming process was performed to form a crystalline manganese phosphate coating, and a scanning electron micrograph of the obtained treated specimen was shown in FIG. 2.
도 2에서 보는 바와 같이, 표면조정 공정에 의하여 최종 형성된 인산망간 피막의 형태학(morphology)적 구조가 크게 달라지며, 결정성 그레인의 형성이 미시적 으로 균일화되고 인산망간의 피막 형성이 더 치밀해짐을 알 수 있다.As shown in FIG. 2, the morphology structure of the manganese phosphate film finally formed by the surface adjustment process is greatly changed, and the formation of crystalline grains is microscopically uniformed, and the film formation is more dense. Can be.
실시예Example 1 One
분산제로서 다가카르복시산(polycarboxylic acid) 형태의 제품(산노프코사, HS-dispersant 5801) 0.45 중량%를 포함하는 수용액(aqueous solution)에 제이인산망간염 수화물 4.5 중량%를 분산시켰으며, 이때 분산된 제이인산망간염 수화물의 평균입도는 광산란법으로 크기를 측정한 결과 약 300 nm 가량이고, 입도분포는 1㎛ 이상의 분율이 10 % 미만으로 나타났다.As a dispersant, 4.5 wt% of manganese phosphate dihydrate was dispersed in an aqueous solution containing 0.45 wt% of a polycarboxylic acid type product (Sanoff Co., HS-dispersant 5801). The average particle size of manganese phosphate hydrate was about 300 nm as measured by the light scattering method, and the particle size distribution was less than 10%.
비교예 2의 제이인산망간염 수화물 분말 대신 상기 제조한 제이인산망간염 수화물을 나노 수분산시킨 표면 조정제 조성물을 이용하여 표면조정 공정을 진행하고 이후에 인산망간 피막화 공정을 진행하였다. Instead of the manganese phosphate hydrate powder of Comparative Example 2, a surface adjustment process was performed using a surface modifier composition obtained by nano-dispersing the manganese phosphate hydrate prepared above, followed by a manganese phosphate coating process.
이를 이용하여 제작된 인산망간 피막화 공정시편의 주사전자현미경 사진을 첨부도면 도 3에 나타내었다.A scanning electron micrograph of a manganese phosphate encapsulation process specimen prepared using the same is shown in FIG. 3.
도 3에 나타낸 바와 같이, 0.5 ㎛ 내외의 균질한 결정성 인산망간 피막이 형성된 것을 확인할 수 있다.As shown in FIG. 3, it can be seen that a homogeneous crystalline manganese phosphate coating of about 0.5 μm was formed.
실시예Example 2 2
분산제로서 다가카르복시산(polycarboxylic acid) 형태의 제품(산노프코사, HS-dispersant 2026S) 0.06 중량%를 포함하는 수용액(aqueous solution)에 제이인산망간염 수화물 0.6 중량%를 분산시켰으며, 이때 분산된 제이인산망간염 수화물의 평균입도는 광산란법으로 크기를 측정한 결과 약 400 nm 가량이고, 입도분포는 1㎛ 이상의 분율이 10 % 미만으로 나타났다.As a dispersant, 0.6 wt% of manganese phosphate dihydrate was dispersed in an aqueous solution containing 0.06 wt% of a polycarboxylic acid type product (Sanoff Co., HS-dispersant 2026S). The average particle size of manganese phosphate hydrate was about 400 nm as measured by the light scattering method, and the particle size distribution was less than 10%.
상기 조성물을 사용하여 상기 실시예 1과 동일한 방법으로 인산망간 피막을 탄소강 표면에 성장시켰다. Using the composition, a manganese phosphate coating was grown on the surface of the carbon steel in the same manner as in Example 1.
이를 이용하여 제작된 인산망간 피막화 공정시편의 주사전자현미경 사진을 첨부도면 도 4에 나타내었다.A scanning electron micrograph of a manganese phosphate encapsulation process specimen prepared using the same is shown in FIG. 4.
도 4에 나타낸 바와 같이, 0.5 ㎛ 내외의 균질한 결정성 인산망간 피막이 형성된 것을 확인할 수 있다.As shown in FIG. 4, it can be seen that a homogeneous crystalline manganese phosphate coating of about 0.5 μm was formed.
즉, 매우 적은 양의 표면조정 활성 물질을 투입하고도 원하는 인산망간 피막을 미세 균일하고 치밀하게 결정 성장을 유도할 수 있음을 확인하였다.That is, it was confirmed that even if a very small amount of surface-adjusting active substance is added, the desired manganese phosphate coating can induce crystal growth finely and precisely.
실시예Example 3 3
상기 실시예 1의 실험을 굴곡이 심한 탄소강 재질의 미세 볼트에 적용하여 인산망간 피막을 성장시켰다. 볼트 머리(head) 부위의 모서리 각진 표면을 주사전자현미경으로 저배율에서 관찰한 결과를 첨부도면 도 5에 나타내었다.The manganese phosphate coating was grown by applying the experiment of Example 1 to a fine bolt made of carbon steel with high bend. The result of observing the angled surface of the edge of the bolt head at low magnification with a scanning electron microscope is shown in FIG. 5.
도 5에 나타낸 바와 같이 매우 치밀한 미세 결정 피막체가 형성되었음을 확인할 수 있었다.As shown in FIG. 5, it was confirmed that a very dense microcrystalline coating body was formed.
실시예Example 4 4
상기 실시예 1의 표면조정제 조성물에 4.5 중량%의 피로인산이 혼합된 새로 운 조성물을 제조하여, 이를 상온에서 1개월간 방치하였다. 침전현상이 없이 분산상이 안정되게 유지됨을 확인하였으며, 이를 이용하여 인산망간 피막제조실험을 수행하였다. 4.5 wt% of pyrophosphate was mixed with the surface modifier composition of Example 1 to prepare a new composition, which was left at room temperature for 1 month. It was confirmed that the dispersed phase remained stable without precipitation phenomenon, and manganese phosphate coating experiment was performed using this.
그 결과 상기 실시예 1과 유사한 균일하고 치밀한 미세 결정 형태로 인산망간 피막이 형성됨을 확인하였다.As a result, it was confirmed that a manganese phosphate coating film was formed in a uniform and dense fine crystal form similar to Example 1.
상술한 바와 같이, 본 발명에 의하면 인산망간 피막 결정체의 입도를 균일하게 하고 그 크기 범위가 0.3 ∼ 1 ㎛로 미세하게 성장되도록 유도할 수 있으며, 복합한 구조의 미세 굴곡 정밀가공 부분에 대해서도 균일한 인산 망간 피막을 성장시킬 수 있으므로, 인산망간 피막 성장후 방청 처리하면 내식성, 내구성, 내후성 측면에서 개선된 성능을 발현하게 할 수 있다.As described above, according to the present invention, the particle size of the manganese phosphate coating crystal can be made uniform, and its size range can be induced to be finely grown to 0.3 to 1 μm, and even for fine bending precision processing parts having a complex structure. Since the manganese phosphate film can be grown, anti-rust treatment after the manganese phosphate film can be grown to give improved performance in terms of corrosion resistance, durability, and weather resistance.
또한, 표면 조정제인 제이인산망간염 수화물의 결정 성장에 대한 참여효율을 향상시킬 수 있으므로 발생하는 슬러지 폐기물을 저감할 수 있는 부가적인 효과를 기대할 수 있다.In addition, it is possible to improve the participation efficiency of the crystal growth of the manganese phosphate dianhydride hydrate surface treatment agent can be expected to have an additional effect to reduce the sludge waste generated.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060083113A KR100741567B1 (en) | 2006-08-30 | 2006-08-30 | Surface-conditioning compositions containing manganese hydrogen phosphate hydrate and their manufacturing methods |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060083113A KR100741567B1 (en) | 2006-08-30 | 2006-08-30 | Surface-conditioning compositions containing manganese hydrogen phosphate hydrate and their manufacturing methods |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100741567B1 true KR100741567B1 (en) | 2007-07-23 |
Family
ID=38499251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020060083113A KR100741567B1 (en) | 2006-08-30 | 2006-08-30 | Surface-conditioning compositions containing manganese hydrogen phosphate hydrate and their manufacturing methods |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100741567B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101653688B1 (en) * | 2015-05-27 | 2016-09-02 | 김영량 | Eco-Friendly Phosphate-Manganese Type Surface Conditioner for Car Components and Chemical Conversion Treatment Methods Using Thereof |
US9809744B2 (en) | 2014-12-09 | 2017-11-07 | Samsung Electronics Co., Ltd. | Fluoride phosphor composite, method of manufacturing fluoride phosphor composite, white light emitting apparatus, display apparatus, lighting device, and electronic device |
CN109763122A (en) * | 2019-01-23 | 2019-05-17 | 安徽启明表面技术有限公司 | Two-component manganese systems table tune composition and table tune liquid |
CN114606488A (en) * | 2022-03-29 | 2022-06-10 | 东莞市精诚环保科技有限公司 | Novel efficient manganese series surface conditioner and preparation method and application thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020060058A (en) * | 2001-01-09 | 2002-07-16 | 사또미 유따까 | Surface conditioning agent for phosphating treatment and method therefor |
-
2006
- 2006-08-30 KR KR1020060083113A patent/KR100741567B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020060058A (en) * | 2001-01-09 | 2002-07-16 | 사또미 유따까 | Surface conditioning agent for phosphating treatment and method therefor |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9809744B2 (en) | 2014-12-09 | 2017-11-07 | Samsung Electronics Co., Ltd. | Fluoride phosphor composite, method of manufacturing fluoride phosphor composite, white light emitting apparatus, display apparatus, lighting device, and electronic device |
US10851294B2 (en) | 2014-12-09 | 2020-12-01 | Samsung Electronics Co., Ltd. | Fluoride phosphor composite, method of manufacturing fluoride phosphor composite, white light emitting apparatus, display apparatus, lighting device, and electronic device |
KR101653688B1 (en) * | 2015-05-27 | 2016-09-02 | 김영량 | Eco-Friendly Phosphate-Manganese Type Surface Conditioner for Car Components and Chemical Conversion Treatment Methods Using Thereof |
CN109763122A (en) * | 2019-01-23 | 2019-05-17 | 安徽启明表面技术有限公司 | Two-component manganese systems table tune composition and table tune liquid |
CN114606488A (en) * | 2022-03-29 | 2022-06-10 | 东莞市精诚环保科技有限公司 | Novel efficient manganese series surface conditioner and preparation method and application thereof |
CN114606488B (en) * | 2022-03-29 | 2023-11-28 | 东莞市精诚环保科技有限公司 | Efficient manganese series surface conditioner and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Balaraju et al. | Structure and phase transformation behaviour of electroless Ni–P composite coatings | |
CN100510179C (en) | Concentrated solution for preparing surface conditioner, surface conditioner and surface conditioning method | |
EP1566466B1 (en) | Surface conditioner and method of surface conditioning | |
Tamilselvi et al. | Development of nano SiO2 incorporated nano zinc phosphate coatings on mild steel | |
KR100741567B1 (en) | Surface-conditioning compositions containing manganese hydrogen phosphate hydrate and their manufacturing methods | |
Zhou et al. | Novel microwave synthesis of amorphous calcium phosphate nanospheres | |
US8119239B2 (en) | Surface-conditioning composition comprising metal phosphate particles, metal alkoxide and stabilizer, and method of production thereof | |
US7722710B2 (en) | Surface-conditioning composition, method for production thereof, and surface conditioning method | |
EP1959031A1 (en) | Surface conditioners and method of surface condition | |
MY146543A (en) | Method and agent for treating cooling water | |
WO2007089015A1 (en) | Composition for surface conditioning and surface conditioning method | |
CN1470672A (en) | Surface conditioner containing zinc phosphate, phosphate chemical conversion treatment steelboard, coating steelboard and zinc phosphate dispersion liquid | |
Arthanareeswari et al. | A low temperature nano TiO2 incorporated nano zinc phosphate coating on mild steel with enhanced corrosion resistance | |
JPWO2007020985A1 (en) | Surface conditioning composition, method for producing the same, and surface conditioning method | |
CN109609937B (en) | Method for preparing composite phosphating film by doping inorganic nanoparticles | |
Sandu et al. | A comparative study on surface structure of thin zinc phosphates layers obtained using different deposition procedures on steel | |
CN114538786A (en) | Frosting liquid and preparation method thereof, frosted glass and glass cover plate | |
US8580221B2 (en) | Chromium (III) carbonate and process for producing the same | |
Guo et al. | Kinetic study of electroless cobalt deposition on WC particles | |
US4225352A (en) | Anti-corrosive pigment and anti-corrosive aqueous paint | |
Sahal | Characterization of Ni–P coating on AZ91D magnesium alloy with surfactants and nano-additives | |
EP0962505A1 (en) | Inhibited metal pigment pastes containing molybdate pigments and suitable for aqueous coating compositions | |
US6159437A (en) | Method for manufacturing an aptatite slurry | |
Hu et al. | Preparation of bone-like composite coating using a modified simulated body fluid with high Ca and P concentrations | |
JPH06322287A (en) | Surface-treated composite aluminum powder and preparation of surface-treated composite aluminum flake using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130515 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20140626 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20150706 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20160708 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20170713 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20190708 Year of fee payment: 13 |