KR100734926B1 - Sulfide compound removing and methane and carbon dioxide separating apparatus using the fe-edta - Google Patents

Sulfide compound removing and methane and carbon dioxide separating apparatus using the fe-edta Download PDF

Info

Publication number
KR100734926B1
KR100734926B1 KR1020060060119A KR20060060119A KR100734926B1 KR 100734926 B1 KR100734926 B1 KR 100734926B1 KR 1020060060119 A KR1020060060119 A KR 1020060060119A KR 20060060119 A KR20060060119 A KR 20060060119A KR 100734926 B1 KR100734926 B1 KR 100734926B1
Authority
KR
South Korea
Prior art keywords
reactor
carbon dioxide
methane
partition
reaction
Prior art date
Application number
KR1020060060119A
Other languages
Korean (ko)
Inventor
이인화
박주영
설명수
김선일
심윤
Original Assignee
이인화
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이인화 filed Critical 이인화
Priority to KR1020060060119A priority Critical patent/KR100734926B1/en
Application granted granted Critical
Publication of KR100734926B1 publication Critical patent/KR100734926B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • B01D53/8612Hydrogen sulfide
    • B01D53/8618Mixtures of hydrogen sulfide and carbon dioxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

A device for removing sulfur compounds and separating methane and carbon dioxide by using a liquid phase iron chelate catalyst is provided to selectively remove ammonia, hydrogen sulfide and other odorous substances from gases generated in a landfill and purify methane and carbon dioxide to a high purity. A device for removing sulfur compounds and separating methane and carbon dioxide by using a liquid phase iron chelate catalyst comprises: a rectangular case type reactor body(90); a first partition(92) for dividing a first reactor(10) and a second reactor(20), and a third reactor(30) and a fourth reactor(40) with the first partition being spaced apart from a lower part(94) of the reactor body in a predetermined distance; a second partition(91) for dividing the first reactor and the second reactor; a third partition(93) for dividing the third reactor and the fourth reactor; a connecting plate(95) which connects lower ends of the second partition and the third partition to form a circulation path; a liquid phase iron chelate catalyst filled in the first reactor to the fourth reactor; a gas inlet(50) formed on a lower portion of the first reactor; a sulfur collection port(88) mounted on the lower plate; a methane collection port(80) formed in an upper part of the first and second reactors; an air inlet(60) formed in a lower portion of the third reactor; and a carbon dioxide collection port(85) formed in an upper part of the third and fourth reactors.

Description

액상 철 킬레이트 촉매를 이용한 황화합물 제거 및 메탄과 이산화탄소 분리장치{SULFIDE COMPOUND REMOVING AND METHANE AND CARBON DIOXIDE SEPARATING APPARATUS USING THE Fe-EDTA}Sulfur Compound Removal and Methane and Carbon Dioxide Separation System Using Liquid Iron Chelate Catalysts

도 1은 본 발명의 일실시 예에 의한 액상 철 킬레이트 촉매를 이용한 황화합물 제거 및 메탄과 이산화탄소 분리장치의 사시도,1 is a perspective view of a sulfur compound removal and methane and carbon dioxide separation apparatus using a liquid iron chelate catalyst according to an embodiment of the present invention,

도 2는 본 발명의 일실시 예에 의한 액상 철 킬레이트 촉매를 이용한 황화합물 제거 및 메탄과 이산화탄소 분리장치의 개략적인 종단면도.Figure 2 is a schematic longitudinal cross-sectional view of the sulfur compound removal and methane and carbon dioxide separation apparatus using a liquid iron chelate catalyst according to an embodiment of the present invention.

< 도면의 주요 부분에 대한 부호의 설명 ><Description of Symbols for Main Parts of Drawings>

10: 제1 반응조 12, 14, 32: 투시창10: first reactor 12, 14, 32: see-through window

20: 제2 반응조 30: 제3 반응조20: second reactor 30: third reactor

40: 제4 반응조 50: 가스주입구40: fourth reactor 50: gas inlet

60: 공기주입구 70, 71, 72, 73: 시료채취구60: air inlet 70, 71, 72, 73: sample collection port

80: 메탄 포집구 81, 86: 압력계80: methane collecting port 81, 86: pressure gauge

85: 이산화탄소 포집구 88: 황 수집구85: carbon dioxide collector 88: sulfur collector

90: 반응기본체 91, 92, 93: 격벽90: reaction body 91, 92, 93: bulkhead

94: 하부판 95: 연결판94: lower plate 95: connecting plate

96: 순환로 99: 지지대96: circuit 99: support

본 발명은 오염가스 처리 및 메탄과 이산화탄소 분리장치에 관한 것으로, 더욱 상세하게는 매립지 또는 혐기성 소화조에서 발생하는 악취발생가스에서 황화합물을 처리할 뿐만 아니라, 메탄과 이산화탄소를 분리하여 포집할 수 있는 액상 철 킬레이트 촉매를 이용한 황화합물 제거 및 메탄과 이산화탄소 분리장치에 관한 것이다.The present invention relates to a pollutant gas treatment and a methane and carbon dioxide separation apparatus, and more particularly, liquid iron that can not only process sulfur compounds in the odor generating gas generated from landfills or anaerobic digestion tanks, but also to separate and capture methane and carbon dioxide The present invention relates to a removal of sulfur compounds using a chelate catalyst and a separation device of methane and carbon dioxide.

일반적으로 매립지 또는 혐기성 소화조에서는 폐기물 중에 함유되어 있는 유기물질이 분해됨에 따라 메탄가스와 이산화탄소 및 미량의 유해물질을 포함한 악취성분이 발생한다.In general, in landfills or anaerobic digesters, organic substances contained in waste are decomposed, resulting in odorous components including methane gas, carbon dioxide and traces of harmful substances.

이 중 메탄가스는 적절한 분리 및 정화과정을 통하여 연료자원으로 활용될 수 있음에도 불구하고 대기 중으로 확산되어 대기환경을 오염시키고, 대기 중으로 휘산되는 도중 폭발이나 화재를 일으킬 뿐만 아니라, 토양 내 산소의 고갈로 인한 식물의 고사를 야기하는 등 환경적으로 위해한 물질로 작용하고 있다.Although methane gas can be used as a fuel resource through proper separation and purification process, it can diffuse into the atmosphere, pollute the atmosphere, and cause explosion or fire during volatilization to the atmosphere. It acts as an environmentally harmful substance, causing death of plants.

또한 최근에는 메탄가스와 이산화탄소가 지구온난화에 미치는 영향으로, 중요한 환경과제로 대두되고 있으며, 이러한 가스에 의해 지구온난화를 야기시켜 환경변화 및 생태계의 구조변화를 일으키는 원인이 되고 있다.In addition, recently, methane gas and carbon dioxide has been an important environmental problem due to the effects of global warming, and these gases cause global warming, causing environmental changes and structural changes in ecosystems.

한편, 바이오가스는 하수처리장 음식물쓰레기처리장 등에서 배출되는 혐기성소화조발생가스(Anaerobic Digestion reactor Gas) 및 매립장발생가스(Landfill Gas, 이하 LFG라 함)로 대별할 수 있으며, 가스성분에서 큰 차이를 보이지 않고 메탄이 약 50 ~ 60%, 이산화탄소가 약 39 ~ 49%, 기타 황화합물 및 질소화합물 등의 악취발생 가스로 구성되어 있다.On the other hand, biogas can be classified into anaerobic digestion reactor gas and landfill gas (LFG) discharged from sewage treatment plant food waste treatment plant, etc. It is composed of about 50-60% methane, about 39-49% carbon dioxide, and other odorous gases such as sulfur and nitrogen compounds.

이러한 악취발생 가스에서 황화합물과 질소화합물을 제거하면 고순도의 메탄과 이산화탄소의 혼합가스를 생산할 수 있으나, 이산화탄소와 메탄을 분리하는 기술이 필요하며, 가스정제시 황화합물을 포함한 휘발성유기화합물(VOCs)이 함유될 경우 그 활용도가 떨어진다. 따라서 가스정화공정의 새로운 기술이 요구되는 실정이다.Removal of sulfur compounds and nitrogen compounds from these odorous gases can produce a high-purity mixture of methane and carbon dioxide, but it requires a technology that separates carbon dioxide and methane, and contains volatile organic compounds (VOCs) including sulfur compounds during gas purification. If it does, its utilization drops. Therefore, a new technology of the gas purification process is required.

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 본 발명의 목적은 내부순환식 다판막기포탑 반응기를 이용하여 매립장에서 발생하는 가스에서 암모니아, 황화수소, 기타 악취물질을 선택적으로 제거하고 메탄과 이산화탄소를 고순도로 정제할 수 있는 액상 철 킬레이트 촉매를 이용한 황화합물 제거 및 메탄과 이산화탄소 분리장치를 제공하는 것이다.The present invention is to solve the above problems, an object of the present invention is to selectively remove ammonia, hydrogen sulfide, and other odorous substances from the gas generated in the landfill using an internal circulation multi-bubble bubble column reactor to remove methane and carbon dioxide It is to provide a sulfur compound removal and methane and carbon dioxide separation apparatus using a liquid iron chelate catalyst that can be purified with high purity.

본 발명에 의한 액상 철 킬레이트 촉매를 이용한 황화합물 제거 및 메탄과 이산화탄소 분리장치는, 일정 높이로 형성된 사각통상의 반응기본체(90)와, 상기 반응기본체(90)의 내측 상부에서 반응기본체(90)의 저면을 형성하는 하부판(94)과 일정 거리를 두고 장착되어 제1 반응조(10)와 제2 반응조(20) 및 제3 반응조(30)와 제4 반응조(40)를 구획하는 제1 격벽(92)과, 상기 제1 반응조(10)와 제2 반응조(20)를 상기 반응기본체(90)의 하부에서 상단과 일정 거리를 두고 구획하는 제2 격벽(91)과, 상기 제3 반응조(30)와 제4 반응조(40)를 상기 반응기본체(90)의 하부에서 상단과 일정 거리를 두고 구획하는 제3 격벽(93)과, 상기 제2 격벽(91)의 하단과 제3 격벽(93)의 하단을 연결하고 상기 하부판(94) 일정 거리로 이격되어 순환로(96)를 형성하는 연결판(95)과, 상기 제1 반응조(10) 내지 제4 반응조(40)에 충진되는 액상 철 킬레이트 촉매와, 상기 제1 반응조(10)의 하부에 상기 충진된 액상 철 킬레이트 촉매와 접촉되도록 악취발생가스가 유입되는 가스주입구(50)와, 상기 악취발생가스에서 석출된 고체황을 수집하기 위해 상기 하부판(94)에 장착된 황 수집구(88)와, 상기 가스주입구(50)를 통해 주입된 가스에서 메탄을 포집하기 위해 상기 제1 반응조(10) 및 제2 반응조(20)의 상부에 형성된 메탄 포집구(80)와, 상기 제3 반응조(30)의 하부에 공기를 투입하기 위한 공기주입구(80)와, 상기 제3 반응조 및 제4 반응조(40)의 상부에 상기 투입된 공기에 의해 탈기된 이산화탄소를 포집하기 위한 이산화탄소 포집구(85)를 포함하여 구성되는 것을 특징으로 한다.The sulfur compound removal and methane and carbon dioxide separation apparatus using a liquid iron chelate catalyst according to the present invention, the rectangular cylindrical reaction base body 90 formed at a predetermined height, and the reaction base body 90 of the inside of the reaction base body 90 The first partition wall 92 that is mounted at a predetermined distance from the lower plate 94 forming the bottom surface to partition the first reactor 10, the second reactor 20, the third reactor 30, and the fourth reactor 40. ), A second partition wall 91 partitioning the first reactor 10 and the second reactor 20 at a lower distance from the lower portion of the reaction body 90 at a predetermined distance, and the third reactor 30. And a third partition 93 for dividing the fourth reactor 40 at a lower distance from the lower portion of the reaction body 90 at a predetermined distance, and a lower end of the second partition 91 and a third partition 93 of the third partition 93. Connecting plate 95 and the first reactor 10 to connect the lower end and the lower plate 94 spaced apart a predetermined distance to form a circulation path 96 A liquid iron chelate catalyst filled in the fourth reaction tank 40, a gas inlet 50 into which the odor generating gas is introduced so as to be in contact with the liquid iron chelate catalyst filled in the lower portion of the first reactor 10, and The first reactor for collecting methane from the sulfur collecting port 88 mounted on the lower plate 94 and the gas injected through the gas inlet 50 to collect solid sulfur precipitated in the odor generating gas ( 10) and the methane collecting port 80 formed in the upper portion of the second reaction tank 20, the air inlet 80 for introducing air into the lower portion of the third reaction tank 30, the third reaction tank and the fourth It is characterized in that it comprises a carbon dioxide collecting port 85 for collecting the carbon dioxide degassed by the air introduced into the upper portion of the reactor (40).

이때 상기 제2 반응조(20)와 제4 반응조(40)의 횡단면적은 상기 제1 반응조(10)와 제3 반응조(30)의 횡단면적의 1/2이 되도록 각각 형성되는 것이 바람직하다.In this case, the cross sectional area of the second reaction vessel 20 and the fourth reaction vessel 40 is preferably formed to be 1/2 of the cross sectional area of the first reaction vessel 10 and the third reaction vessel 30, respectively.

이하, 첨부된 도면을 참조하여 본 발명의 액상 철 킬레이트 촉매를 이용한 황화합물 제거 및 메탄과 이산화탄소 분리장치를 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail the sulfur compound removal and methane and carbon dioxide separation apparatus using the liquid iron chelate catalyst of the present invention.

도 1은 본 발명의 일실시 예에 의한 액상 철 킬레이트 촉매를 이용한 황화합물 제거 및 메탄과 이산화탄소 분리장치의 사시도이고, 도 2는 본 발명의 일실시 예에 의한 액상 철 킬레이트 촉매를 이용한 황화합물 제거 및 메탄과 이산화탄소 분리장치의 개략적인 종단면도이다.1 is a perspective view of a sulfur compound removal and methane and carbon dioxide separation apparatus using a liquid iron chelate catalyst according to an embodiment of the present invention, Figure 2 is a sulfur compound removal and methane using a liquid iron chelate catalyst according to an embodiment of the present invention This is a schematic longitudinal cross-sectional view of a carbon dioxide separation unit.

본 발명의 바람직한 실시 예에 의한 액상 철 킬레이트 촉매를 이용한 황화합물 제거 및 메탄과 이산화탄소 분리장치는 상기 도 1 및 도 2에 도시된 바와 같이,Sulfur compound removal and methane and carbon dioxide separation apparatus using a liquid iron chelate catalyst according to a preferred embodiment of the present invention, as shown in Figure 1 and 2,

일정 높이로 형성된 사각통상의 반응기본체(90)와, 상기 반응기본체(90)를 지지하는 지지대(99)를 포함하는 내부순환식 다판막 기포탑 반응기로 구성된다.It consists of an inner-circulating multi-bubble bubble column reactor including a rectangular cylindrical reaction body 90 formed at a predetermined height and a supporter 99 supporting the reaction body 90.

이때 상기 반응기본체(90) 내부는 3개의 격벽(91, 92, 93)으로 제1 반응조(10), 제2 반응조(20), 제3반응조(30), 제4 반응조(40)를 구성하고, 내부에 충진되는 액상촉매가 순환되는 구조로 형성된다. 다시 말해, 제1 격벽(92)으로 반응기본체(90)의 상부에서 하부판(94)과 일정 거리를 두고 장착되어 제1 반응조(10)와 제2 반응조(20) 및 제3 반응조(30)와 제4 반응조(40)를 구획하고, 다시 제1 반응조(10)와 제2 반응조(20) 및 제3 반응조(30)와 제4 반응조(40)를 반응기본체(90)의 하부에서 상단과 일정 거리를 두고 제2 격벽(91) 및 제3 격벽(93)이 장착되어 구획한다. 이때 상기 제1 반응조(10)와 제4 반응조(40)의 하단부는 연결판(95)으로 연결되고, 상기 반응기본체(90)의 하부판(94)과 일정 거리로 순환로(96)를 형성하여 액상촉매가 연속적으로 순환하도록 한다. 한편, 베드 익스펜션(bed expansion)에 의한 오버플로우(over flow) 현상을 막기 위해 제1 반응조(10) 횡단면적의 1/2이 되도록 제2 반응조(20)를 구성하는 것이 바람직하다. 상기 제3 반응조(30)와 제4 반응조(40)도 또한 동일하게 구성하는 것이 바람직하다. 또한, 반응기 내 액상촉매의 순환속도는 액상수위(over flow liquid level)와 주입되는 기체양으로부터 결 정된다.At this time, the reaction body 90 has three partitions 91, 92, and 93 to constitute a first reactor 10, a second reactor 20, a third reactor 30, and a fourth reactor 40. , Is formed in a structure that the liquid catalyst is filled in the circulation. In other words, the first partition 92 is mounted at a predetermined distance from the lower plate 94 at an upper portion of the reaction body 90 so that the first reactor 10, the second reactor 20, and the third reactor 30 The fourth reactor 40 is partitioned, and the first reactor 10, the second reactor 20, and the third reactor 30 and the fourth reactor 40 are fixed to the upper end and the bottom of the reaction body 90. At a distance, the second partition 91 and the third partition 93 are mounted and partitioned. At this time, the lower end portions of the first reaction vessel 10 and the fourth reaction vessel 40 are connected to the connecting plate 95, and the circulation plate 96 is formed at a predetermined distance from the lower plate 94 of the reaction body 90 to form a liquid phase. Allow the catalyst to circulate continuously. On the other hand, it is preferable to configure the second reactor 20 so as to be 1/2 of the cross-sectional area of the first reactor 10 in order to prevent the overflow phenomenon caused by bed expansion. It is preferable to also comprise the said 3rd reaction tank 30 and the 4th reaction tank 40 similarly. In addition, the circulation rate of the liquid catalyst in the reactor is determined from the over flow liquid level and the amount of gas injected.

또한, 상기 하부판(94)의 첨단에는 내부에서 석출되는 황을 제거하기 위한 황 수집구(88)가 장착되고, 상기 제1 반응조(10)와 제2 반응조(20)의 상단부에는 메탄을 포집하기 위한 메탄 포집구(80) 및 압력계(81)가 장착되고, 상기 제3 반응조(30)와 제4 반응조(40)의 상단부에는 이산화탄소를 포집하기 위한 이산화탄소 포집구(80) 및 압력계(86)가 장착된다. 한편, 상기 제1 반응조(10)의 하단부에는 외부에서 악취발생가스를 주입하기 위한 가스주입구(50)가 장착되고, 제3 반응조(30)의 하단부에는 공기를 주입하기 위한 공기주입구(60)가 장착된다. 또한, 상기 제1 반응조(10) 내지 제4 반응조(40)의 중앙부에는 시료를 채취하기 위한 시료채취구(70, 71, 72, 73)가 각각 장착된다. 또한 상기 제1 반응조(10)와 제3 반응조(30)에는 내부의 반응을 용이하게 관찰하도록 투시창(12, 14, 32)이 형성되는 것이 바람직하다.In addition, the tip of the lower plate 94 is equipped with a sulfur collector 88 for removing sulfur precipitated from the inside, and collecting the methane at the upper end of the first reactor 10 and the second reactor (20). A methane collecting port 80 and a pressure gauge 81 are installed, and upper ends of the third and fourth reaction tanks 30 and 40 are provided with a carbon dioxide collecting port 80 and a pressure gauge 86 for collecting carbon dioxide. Is mounted. On the other hand, the lower end of the first reaction tank 10 is equipped with a gas inlet 50 for injecting odor generating gas from the outside, the air inlet 60 for injecting air is provided at the lower end of the third reaction tank 30 Is mounted. In addition, sampling ports 70, 71, 72, and 73 for collecting a sample are mounted at the centers of the first and fourth reactors 10 through 40, respectively. In addition, it is preferable that the sight windows 12, 14, and 32 are formed in the first reactor 10 and the third reactor 30 to easily observe the reaction therein.

상기와 같이 구성된 본 발명의 작용효과를 설명하면, 먼저 상기 제1 반응조(10) 내지 제4 반응조(40)에는 액상촉매가 제2 격벽(91) 및 제3 격벽(93)의 선단부까지 충진된다.Referring to the effects of the present invention configured as described above, first, the first reaction tank (10) to the fourth reaction tank 40 is filled with a liquid catalyst to the front end of the second partition wall 91 and the third partition wall (93). .

악취발생가스가 가스주입구(50)를 통해 주입되면, 악취발생가스 중의 황화수소를 산화시켜 고체황으로 석출시켜 황 수집구(88)를 통해 배출하게 된다.When the malodor generating gas is injected through the gas inlet 50, the hydrogen sulfide in the malodor generating gas is oxidized and precipitated as solid sulfur to be discharged through the sulfur collecting port 88.

이러한 황화수소 산화공정은 염기성 용액에 황화수소를 흡수시켜 가스 상태로 회수하는 공정과 흡수된 용액 속에 존재하는 황화수소를 산소로 산화시켜 고체 황으로 회수하는 방법으로 구분할 수 있다. 이 가운데 액상 철 킬레이트 화합물을 이용한 황화수소 제거는 다음과 같다.The hydrogen sulfide oxidation process may be classified into a process of absorbing hydrogen sulfide in a basic solution and recovering it in a gas state, and a method of recovering solid sulfide by oxidizing hydrogen sulfide present in the absorbed solution with oxygen. Among these, hydrogen sulfide removal using a liquid iron chelate compound is as follows.

황화수소가 수용액 중에서 화학식 1과 같이 해리되므로 수용액 중의 황이온은 산소에 의하여 산화되어 고체 황으로 침전된다.Since hydrogen sulfide dissociates in the aqueous solution as in Chemical Formula 1, sulfur ions in the aqueous solution are oxidized by oxygen and precipitated as solid sulfur.

H2S(aq) H+ + HS- K1= 6.3 x 10-8 (at 25℃)H 2 S (aq) H + + HS - K 1 = 6.3 x 10 -8 (at 25 ° C)

HS- H+ + S2 - K2=1.3 x 10-12 (at 25℃)HS - H + + S 2 - K 2 = 1.3 x 10 -12 (at 25 ℃)

S2 - + ½ O2(aq) + H2O So + 2OH- S 2 - + ½ O 2 ( aq) + H 2 OS o + 2OH -

여기서, 황이온은 산소에 의해 고체 황으로 침전되므로 산화작용을 촉진하기 위해서는 금속촉매를 사용한다. 황화수소를 산화시키는 이들 금속이온은 황화수소 혹은 황이온과 친화력이 있어야 하며 산화-환원 반응(redox reaction)이 있어야 한다. 이러한 금속 이온으로 알려진 것은 Fe2 +Fe3 +, V4 +V5 +, Cu2 +Cu3 + 및 As2 +As3 + 등이 있다.Here, since sulfur ions are precipitated into solid sulfur by oxygen, a metal catalyst is used to promote oxidation. These metal ions that oxidize hydrogen sulfide must have affinity with hydrogen sulfide or sulfur ions and have a redox reaction. Known such metal ions are Fe 2 + Fe 3 + , V 4 + V 5 + , Cu 2 + Cu 3 + and As 2 + As 3 + .

상기와 같은 금속 이온은 수용액 중에서 황이온을 산화시키고 자신은 환원되며 용액 중의 산소에 의해 재차 산화되는 산화 환원 반응에 의한 촉매 작용을 한다고 볼 수 있다. 그러나 이들 금속 이온은 수용액 중의 황 이온과 반응하여 FeS, V2S5, CuS, As2S3 등의 침전물이 생성되어 촉매의 활성을 감소시키므로 촉매 역할을 수행하기 위해서는 이러한 침전물이 생성되지 않도록 하여야 하며 비소계와 바나듐 계 촉매의 경우 촉매 자체의 독성이 문제점으로 지적되어 왔다Such metal ions oxidize sulfur ions in an aqueous solution and can be regarded as catalyzed by a redox reaction which is reduced and is oxidized again by oxygen in the solution. However, these metal ions react with sulfur ions in aqueous solution to form FeS, V 2 S 5 , CuS, As 2 S 3 Since precipitates are formed to reduce the activity of the catalyst, it is necessary to prevent the formation of these precipitates in order to serve as a catalyst. In the case of arsenic and vanadium catalysts, the toxicity of the catalyst itself has been pointed out as a problem.

따라서 이러한 단점을 극복하기 위해 액상촉매를 이용하여 황화수소를 황산화물로 산화하는 연구들이 꾸준히 진행되고 있으며, 본 발명에서는 독성이 없고 환경에 무해한 철과 킬레이트로 EDTA나 NTA를 사용한다. 철 킬레이트는 안정한 착물로 황 침전물의 생성을 억제하면서 산화-환원 반응을 수행할 수 있기 때문에 황화수소의 산화반응에 널리 이용되고 있으며, 액상 철 킬레이트 촉매에 의한 황화수소 제거 기작은 다음과 같다.Therefore, studies to oxidize hydrogen sulfide to sulfur oxides using a liquid catalyst to overcome these disadvantages are steadily progressing. In the present invention, EDTA or NTA is used as toxic and harmless iron and chelate. Iron chelate is widely used in the oxidation reaction of hydrogen sulfide because it can perform the oxidation-reduction reaction while inhibiting the formation of sulfur precipitate as a stable complex, the mechanism of hydrogen sulfide removal by the liquid iron chelate catalyst is as follows.

H2S(g) ⇔ H2S(aq)H 2 S (g) ⇔ H 2 S (aq)

H2S(aq) + 2Fe3 +chelaten - → 2Fe2 +chelaten - + S↓ + 2H+ H 2 S (aq) + 2Fe 3 + chelate n - → 2Fe 2 + chelate n - + S ↓ + 2H +

환원된 촉매는 산소에 의하여 다시 재생된다.The reduced catalyst is regenerated by oxygen.

O2(g) ⇔ O2(aq)O 2 (g) ⇔ O 2 (aq)

4Fe2 +chelaten - + 2H2O + O2(aq) → 4Fe3 +chelaten - + 4OH- 4Fe 2 + chelate n - + 2H 2 O + O 2 (aq) → 4Fe 3 + chelate n - + 4OH -

한편, 상기와 같이 황화수소는 액상 철 킬레이트 촉매에 의해 제거되고, 이산화탄소, 암모니아, 및 기타가스는 액상촉매제에 용해되고, 메탄은 메탄 포집구(80)를 통해 포집된다. 그 후 용해된 악취발생가스는 제2 반응조(20)를 거쳐 제3 반응조(30)로 투입된다.Meanwhile, as described above, hydrogen sulfide is removed by the liquid iron chelate catalyst, carbon dioxide, ammonia, and other gases are dissolved in the liquid catalyst, and methane is collected through the methane collecting port 80. Thereafter, the dissolved malodor generating gas is introduced into the third reaction vessel 30 via the second reaction vessel 20.

상기 제3 반응조(30)에서는 공기주입구(60)를 통해 투입된 공기 중의 산소에 의해 이산화탄소는 탈기되어 이산화탄소 포집구(85)를 통해 포집된다.In the third reactor 30, carbon dioxide is degassed by oxygen in the air introduced through the air inlet 60 and collected through the carbon dioxide collecting port 85.

통상, 매립장의 혐기성가스는 메탄 약 50 ~ 60%, 이산화탄소 약 29~39%, 암모니아 약 0.1 ~ 0.5%, 황화수소 10 ~ 500ppm 및 기타가스로 구성된바 이들 가스에서 상술한 바와 같이 고순도의 메탄과 이산화탄소를 정제할 수 있다.Typically, the anaerobic gas of a landfill consists of about 50 to 60% of methane, about 29 to 39% of carbon dioxide, about 0.1 to 0.5% of ammonia, 10 to 500 ppm of hydrogen sulfide and other gases, as described above. Can be purified.

한편, 본 발명은 반응기본체(90)와 격벽(91, 92, 39) 등을 액상촉매에 의한 부식을 방지하기 위하여 스테인레스 스틸(stainless steel)을 사용하고, 높이는 1,500mm, 총면적은 180L로 제작하였다.Meanwhile, the present invention uses stainless steel to prevent corrosion of the reaction body 90 and the partition walls 91, 92, and 39 by the liquid catalyst, and the height is 1,500 mm and the total area is 180 L. .

본 발명은 악취발생가스를 처리한 후 처리가스를 포집할 수 있으며 반응기에 펌프나 파이프라인 등이 없어 스케일링등에 의한 문제가 발생되지 않고 대규모의 가스를 하나의 반응기로 처리할 수 있는 장점이 있다.The present invention can collect the processing gas after treating the malodor generating gas, there is no pump or pipeline in the reactor, there is an advantage that can be treated with a single large-scale gas without problems caused by scaling.

상술한 바와 같이 본 발명은 반응기 유체역학적인 순환과 반응기 구조 특성에 따라 정제 및 분리가 동시에 이루어지므로, 매우 단순한 공정으로 이루어져 기계적인 동력 및 장치가 최소화되어 매우 경제적이며 안전한 공정이다.As described above, according to the present invention, purification and separation are simultaneously performed according to reactor hydrodynamic circulation and reactor structure characteristics. Therefore, the present invention is a very economical and safe process by minimizing mechanical power and apparatus.

또한, 기존 LFG 자원화시설에서는 스크러버(Scrubber)에 의한 가스정제 단계에서 다량의 폐수가 발생하여 별도의 2차처리가 필요하였으나, 본 발명에서는 철염균일질촉매를 이용한 원스텝(one-step) 반응공정의 내부순환식 공정을 통해 일정기간에 소량의 촉매만을 보충해줌으로써 부수적인 폐수 발생의 배제가 가능하다.In addition, in the existing LFG resource facility, a large amount of wastewater is generated in the gas purification step by a scrubber, so that a separate secondary treatment is required, but in the present invention, a one-step reaction process using an iron salt homogeneous catalyst The internal circulation process allows the removal of incidental waste water by replenishing only a small amount of catalyst over a period of time.

한편, 바이오가스를 단순 연소의 연료로 활용하지 않고 연료전지 또는 마이크로터빈과 같은 고효율 전기생산 및 온수 생산을 위한 연료로 공급할 수 있으며, 연료전지의 연소가스는 대기중에 방출하지 않고 유리온실에 투입함으로써, 이산화 탄소를 최종적으로 활용하는 효과를 볼 수 있다.On the other hand, biogas can be supplied as a fuel for high-efficiency electricity production and hot water production such as fuel cells or microturbines without using fuel as a simple combustion fuel. Finally, the effect of using carbon dioxide is finally seen.

Claims (2)

일정 높이로 형성된 사각통상의 반응기본체(90)와, 상기 반응기본체(90)의 내측 상부에서 반응기본체(90)의 저면을 형성하는 하부판(94)과 일정 거리를 두고 장착되어 제1 반응조(10)와 제2 반응조(20) 및 제3 반응조(30)와 제4 반응조(40)를 구획하는 제1 격벽(92)과, 상기 제1 반응조(10)와 제2 반응조(20)를 상기 반응기본체(90)의 하부에서 상단과 일정 거리를 두고 구획하는 제2 격벽(91)과, 상기 제3 반응조(30)와 제4 반응조(40)를 상기 반응기본체(90)의 하부에서 상단과 일정 거리를 두고 구획하는 제3 격벽(93)과, 상기 제2 격벽(91)의 하단과 제3 격벽(93)의 하단을 연결하고 상기 하부판(94) 일정 거리로 이격되어 순환로(96)를 형성하는 연결판(95)과, 상기 제1 반응조(10) 내지 제4 반응조(40)에 충진되는 액상 철 킬레이트 촉매와, 상기 제1 반응조(10)의 하부에 상기 충진된 액상 철 킬레이트 촉매와 접촉되도록 악취발생가스가 유입되는 가스주입구(50)와, 상기 악취발생가스에서 석출된 고체황을 수집하기 위해 상기 하부판(94)에 장착된 황 수집구(88)와, 상기 가스주입구(50)를 통해 주입된 가스에서 메탄을 포집하기 위해 상기 제1 반응조(10) 및 제2 반응조(20)의 상부에 형성된 메탄 포집구(80)와, 상기 제3 반응조(30)의 하부에 공기를 투입하기 위한 공기주입구(80)와, 상기 제3 반응조 및 제4 반응조(40)의 상부에 상기 투입된 공기에 의해 탈기된 이산화탄소를 포집하기 위한 이산화탄소 포집구(85)를 포함하여 구성되는 것을 특징으로 하는 액상 철 킬레이트 촉매를 이용한 황화합물 제거 및 메탄과 이산화탄소 분리장치.Square reaction body 90 formed at a predetermined height, and the lower plate 94 to form a bottom surface of the reaction body 90 from the inner upper portion of the reaction body 90 is mounted at a predetermined distance from the first reaction tank (10) ), The first partition wall 92 partitioning the second reactor 20, the third reactor 30, and the fourth reactor 40, and the first reactor 10 and the second reactor 20 from the reactor. The second partition wall 91 partitioned at a lower distance from the lower portion of the main body 90 at a predetermined distance, and the third reaction vessel 30 and the fourth reaction vessel 40 are fixed to the upper end at the lower portion of the reaction body 90. The third partition 93 partitioned at a distance and the lower end of the second partition 91 and the lower end of the third partition 93 are connected to each other, and the lower plate 94 is spaced apart by a predetermined distance to form a circulation path 96. To the connecting plate 95, the liquid iron chelate catalyst to be filled in the first reactor 10 to the fourth reactor 40, and the lower portion of the first reactor (10) A gas inlet 50 through which the malodor generating gas is introduced to be in contact with the phase chelate catalyst, a sulfur collecting port 88 mounted on the lower plate 94 to collect solid sulfur precipitated from the malodor generating gas, In order to capture methane from the gas injected through the gas inlet 50, the methane collecting port 80 formed on the upper portion of the first reaction tank 10 and the second reaction tank 20, and the third reaction tank 30 And an air inlet 80 for injecting air into the lower part, and a carbon dioxide collecting port 85 for collecting carbon dioxide degassed by the injected air in the upper part of the third and fourth reactors 40. Sulfur compound removal and methane and carbon dioxide separation apparatus using a liquid iron chelate catalyst, characterized in that. 제1 항에 있어서,According to claim 1, 상기 제2 반응조(20)와 제4 반응조(40)의 횡단면적은 상기 제1 반응조(10)와 제3 반응조(30)의 횡단면적의 1/2이 되도록 각각 형성되는 것을 특징으로 하는 액상 철 킬레이트 촉매를 이용한 황화합물 제거 및 메탄과 이산화탄소 분리장치.Liquid iron, characterized in that the cross-sectional area of the second reaction vessel 20 and the fourth reaction vessel 40 is formed to be 1/2 of the cross-sectional area of the first reaction vessel 10 and the third reaction vessel 30, respectively. Removal of sulfur compounds by chelate catalyst and separation of methane and carbon dioxide.
KR1020060060119A 2006-06-30 2006-06-30 Sulfide compound removing and methane and carbon dioxide separating apparatus using the fe-edta KR100734926B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060060119A KR100734926B1 (en) 2006-06-30 2006-06-30 Sulfide compound removing and methane and carbon dioxide separating apparatus using the fe-edta

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060060119A KR100734926B1 (en) 2006-06-30 2006-06-30 Sulfide compound removing and methane and carbon dioxide separating apparatus using the fe-edta

Publications (1)

Publication Number Publication Date
KR100734926B1 true KR100734926B1 (en) 2007-07-03

Family

ID=38503040

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060060119A KR100734926B1 (en) 2006-06-30 2006-06-30 Sulfide compound removing and methane and carbon dioxide separating apparatus using the fe-edta

Country Status (1)

Country Link
KR (1) KR100734926B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101262328B1 (en) 2010-07-28 2013-05-08 한국전력공사 Adsoption tower, biogas purification system having the same and management method matter in adsoption tower
WO2014181994A1 (en) 2013-05-10 2014-11-13 Kim Gwan Shig Device for separating carbon dioxide using silicone separation film and method for manufacturing same
WO2015084003A1 (en) * 2013-12-02 2015-06-11 고등기술연구원 System and method for removing high-concentration hydrogen sulfide using aqueous iron chelate solution
KR101590107B1 (en) * 2014-10-17 2016-01-29 고등기술연구원연구조합 Floating type recycling structure through seperating floating sulfer in wet-type desulfurization process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900700176A (en) * 1988-01-15 1990-08-11 셰브런 리써취 캄파니 Compositions, Methods, and Apparatus for Removing Hydrogen Sulfide
KR950700782A (en) * 1992-04-03 1995-02-20 Method and apparatus for effective gas-liquid contact
KR19990007252A (en) * 1997-06-23 1999-01-25 쯔지 하루오 Complex deodorization filter, complex deodorization filter device comprising same and method for manufacturing deodorization filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900700176A (en) * 1988-01-15 1990-08-11 셰브런 리써취 캄파니 Compositions, Methods, and Apparatus for Removing Hydrogen Sulfide
KR950700782A (en) * 1992-04-03 1995-02-20 Method and apparatus for effective gas-liquid contact
KR19990007252A (en) * 1997-06-23 1999-01-25 쯔지 하루오 Complex deodorization filter, complex deodorization filter device comprising same and method for manufacturing deodorization filter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101262328B1 (en) 2010-07-28 2013-05-08 한국전력공사 Adsoption tower, biogas purification system having the same and management method matter in adsoption tower
WO2014181994A1 (en) 2013-05-10 2014-11-13 Kim Gwan Shig Device for separating carbon dioxide using silicone separation film and method for manufacturing same
US9937464B2 (en) 2013-05-10 2018-04-10 Arstroma Co., Ltd. Device for separating carbon dioxide using silicone separation film and method for manufacturing same
WO2015084003A1 (en) * 2013-12-02 2015-06-11 고등기술연구원 System and method for removing high-concentration hydrogen sulfide using aqueous iron chelate solution
KR101590107B1 (en) * 2014-10-17 2016-01-29 고등기술연구원연구조합 Floating type recycling structure through seperating floating sulfer in wet-type desulfurization process

Similar Documents

Publication Publication Date Title
Al Mamun et al. Enhancement of methane concentration by removing contaminants from biogas mixtures using combined method of absorption and adsorption
Frare et al. Hydrogen sulfide removal from biogas using Fe/EDTA solution: gas/liquid contacting and sulfur formation
CN101327397B (en) Method for simultaneously removing SO2 and NO in flue gas by biological reduction and complexing absorption
JP2006036849A (en) System for treating and utilizing biomass and method for treating and utilizing biomass gas
CN105032152A (en) Chemical absorption and microbial fuel cell combined synchronous flue gas desulfurization and denitration technology
KR100734926B1 (en) Sulfide compound removing and methane and carbon dioxide separating apparatus using the fe-edta
CN101703866B (en) Smoke adsorption type biological desulphurization technology
KR101427599B1 (en) The purification method and the purification device refining as low density bio-methane
McManus et al. The evolution, chemistry and applications of chelated iron hydrogen sulfide removal and oxidation processes
CN105601002A (en) Processing system and method for purifying organic wastewater
JPH02172590A (en) Process for removing nitrite and nitrate from aqueous solution without leaving residue
Żarczyński et al. Practical methods of cleaning biogas from hydrogen sulphide. Part 1, application of solid sorbents
EA201290680A1 (en) INTEGRATED METHOD FOR TREATMENT OF SEWAGE WATER OIL REFINERY, CONTAINING AMMONIA AND HYDROGEN, AND DRAINED ACID GAS OF OIL REFINING PLANT, CONTAINING HYDROGEN
CN107670478A (en) A kind of waste water station waste gas treatment process
KR20200072373A (en) manufacturing method of liquid catalyst compositions for desulfurization and pre-treatment apparatus of bio gas
Mohanakrishnan et al. Chemical scrubbing for removal of CO2 from biogas using algae and H2S using sponge iron
JP2010116516A (en) Method and apparatus for purifying energy gas
Noorain et al. Integrated biological–physical process for biogas purification effluent treatment
Guimerà et al. Optimization of SO2 and NOx sequential wet absorption in a two-stage bioscrubber for elemental sulphur valorisation
CN106492803A (en) The preparation method of efficient ozone catalyst and the method using the catalyst depth gas treatment waste water
Liu et al. Parametric study and mechanism analysis of NO removal by cobalt ethylenediamine
JP3723994B2 (en) Anaerobic biological reaction gas desulfurization equipment
EP3511310B1 (en) Device and method for increasing the content of methane in a current of biogas by means of a low-pressure airlift system
US20160185632A1 (en) Method and installation for removing sulphur from the digestate and the biogas of a digester
JP3493735B2 (en) Anaerobic reaction gas desulfurization unit

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130628

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140520

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150626

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee