KR100734924B1 - The manufacturing method for porous polyurethane foam media containing carbonaceous materials obtained from carbonization of sludges and the foam media thereof - Google Patents

The manufacturing method for porous polyurethane foam media containing carbonaceous materials obtained from carbonization of sludges and the foam media thereof Download PDF

Info

Publication number
KR100734924B1
KR100734924B1 KR1020070036689A KR20070036689A KR100734924B1 KR 100734924 B1 KR100734924 B1 KR 100734924B1 KR 1020070036689 A KR1020070036689 A KR 1020070036689A KR 20070036689 A KR20070036689 A KR 20070036689A KR 100734924 B1 KR100734924 B1 KR 100734924B1
Authority
KR
South Korea
Prior art keywords
carbide
sludge
polyurethane foam
porous polyurethane
carrier
Prior art date
Application number
KR1020070036689A
Other languages
Korean (ko)
Other versions
KR20070046810A (en
Inventor
신원식
박인호
류충기
박완식
박혜옥
Original Assignee
신원식
주식회사삼영이앤티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신원식, 주식회사삼영이앤티 filed Critical 신원식
Priority to KR1020070036689A priority Critical patent/KR100734924B1/en
Publication of KR20070046810A publication Critical patent/KR20070046810A/en
Application granted granted Critical
Publication of KR100734924B1 publication Critical patent/KR100734924B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

본 발명은 슬러지 탄화물을 담지한 악취 및 휘발성유기화합물 처리용 다공성 폴리우레탄 폼 담체의 제조방법 및 그에 의해 제조된 다공성 폴리우레탄 폼에 관한 것으로, 각종 하 · 폐수 처리 공정에서 발생되는 슬러지를 고온에서 탄화시켜 생성한 탄화물을 담체의 원료로 사용함으로써, 산업부산물을 효율적으로 재활용할 수 있으며, 탄화물을 이용하여 제조된 다공성 고분자 담체를 바이오필터에 적용하여 악취를 효과적으로 제거할 수 있는 특징이 있다.The present invention relates to a method for producing a porous polyurethane foam carrier for treating odor and volatile organic compounds carrying sludge carbide, and to a porous polyurethane foam produced thereby, carbonizing sludge generated in various wastewater and wastewater treatment processes at a high temperature. By using the carbide produced as a raw material of the carrier, the industrial by-products can be efficiently recycled, and the porous polymer carrier prepared by using the carbide can be applied to the biofilter to effectively remove odors.

본 발명은 크게 세 공정으로 구성되는바, 슬러지를 200 내지 550℃에서 탄화시켜 탄화물을 제조하는 탄화물 제조공정(S1)과; 폴리우레탄 프리폴리머를 계량하여 수용액을 만든 다음, 상기 탄화물과 일정비율로 혼합하는 혼합공정(S2)과; 상기 혼합된 혼합물에 계면활성제 용액을 첨가하여 발포시키는 발포공정(S3)으로 구성되어, 발포비중과 내구성이 증가된 다공성 폴리우레탄 폼 담체를 제조하도록 한 대략적인 구성을 갖는다.The present invention is largely composed of three steps, carbide manufacturing process (S1) for producing a carbide by carbonizing the sludge at 200 to 550 ℃; Measuring the polyurethane prepolymer to form an aqueous solution, and then mixing the carbide with a predetermined ratio (S2); It is composed of a foaming step (S3) of adding a surfactant solution to the mixed mixture and foaming, so as to prepare a porous polyurethane foam carrier with increased foaming specific gravity and durability.

상기와 같이 구성된 본 발명은, 각종 하 · 폐수 처리 공정에서 발생되는 슬러지를 200 내지 550℃에서 탄화시킨 탄화물을 폴리우레탄 프리폴리머 수용액에 혼합한 후, 이에 계면활성제를 첨가하여 악취물질 처리용 다공성 폴리우레탄 폼 담체를 제조함으로써, 미생물 부착효율이 뛰어나고, 내구성이 강화되며, 고농도의 악취 물질과 휘발성유기화합물을 효율적으로 처리할 수 있는 효과가 있다.The present invention configured as described above, after mixing the carbide carbonized sludge generated in various sewage and wastewater treatment process at 200 to 550 ℃ in a polyurethane prepolymer aqueous solution, and added a surfactant to the porous polyurethane for treating odorous substances By producing a foam carrier, the microbial adhesion efficiency is excellent, durability is enhanced, and there is an effect that can efficiently process high concentration of odorous substances and volatile organic compounds.

또한, 표면적 확대물질로는 육상매립이 전면 금지되고, 「런던협약 의정서(1996)의 발효에 따라 2012년부터 해양투기가 전면 금지될 예정인 슬러지를 탄화시킨 탄화물을 사용함으로써, 산업 폐기물의 재활용도를 증대시킬 수 있을 뿐만 아니라, 환경보호 측면에 있어서도 유익을 도모할 수 있는 또 다른 효과가 있다.In addition, landfilling is completely prohibited as a surface-expanding substance, and the use of sludge carbonized sludge, which is expected to be completely prohibited from dumping at sea in 2012 following the entry into force of the London Convention (1996), will lead to the recycling of industrial waste. In addition to increasing, there is another effect that can be beneficial in terms of environmental protection.

슬러지 탄화물, 하수 슬러지 탄화물, 염색 · 피혁 슬러지 탄화물, 폴리우레탄 폼 담체, 바이오필터, 악취물질, 휘발성유기화합물, 악취처리 Sludge Carbide, Sewage Sludge Carbide, Dyeing, Leather Sludge Carbide, Polyurethane Foam Carrier, Bio Filter, Odor Substance, Volatile Organic Compound, Odor Treatment

Description

슬러지 탄화물을 담지한 악취 및 휘발성유기화합물 처리용 다공성 폴리우레탄 폼 담체의 제조방법 및 그에 의해 제조된 다공성 폴리우레탄 폼 담체 { The manufacturing method for porous polyurethane foam media containing carbonaceous materials obtained from carbonization of sludges and the foam media thereof }Method for preparing porous polyurethane foam carrier for treating odor and volatile organic compounds supporting sludge carbides and the porous polyurethane foam carrier produced thereby {carbonacetization of sludges and the foam media kind}

도 1은 본 발명의 공정 순서도1 is a process flow chart of the present invention

도 2a는 본 발명에 의해 제조된 슬러지 탄화물을 담지한 다공성 폴리우레탄 폼 담체의 사진Figure 2a is a photograph of a porous polyurethane foam carrier supporting the sludge carbide produced by the present invention

도 2b는 본 발명의 의해 제조된 다공성 폴리우레탄 담체를 자른 사진Figure 2b is a photograph of the porous polyurethane carrier produced by the present invention

도 3a는 본 발명에 의해 제조된 다공성 폴리우레탄 폼 담체의 SEM사진Figure 3a is a SEM photograph of the porous polyurethane foam carrier prepared by the present invention

도 3b는 본 발명에 의해 제조된 다공성 폴리우레탄 폼 담체를 악취물질 처리를 위해 바이오필터에 충전시켜 운전한 후의 SEM사진Figure 3b is a SEM photograph after the operation of the porous polyurethane foam carrier prepared by the present invention to fill the biofilter for treatment of odorous substances

도 4는 본 발명에 의해 제조된 다공성 폴리우레탄 폼 담체를 이용하는 바이오필터의 공정도Figure 4 is a process of the biofilter using a porous polyurethane foam carrier prepared by the present invention

도 5a는 본 발명의 실험 예에 따른 암모니아의 유입 및 유출 농도를 나타낸 그래프Figure 5a is a graph showing the inflow and outflow concentration of ammonia according to the experimental example of the present invention

도 5b는 본 발명의 실험 예에 따른 암모니아의 처리효율을 나타낸 그래프Figure 5b is a graph showing the treatment efficiency of ammonia according to the experimental example of the present invention

도 6a는 본 발명의 실험 예에 따른 휘발성 유기화합물의 유입 및 유출 농도를 나타낸 그래프Figure 6a is a graph showing the inlet and outlet concentrations of volatile organic compounds according to the experimental example of the present invention

도 6b는 본 발명의 실험 예에 따른 휘발성 유기화합물의 처리효율을 나타낸 그래프Figure 6b is a graph showing the treatment efficiency of the volatile organic compounds according to the experimental example of the present invention

본 발명은 악취처리용 다공성 폴리우레탄 폼 담체의 제조방법 및 그에 의해 제조된 다공성 폴리우레탄 폼 담체에 관한 것으로, 더욱 상세하게 설명하면, 각종 산업시설이나 환경 위생시설 등에서 배출되는 악취물질을 미생물을 이용하여 물, 미생물, 이산화탄소 등의 무해한 물질로 분해하여 제거할 수 있는 다공성 폴리우레탄 폼 담체의 제조방법 및 그에 의해 제조된 다공성 폴리우레탄 폼 담체에 관한 것으로, 각종 하 · 폐수 처리 공정에서 발생되는 슬러지를 고온에서 탄화시켜 생성한 탄화물을 담체의 원료로 사용함으로써, 산업부산물을 효율적으로 재활용할 수 있으며, 악취를 효과적으로 제거할 수 있는 슬러지 탄화물을 담지한 악취처리용 다공성 폴리우레탄 폼 담체의 제조방법 및 그에 의해 제조된 다공성 폴리우레탄 폼에 관한 것이다.The present invention relates to a method for producing a porous polyurethane foam carrier for odor treatment and a porous polyurethane foam carrier produced by the same, and more specifically, to a microorganism using the odorous substances discharged from various industrial facilities or environmental sanitation facilities, etc. The present invention relates to a method for producing a porous polyurethane foam carrier that can be decomposed and removed into a harmless substance such as water, microorganisms, carbon dioxide, and the like, and to a porous polyurethane foam carrier produced by the same. By using carbide produced by carbonization at high temperature as a raw material of the carrier, industrial by-products can be efficiently recycled, and a method for producing a porous polyurethane foam carrier for odor treatment supporting sludge carbide which can effectively remove odor and It relates to a porous polyurethane foam produced by.

일반적으로 악취라 함은, 인간이 감지할 수 있는 불쾌한 냄새를 지칭하는 것으로, 통상 주위 환경에서 발생하고 있는 악취의 근원물질은 많은 종류가 있다.In general, odor refers to an unpleasant odor that can be sensed by humans, and there are many kinds of source materials of odor generated in the surrounding environment.

악취는 여러 가지 악취물질의 복합작용에 의해 나타나며 각각의 발생원으로는 일반 공장을 제외하고도 하수처리장, 위생처리장, 또한 근래 들어 지속적으로 문제가 되고 있는 음식물류 폐기물 자원화 시설 등을 들 수 있다.Odor is caused by the complex action of various odorous substances, and each source includes sewage treatment plants, sanitary treatment plants, as well as general plants, and food waste resource recycling facilities that have been a problem in recent years.

근래에 들어 이러한 악취로 인한 민원발생건수가 증가하고 있으며, 발생원이 되는 시설에서는 주변과의 대응에 고충을 겪고 있어서 악취를 제거하는 방법에 대해서 다양한 각도로 노력하고 있는 것이 현실이다.In recent years, the number of complaints caused by these odors is increasing, and the actual facilities are experiencing difficulties in dealing with the surroundings, and the reality is trying to remove the odors from various angles.

현재 국내의 악취 규제물질은 암모니아와 메틸메르캅탄, 황화메틸, 이황화메틸, 트리메틸아민, 아세트알데히드, 프로피온알데히드, 부틸알데히드, 노르말 부틸 알데히드, 이소 부틸알데히드 및 스틸렌 등 12가지 항목이 지정되어 있으며, 2010년까지 모두 22가지 항목으로 확대할 예정으로 있어 더욱 악취제거를 위한 노력이 시급한 실정이다.Currently, 12 types of odor regulators are designated: ammonia, methyl mercaptan, methyl sulfide, methyl disulfide, trimethylamine, acetaldehyde, propionaldehyde, butylaldehyde, normal butyl aldehyde, iso butyl aldehyde and styrene. It is expected to expand to 22 items by year, and efforts to remove odors are urgent.

이러한 악취물질의 제거 방법에는 크게 물리적, 화학적 악취제거와 생물학적 악취제거로 구분되는바, 물리적인 악취제거로는 물로 세척하거나, 활성탄, 제올라이트, 실리카겔, 활성백토 등의 흡착제로 흡착제거 하는 방법 등이 있고, 화학적인 악취제거방법으로는 마스터킹법과 중화법 등이 있으며 생물학적인 방법으로는 biofilter, bioscrubber, biotrickling filter 등이 있다.Such odorous substances are largely classified into physical and chemical odor removal and biological odor removal. The physical odor removal includes washing with water or adsorption with an adsorbent such as activated carbon, zeolite, silica gel, or activated clay. Chemical odor removal methods include mastering and neutralization, and biological methods include biofilter, bioscrubber, and biotrickling filter.

이중, 현재 가장 많이 사용되고 있는 방법은 물리적인 악취제거와 화학적인 악취제거를 결합한 방법이다. 그러나 물리 · 화학적인 방법은 높은 운영비, 일정 사용기간이 지나면 새로운 물질로의 대체, 세척수나 세정에 사용된 산 · 알칼리의 처리가 요구되어지며, 이에 따른 2차 환경오염을 유발하는 문제점을 내포하고 있었다.Among them, the most commonly used method is a combination of physical odor removal and chemical odor removal. However, physical and chemical methods require high operating costs, replacement of new materials after a certain period of use, and treatment of acids and alkalis used for washing water or cleaning, which may cause secondary environmental pollution. there was.

이에 본 발명은 상기와 같은 문제점을 감안하여 발명한 것으로, 각종 하 · 폐수 처리 공정에서 발생되는 슬러지를 200 내지 550℃에서 탄화시킨 탄화물을 폴리우레탄 프리폴리머 수용액에 혼합한 후, 이에 계면활성제를 첨가하여 악취물질 처리용 다공성 폴리우레탄 폼 담체를 제조함으로써, 미생물 부착효율이 뛰어나고, 내구성이 강화되며, 고농도의 악취물질 및 휘발성유기화합물을 효율적으로 처리할 수 있도록 함을 목적으로 한다.Accordingly, the present invention was invented in view of the above problems, and after mixing the carbides carbonized at 200 to 550 ° C. with sludge generated in various sewage and wastewater treatment processes to a polyurethane prepolymer aqueous solution, a surfactant was added thereto. By preparing a porous polyurethane foam carrier for treating malodorous substances, it is aimed to be excellent in microbial adhesion efficiency, to enhance durability, and to efficiently process high concentrations of malodorous substances and volatile organic compounds.

또한, 표면적 확대물질로는 산업공해를 야기시키는 슬러지를 탄화시킨 탄화물을 사용함으로써, 산업부산물의 재활용도를 증대시킬 수 있을 뿐만 아니라, 환경보호 측면에 있어서도 유익을 도모할 수 있도록 함을 또 다른 목적으로 한다.In addition, the use of carbide carbonized sludge that causes industrial pollution as a surface area expansion material can not only increase the recyclability of industrial by-products, but also provide benefits in terms of environmental protection. It is done.

본 발명은 슬러지 탄화물을 담지한 악취 및 휘발성유기화합물 처리용 다공성 폴리우레탄 폼 담체의 제조방법 및 그에 의해 제조된 다공성 폴리우레탄 폼에 관한 것으로, 각종 하 · 폐수 처리 공정에서 발생되는 슬러지를 고온에서 탄화시켜 생성한 탄화물을 담체의 원료로 사용함으로써, 산업부산물을 효율적으로 재활용할 수 있으며, 악취를 효과적으로 제거할 수 있는 특징이 있다.The present invention relates to a method for producing a porous polyurethane foam carrier for treating odor and volatile organic compounds carrying sludge carbide, and to a porous polyurethane foam produced thereby, carbonizing sludge generated in various wastewater and wastewater treatment processes at a high temperature. By using the carbide produced as a raw material of the carrier, the industrial by-products can be efficiently recycled, and the odor can be effectively removed.

본 발명은 크게 세 공정으로 구성되는바, 슬러지를 200 내지 550℃에서 탄화시켜 탄화물을 제조하는 탄화물 제조공정(S1)과; 폴리우레탄 프리폴리머를 계량하여 수용액을 만든 다음, 상기 탄화물과 일정비율로 혼합하는 혼합공정(S2)과; 상기 혼합된 혼합물에 계면활성제 용액을 첨가하여 발포시키는 발포공정(S3)으로 구성되어, 발포비중과 내구성이 증가된 다공성 폴리우레탄 폼 담체를 제조하도록 한 대략적인 구성을 갖는다.The present invention is largely composed of three steps, carbide manufacturing process (S1) for producing a carbide by carbonizing the sludge at 200 to 550 ℃; Measuring the polyurethane prepolymer to form an aqueous solution, and then mixing the carbide with a predetermined ratio (S2); It is composed of a foaming step (S3) of adding a surfactant solution to the mixed mixture and foaming, so as to prepare a porous polyurethane foam carrier with increased foaming specific gravity and durability.

이하 첨부된 도면을 이용하여 본 발명을 더욱 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

도 1은 본 발명의 공정 순서도를 나타낸 것이고, 도 2a는 본 발명에 의해 제조된 슬러지 탄화물을 담지한 다공성 폴리우레탄 폼 담체의 사진이며, 도 2b는 본 발명의 의해 제조된 다공성 폴리우레탄 담체를 자른 사진이고, 도 3a는 본 발명에 의해 제조된 다공성 폴리우레탄 폼 담체의 SEM사진이고, 도 3b는 본 발명에 의해 제조된 다공성 폴리우레탄 폼 담체를 악취물질 처리를 위해 바이오필터에 충전시켜 운전한 후의 SEM사진이며, 도 4는 본 발명에 의해 제조된 다공성 폴리우레탄 폼 담 체를 이용하는 바이오필터의 공정도이고, 도 5a는 본 발명의 실험 예에 따른 암모니아의 유입 및 유출 농도를 나타낸 그래프이며, 도 5b는 본 발명의 실험 예에 따른 암모니아의 처리효율을 나타낸 그래프이고, 도 6a는 본 발명의 실험 예에 따른 휘발성 유기화합물의 유입 및 유출 농도를 나타낸 그래프이며, 도 6b는 본 발명의 실험 예에 따른 휘발성 유기화합물의 처리효율을 나타낸 그래프이다.Figure 1 shows a process flow chart of the present invention, Figure 2a is a photograph of a porous polyurethane foam carrier carrying a sludge carbide prepared by the present invention, Figure 2b is a cut out of the porous polyurethane carrier prepared by the present invention Figure 3a is a SEM photograph of the porous polyurethane foam carrier prepared by the present invention, Figure 3b is a porous polyurethane foam carrier prepared by the present invention after the operation by filling the biofilter for treatment of odorous substances SEM picture, Figure 4 is a flow chart of a biofilter using a porous polyurethane foam carrier prepared by the present invention, Figure 5a is a graph showing the inlet and outlet concentration of ammonia according to the experimental example of the present invention, Figure 5b Is a graph showing the treatment efficiency of ammonia according to the experimental example of the present invention, Figure 6a is a flow of volatile organic compounds according to the experimental example of the present invention and 6 is a graph showing the effluent concentration, Figure 6b is a graph showing the treatment efficiency of the volatile organic compounds according to the experimental example of the present invention.

우선, 본 발명의 제 1공정인 탄화물 제조공정(S1)을 살펴보면, 각종 하수 및 폐수 처리공정에서 발생되는 슬러지를 수거하여 이를 탄화기에 투입한 후, 200 내지 550℃에서 탄화시킨 다음, 상온에서 건조시켜 미세분말의 형태로 탄화물 제조를 완료한다.First, looking at the carbide manufacturing process (S1) of the first step of the present invention, the sludge generated in various sewage and wastewater treatment process is collected and put into the carbonizer, and then carbonized at 200 to 550 ℃, then dried at room temperature To produce carbide in the form of fine powder.

상기 탄화물은 그 입자의 크기를 약 250㎛로 균일하게 채질하여 사용하는 것이 바람직하다.The carbide is preferably used to uniformly fill the size of the particles to about 250㎛.

그 후 행해지는 제 2공정은, 폴리우레탄 프리폴리머를 일정비율로 계량하여 수용액을 만든 후, 그에 상기 제조된 탄화물을 혼합하는 혼합공정(S2)을 완료한다.After the second step is performed, the polyurethane prepolymer is weighed at a constant ratio to form an aqueous solution, and then the mixing step (S2) of mixing the prepared carbide therewith is completed.

상기 사용되는 폴리우레탄 프리폴리머는, 통상적으로 사용되는 비스클로로포르메이트(bischloroformate) 화합물을 디아민 화합물과 반응시켜 제조된 폴리우레탄 프리폴리머, 또는 폴리테트라메틸렌글리콜, 폴리프로필렌 글리콜 등의 폴리올 화합물과 디이소시아네이트(diisocyanate) 화합물을 주성분으로 한 폴리우레탄 프리폴리머로서, 예를 들어, MDI(4,4'-methylenebis (phenylisocyatae)) 또는 TDI(toluene diisocyanate) 등이 있으며, 상업적으로는 Dow chemical社의 Hypol 3000을 구입하여 사용하여도 무방하다 할 것이다.The polyurethane prepolymer to be used is a polyurethane prepolymer prepared by reacting a commonly used bischloroformate compound with a diamine compound, or a polyol compound such as polytetramethylene glycol, polypropylene glycol, and diisocyanate (diisocyanate). Polyurethane prepolymer containing a compound as a main component, for example, MDI (4,4'-methylenebis (phenylisocyatae)) or TDI (toluene diisocyanate), etc., commercially purchased and used Hypol 3000 of Dow Chemical Co. It will be okay.

상기 폴리우레탄 프리폴리머는 1리터당 90 내지 110g의 수용액으로 구성되며, 상기 폴리우레탄 프리폴리머 수용액에 10 내지 30g의 탄화물을 혼합하는 것이 바람직하다.The polyurethane prepolymer is composed of an aqueous solution of 90 to 110g per liter, it is preferable to mix 10 to 30g of carbide in the aqueous polyurethane prepolymer solution.

마지막 공정인 제 3공정은, 상기 혼합된 혼합물에 계면활성제를 첨가하여 발포시키는 발포공정(S3)을 완료한다.The final step, the third step, completes the foaming step (S3) of adding a surfactant to the mixed mixture to foam.

상기 계면활성제는 비이온성 계면활성제 또는 음이온 계면활성제를 사용할 수 있는바, 바람직하기로는 비이온성 계면활성제를 사용토록 하며, 상업적으로 구입할 수 있는 Tween 80을 사용하는 것도 무방하다.The surfactant may use a nonionic surfactant or an anionic surfactant, preferably a nonionic surfactant, and may use a commercially available Tween 80.

상기 계면활성제의 첨가량은, 상기 폴리우레탄 프리폴리머와 탄화물 수용액에 90 내지 110g의 계면활성제를 첨가하여 비중이 0.9 내지 1.2인 담체를 완성하는 구성을 갖는다.The addition amount of the said surfactant has the structure which adds 90-110 g of surfactant to the said polyurethane prepolymer and aqueous carbide solution, and completes the carrier whose specific gravity is 0.9-1.2.

상기와 같이 제조방법으로 얻어진 본 발명의 담체의 구성을 도 2 및 도 3을 통해 살펴보면, 대략적인 형태가 원기둥 형태로 발포된 필터의 형태로, 비표면적이 50㎡/g 이상이고, 비중이 0.9 내지 1.2로 구성되되, 폴리우레탄 프리폴리머 44 내지 47 중량%와, 탄화물 6 내지 12 중량% 및 계면활성제 44 내지 47 중량%로 구성된다.Looking at the configuration of the carrier of the present invention obtained by the manufacturing method as described above with reference to Figs. 2 and 3, the approximate form of the filter foamed in the form of a cylinder, the specific surface area is more than 50㎡ / g, specific gravity 0.9 To 1.2, with 44 to 47 weight percent polyurethane prepolymer, 6 to 12 weight percent carbide and 44 to 47 weight percent surfactant.

탄화물 함량(g)  Carbide Content (g) 염색, 피혁 슬러지가 혼합된 폴리우레탄 폼 담체의 비표면적 Specific Surface Area of Polyurethane Foam Carrier with Dye and Leather Sludge 하수 슬러지가 혼합된 폴리우레탄 폼 담체의 비표면적 Specific Surface Area of Polyurethane Foam Carrier Mixed with Sewage Sludge 10g 10 g 57.4㎡/g 57.4㎡ / g 53.7㎡/g 53.7㎡ / g 20g 20 g 58.3㎡/g 58.3㎡ / g 59.5㎡/g 59.5㎡ / g 30g 30 g 55.7㎡/g 55.7㎡ / g 57.1㎡/g 57.1㎡ / g

<슬러지가 혼합된 폴리우레탄 폼 담체의 비표면적 비교표><Comparison of specific surface area of polyurethane foam carrier mixed with sludge>

상기 표에서 알 수 있는 바와 같이, 슬러지 탄화물의 함량에 따른 담체의 비표면적의 변화는 크지 않은 것을 알 수 있으며, 통상적으로 사용되는 활성탄이 함유된 담체의 비표면적이 55 내지 60㎡/g임을 감안할 때, 바이오 필터의 미생물용 담체로 사용 가능한 구성을 갖는다.As can be seen from the above table, it can be seen that the change of the specific surface area of the carrier according to the content of the sludge carbide is not large, considering that the specific surface area of the carrier containing the activated carbon is commonly used 55 to 60 m 2 / g When the biofilter has a configuration that can be used as a carrier for microorganisms.

상기와 같이 구성된 담체의 사용은, 도 4에 도시한 바와 같이 통상적인 바이오필터의 사용과 동일한바, 담체의 표면에 미생물을 고농도로 부착 성장시켜 각종 산업시설에서 대기 중으로 배출되는 악취물질 또는 휘발성유기화합물의 배출구에 필터로 사용함으로써, 배출되는 악취물질이 미생물의 분해작용에 의해 물, 미생물, 이산화탄소, 질소, 황 등의 무해한 물질로 분해 제거되는 구성을 갖는다.The use of the carrier configured as described above is the same as the use of a conventional biofilter, as shown in FIG. 4, by attaching and growing microorganisms at high concentration on the surface of the carrier and odorous substances or volatile organics discharged to the atmosphere from various industrial facilities. By using it as a filter at the outlet of the compound, the odorous substances discharged are decomposed and removed into harmless substances such as water, microorganisms, carbon dioxide, nitrogen, and sulfur by the decomposition of microorganisms.

본 발명의 실시 예에 따른 실험 예와 그 결과를 살펴보면 다음과 같다.Looking at the experimental example and the results according to the embodiment of the present invention.

실시 예> 슬러지 탄화물을 담지한 폴리우레탄 폼 담체의 제조. Example> Preparation of Polyurethane Foam Support Carrying Sludge Carbide.

폴리우레탄 프리폴리머 110g을 1ℓ 용기에 넣은 다음, 20g의 슬러지 탄화물을 혼합하여 수용액을 제조한 후, 그에 비이온성 계면활성제 용액을 110g 첨가 발포시켜 비중과 내구성이 증대된 다공성 폴리우레탄 폼 담체를 제조하였다.110 g of polyurethane prepolymer was placed in a 1 L container, and then 20 g of sludge carbide was mixed to prepare an aqueous solution. Then, 110 g of a nonionic surfactant solution was added thereto and foamed to prepare a porous polyurethane foam carrier having increased specific gravity and durability.

실험 예1> 암모니아 제거 효율의 측정. Experimental Example 1 Measurement of Ammonia Removal Efficiency.

상기 실시 예를 통해 제조된 폴리우레탄 폼 담체를 실험장치를 통해 도 5a와 같이 하루 24시간씩 총 68일 동안 운전하였으며, 이때 유입되는 암모니아 가스의 농도 범위는 20 내지 200ppmv로 점차 증가시켰으며, 공탑체류시간(Empty bed residence time)은 2분으로 운전하였다. 유입부와 유출부의 암모니아 농도를 GC-FID(HP 6890 series)로 측정하여 처리효율을 알아보았다.The embodiment was an operation for a gun 24 hours a day, such as 5a 68 work through a polyurethane foam carrier prepared test apparatus through, wherein the concentration range of ammonia gas introduced is a stylized gradually increased from 20 to 200ppm v, Empty bed residence time was operated for 2 minutes. Ammonia concentrations at the inlet and outlet were measured by GC-FID (HP 6890 series) to determine the treatment efficiency.

그 결과 도 5b에 도시된 바와 같이, 암모니아의 처리 효율이 95% 이상을 나타내는 결과를 얻을 수 있었으며, 암모니아 유입의 농도가 급격히 증대될 때 일부 80%대로 낮아지는 경향을 보였지만 전체적으로 양호한 처리 효율을 보임을 알 수 있었다.As a result, as shown in FIG. 5B, the result showed that the treatment efficiency of ammonia was 95% or more, and when the concentration of ammonia inflow increased sharply, it was lowered to some 80%, but the overall treatment efficiency was good. And it was found.

실시 예2> 휘발성유기화합물(VOCs) 제거 효율의 측정. Example 2 Determination of Volatile Organic Compound (VOC s ) Removal Efficiency.

상기 실시 예를 통해 제조된 폴리우레탄 폼 담체를 실험장치를 통해 도 6a와 같이 하루 24시간씩 총 68일 동안 운전하였으며, 이때 유입되는 벤젠의 농도 범위는 약 50 내지 400ppmv로 점차 증가시켰으며, 공탑체류시간(Empty bed residence time)은 3분으로 운전하였다. 유입부와 유출부의 벤젠 농도를 GC-FID(HP 6890 series)로 측정하여 처리효율을 알아보았다.The embodiment was operated for a gun 68 days 24 hours a day, such as 6a through the prepared polyurethane foam carrier experimental apparatus through, wherein the concentration range of the benzene entering the stylized gradually increased to about 50 to 400ppm v, Empty bed residence time was operated for 3 minutes. Benzene concentrations at the inlet and outlet were measured by GC-FID (HP 6890 series) to determine the treatment efficiency.

그 결과 도 6b에 도시된 바와 같이, 벤젠의 처리 효율이 95% 이상을 나타내는 결과를 얻을 수 있었으며, 벤젠 유입의 농도가 급격히 증대될 때 일부 70%대로 낮아지는 경향을 보였지만 전체적으로 양호한 처리 효율을 보임을 알 수 있었다.As a result, as shown in FIG. 6B, the results showed that the treatment efficiency of benzene was 95% or more, and when the concentration of benzene inflow was sharply increased, it showed a tendency to be lowered to some 70%, but the overall treatment efficiency was good. And it was found.

상기와 같이 구성된 본 발명은, 각종 하 · 폐수 처리 공정에서 발생되는 슬러지를 200 내지 550℃에서 탄화시킨 탄화물을 폴리우레탄 프리폴리머 수용액에 혼합한 후, 이에 계면활성제를 첨가하여 악취물질 처리용 다공성 폴리우레탄 폼 담체를 제조함으로써, 미생물 부착효율이 뛰어나고, 내구성이 강화되며, 고농도의 악취물질과 휘발성유기화합물을 효율적으로 처리할 수 있는 효과가 있다.The present invention configured as described above, after mixing the carbide carbonized sludge generated in various sewage and wastewater treatment process at 200 to 550 ℃ in a polyurethane prepolymer aqueous solution, and added a surfactant to the porous polyurethane for treating odorous substances By producing a foam carrier, the microbial adhesion efficiency is excellent, durability is enhanced, and there is an effect that can efficiently process high concentration of odorous substances and volatile organic compounds.

또한, 표면적 확대물질로는 산업공해를 야기시키는 슬러지를 탄화시킨 탄화물을 사용함으로써, 산업부산물의 재활용도를 증대시킬 수 있을 뿐만 아니라, 환경보호 측면에 있어서도 유익을 도모할 수 있는 또 다른 효과가 있다.In addition, the use of carbide carbonized sludge that causes industrial pollution as a surface area expansion material can not only increase the recycling degree of industrial by-products, but also have other effects that can be beneficial in terms of environmental protection. .

Claims (3)

악취 및 휘발성유기화합물 처리용 다공성 폴리우레탄 폼 담체의 제조방법에 있어서,In the manufacturing method of porous polyurethane foam carrier for treating odor and volatile organic compounds, 슬러지를 200 내지 550℃에서 탄화시켜 탄화물을 제조하는 탄화물 제조공정(S1)과;Carbide manufacturing process (S1) for producing a carbide by carbonizing the sludge at 200 to 550 ℃; 폴리우레탄 프리폴리머를 계량하여 수용액을 만든 다음, 상기 탄화물과 일정비율로 혼합하는 혼합공정(S2)과;Measuring the polyurethane prepolymer to form an aqueous solution, and then mixing the carbide with a predetermined ratio (S2); 상기 혼합된 혼합물에 계면활성제 용액을 첨가하여 발포시키는 발포공정(S3)으로 구성됨을 특징으로 하는 슬러지 탄화물을 담지한 악취 및 휘발성유기화합물 처리용 다공성 폴리우레탄 폼 담체의 제조방법.Method for producing a porous polyurethane foam carrier for treating odor and volatile organic compounds carrying sludge carbide, characterized in that the foaming step (S3) to add a surfactant solution to the mixed mixture and foaming. 제 1항에 있어서,The method of claim 1, 혼합공정(S2)은, 폴리우레탄 프리폴리머를 물 1ℓ당 90 내지 110g의 비율로 수용액으로 제작한 후, 슬러지 탄화물 10 내지 30g과 혼합하도록 구성되며,The mixing step (S2) is made to prepare a polyurethane prepolymer in an aqueous solution at a rate of 90 to 110 g per 1 liter of water, and then mix with 10 to 30 g of sludge carbide, 발포공정(S3)은, 계면활성제를 상기 폴리우레탄 프리폴리머와 탄화물 혼합액에 90 내지 110g 첨가하여 발포하도록 구성됨을 특징으로 하는 슬러지 탄화물을 담지한 악취 및 휘발성유기화합물 처리용 다공성 폴리우레탄 폼 담체의 제조방법.Foaming step (S3) is a method for producing a porous polyurethane foam carrier for treating odor and volatile organic compounds carrying sludge carbide, characterized in that the foaming by adding a surfactant 90 to 110g to the polyurethane prepolymer and a carbide mixture. . 삭제delete
KR1020070036689A 2007-04-14 2007-04-14 The manufacturing method for porous polyurethane foam media containing carbonaceous materials obtained from carbonization of sludges and the foam media thereof KR100734924B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070036689A KR100734924B1 (en) 2007-04-14 2007-04-14 The manufacturing method for porous polyurethane foam media containing carbonaceous materials obtained from carbonization of sludges and the foam media thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070036689A KR100734924B1 (en) 2007-04-14 2007-04-14 The manufacturing method for porous polyurethane foam media containing carbonaceous materials obtained from carbonization of sludges and the foam media thereof

Publications (2)

Publication Number Publication Date
KR20070046810A KR20070046810A (en) 2007-05-03
KR100734924B1 true KR100734924B1 (en) 2007-07-03

Family

ID=38272013

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070036689A KR100734924B1 (en) 2007-04-14 2007-04-14 The manufacturing method for porous polyurethane foam media containing carbonaceous materials obtained from carbonization of sludges and the foam media thereof

Country Status (1)

Country Link
KR (1) KR100734924B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101250368B1 (en) * 2010-09-09 2013-04-05 주식회사 그린기술산업 Gas Purifier using Granular Media
CN106475056A (en) * 2015-08-31 2017-03-08 高丽大学校产学协力团 Water process carrier manufacture method, method for treating water, composition for water treatment and its carrier
KR20180050620A (en) * 2015-08-31 2018-05-15 고려대학교 산학협력단 A preparation method of media for treating rare earth compounds extracted waste water, a water treating method, a composition for treating the same and media using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100877060B1 (en) * 2007-07-02 2009-01-07 경북대학교 산학협력단 Porous polyurethane foam media comprising carbonaceous materials obtained from carbonization of sludges for non-decomposable industrial wastewater treatment manufacturing method thereof and the use of the same
CN108862947A (en) * 2018-05-23 2018-11-23 南京耀珂新材料科技有限公司 A kind of method and its application being chemically treated mud

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4082661A (en) 1974-08-01 1978-04-04 Sumitomo Durez Company, Ltd. Activated carbon and preparation thereof
JPH06218213A (en) * 1993-01-27 1994-08-09 Isuzu Ceramics Kenkyusho:Kk Exhaust gas treating filter and its production
KR20050058667A (en) * 2003-12-12 2005-06-17 한국생산기술연구원 Manufacturing method for filter from sewage sludge and the filter
KR20050078738A (en) * 2004-02-02 2005-08-08 주식회사 아이이아이 Waster water recyclic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4082661A (en) 1974-08-01 1978-04-04 Sumitomo Durez Company, Ltd. Activated carbon and preparation thereof
JPH06218213A (en) * 1993-01-27 1994-08-09 Isuzu Ceramics Kenkyusho:Kk Exhaust gas treating filter and its production
KR20050058667A (en) * 2003-12-12 2005-06-17 한국생산기술연구원 Manufacturing method for filter from sewage sludge and the filter
KR20050078738A (en) * 2004-02-02 2005-08-08 주식회사 아이이아이 Waster water recyclic apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101250368B1 (en) * 2010-09-09 2013-04-05 주식회사 그린기술산업 Gas Purifier using Granular Media
CN106475056A (en) * 2015-08-31 2017-03-08 高丽大学校产学协力团 Water process carrier manufacture method, method for treating water, composition for water treatment and its carrier
KR20180050620A (en) * 2015-08-31 2018-05-15 고려대학교 산학협력단 A preparation method of media for treating rare earth compounds extracted waste water, a water treating method, a composition for treating the same and media using the same
KR102272210B1 (en) * 2015-08-31 2021-07-02 고려대학교 산학협력단 A preparation method of media for treating rare earth compounds extracted waste water, a water treating method, a composition for treating the same and media using the same

Also Published As

Publication number Publication date
KR20070046810A (en) 2007-05-03

Similar Documents

Publication Publication Date Title
KR100734924B1 (en) The manufacturing method for porous polyurethane foam media containing carbonaceous materials obtained from carbonization of sludges and the foam media thereof
KR101243849B1 (en) Odor removal apparatus for a waste or a sewagedisposal treatment plant and method of the same
JP3328439B2 (en) Composition for fluid treatment agent
Bae et al. Effect of leachate circulation with ex situ nitrification on waste decomposition and nitrogen removal for early stabilization of fresh refuse landfill
US20070029246A1 (en) Adsorbent carbon, water quality purifier, water quality purifying bag, water quality purifying substrate and method of removing oil film
KR101353678B1 (en) Biofilter for removal of malodorous substances and volatile organic compounds and apparatus using the same
Soccol et al. Biofiltration: an emerging technology
KR20140115936A (en) A novel strain of bacillus amyloliquefaciens and deodorizing agent comprsing the same strain
Feng et al. Production of unburned calcium silicon filter material (UCSFM) from oyster shell and its performance investigation in an A/O integrated biological aerated filter reactor (A/O-BAF)
US20080216648A1 (en) Biofilter
KR100227471B1 (en) Media for wastewater treatment manufacturing method thereof and wastewater treatment method using the media
JP2003000238A (en) Pva-inclusively immobilized microbe carrier, method for manufacturing the same and method for purifying environment by using the carrier
KR102016146B1 (en) The manufacturing method of composition for bio filter for improving air pollution by removing odour and organic volatile compounds
KR20160063108A (en) Hybrid type biofilter system for removal of odor cases and volatile organic compounds
JP2000167345A (en) Biological deodorant and biological deodorization equipment
JP6665251B1 (en) Surplus sludge treatment method and excess sludge treatment system used in the method
Lebrero et al. Air biofiltration applied to odor treatment
KR20070051811A (en) A deodorant system mixed organic and inorganic media properly
Miller et al. Application of biological deodorization methods in the aspect of sustainable development
Ro et al. Livestock air treatment using PVA-coated powdered activated carbon biofilter
JP2009273987A (en) Deodorizing apparatus
Grzelka et al. The role of biological methods in the municipal management odor nuisance reduction strategy
Gałwa-Widera Reduction of odors from composting processes using an ecological method
KR100481287B1 (en) Odor treatment equipment using vermiculite and process using thereof
JP2003117341A (en) Method for treating gas containing ammonia and device therefor

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130625

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140627

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150626

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160624

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170627

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180627

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190627

Year of fee payment: 13