KR100731925B1 - Atomic layer chemical vapor deposition which does not require a purge step - Google Patents

Atomic layer chemical vapor deposition which does not require a purge step Download PDF

Info

Publication number
KR100731925B1
KR100731925B1 KR1020010034555A KR20010034555A KR100731925B1 KR 100731925 B1 KR100731925 B1 KR 100731925B1 KR 1020010034555 A KR1020010034555 A KR 1020010034555A KR 20010034555 A KR20010034555 A KR 20010034555A KR 100731925 B1 KR100731925 B1 KR 100731925B1
Authority
KR
South Korea
Prior art keywords
raw material
chemical vapor
vapor deposition
alcvd
atomic layer
Prior art date
Application number
KR1020010034555A
Other languages
Korean (ko)
Other versions
KR20020096230A (en
Inventor
이시우
강상우
Original Assignee
학교법인 포항공과대학교
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 포항공과대학교 filed Critical 학교법인 포항공과대학교
Priority to KR1020010034555A priority Critical patent/KR100731925B1/en
Publication of KR20020096230A publication Critical patent/KR20020096230A/en
Application granted granted Critical
Publication of KR100731925B1 publication Critical patent/KR100731925B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02189Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 퍼지단계를 필요로 하지 않는 원자층 화학증착법(ALCVD)에 관한 것으로서, 10-1 내지 10-8 Torr의 반응기 압력 하에서, 원료기체와 반응기체의 온/오프(on/off) 펄스주입시간을 0.01 내지 10초로 조절하고, 원료의 증기압을 0.001 내지 1 Torr로 조절하는 본 발명의 ALCVD에 의하면, 종래의 ALCVD와는 달리 퍼지단계가 필요없어 1 싸이클 소요시간이 월등히 단축되며 싸이클 당 단원자층 이하의 박막을 정교하게 구현할 수 있다.
The present invention relates to atomic layer chemical vapor deposition (ALCVD), which does not require a purge step, in which on / off pulse injection of raw material gas and reactant gas is carried out under a reactor pressure of 10 -1 to 10 -8 Torr. According to the ALCVD of the present invention, which adjusts the time to 0.01 to 10 seconds and adjusts the vapor pressure of the raw material to 0.001 to 1 Torr, unlike the conventional ALCVD, the purge step is not required, and thus, the cycle time is significantly shortened and the monoatomic layer per cycle is less than. The thin film of can be precisely implemented.

Description

퍼지단계를 필요로 하지 않는 원자층 화학증착법{ATOMIC LAYER CHEMICAL VAPOR DEPOSITION WHICH DOES NOT REQUIRE A PURGE STEP} ATOMIC LAYER CHEMICAL VAPOR DEPOSITION WHICH DOES NOT REQUIRE A PURGE STEP}             

도 1은 본 발명에 사용되는 ALCVD 장치의 개략도이고,1 is a schematic diagram of an ALCVD apparatus used in the present invention,

도 2는 기존에 사용되는 ALCVD 장치의 개략도이며,2 is a schematic diagram of an existing ALCVD apparatus,

도 3 및 4는 각각 실시예 1에서 형성되는 ZrO2 박막의 싸이클 당 [원료의 분압×원료기체 주입시간](Torr×sec) 및 기판 온도 각각에 따른 증착속도(Å)의 변화를 보여주는 도이고,3 and 4 are graphs showing changes in deposition rate according to [partial pressure of raw material × raw material gas injection time] (Torr x sec) and substrate temperature, respectively, per cycle of the ZrO 2 thin film formed in Example 1; ,

도 5는 실시예 1에서 형성된 두께 120Å의 ZrO2 박막의 전압(V)에 따른 커패시턴스(capacitance, pF)의 변화 그래프이다.
FIG. 5 is a graph showing a change in capacitance (pF) according to voltage (V) of a ZrO 2 thin film having a thickness of 120 mA formed in Example 1. FIG.

본 발명은 퍼지단계를 필요로 하지 않는 원자층 화학증착법에 관한 것으로, 구체적으로는 원료기체와 반응기체의 주입시간 및 원료의 증기압(주입량)을 적절히 조절함으로써 원료와 반응기체의 과잉공급을 억제하여 퍼지단계의 생략이 가능한, 1 싸이클 소요시간이 단축된 원자층 화학증착법에 관한 것이다.The present invention relates to an atomic layer chemical vapor deposition method that does not require a purge step. Specifically, by controlling the injection time of the raw material gas and the reactive gas and the vapor pressure (injection amount) of the raw material, the excessive supply of the raw material and the reactive gas is suppressed. The present invention relates to an atomic layer chemical vapor deposition method in which a cycle time is shortened, and a purge step can be omitted.

최근의 반도체 기술은 소자의 소형화를 통해 보다 향상된 기술을 추구함으로써 지속적으로 발전되어 왔으며, 이에 적합한 박막 재료와 공정 기술에 대한 연구가 활발히 진행되고 있다. 예를 들면, 집적 회로는 100nm의 벽을 넘으려 하고 있고, 메가비트 메모리소자에서 기가비트로 진입하는 단계에 접어들고 있다.Recently, semiconductor technology has been continuously developed by pursuing improved technology through miniaturization of devices, and research on suitable thin film materials and process technologies is actively being conducted. For example, integrated circuits are about to cross the 100nm wall and are entering the gigabit stage in megabit memory devices.

각 부분의 재료(도체, 절연체, 유전체, 반도체)는 화학증착법을 통해 박막으로 만들어지는데, 화학증착법 중 반도체 소자의 구현에 필요한 금속 산화막(유전체 및 강유전체)의 제조, 특히 반도체 소자의 집적화를 위한 나노 두께의 금속 산화막의 제조에 원자층 화학증착법(ALCVD, Atomic Laye Chemical Vapor Deposition)이 선호되고 있다.The material of each part (conductor, insulator, dielectric, semiconductor) is made of thin film through chemical vapor deposition.In the chemical vapor deposition, metal oxide films (dielectrics and ferroelectrics) required for the realization of semiconductor devices are manufactured, in particular nano for integration of semiconductor devices. Atomic Laye Chemical Vapor Deposition (ALCVD) is preferred for the production of thick metal oxide films.

통상적인 ALCVD는 한 가지 원료를 사용할 경우 기본적으로 1 싸이클 당 하기와 같은 4 단계의 공정을 필요로 한다; 1) 원료기체를 기판에 공급하는 단계, 2) 과잉으로 공급된 원료기체를 퍼지하는 단계, 3) 반응기체를 기판에 공급하는 단계, 및 4) 과잉으로 공급된 반응기체와 반응부산물을 퍼지하는 단계.Conventional ALCVD requires basically four steps per cycle if one raw material is used; 1) supplying the raw material gas to the substrate, 2) purging the excessively supplied raw material gas, 3) supplying the reactive gas to the substrate, and 4) purging the excessively supplied reactive gas and reaction by-products step.

이와 같이, 기존의 ALCVD는 원료기체와 반응기체를 과잉으로 공급한 후 퍼지시키는 것을 당연하게 생각했기 때문에, 100℃에서 원료의 증기압을 10 Torr 정도로 비교적 높게 유지시켜 반응기에 원료기체와 반응기체를 과잉으로 공급해왔다. 이러한 원료의 공급 및 퍼지는 1 싸이클 소요시간을 평균 4 내지 20초 정도로 길게 하여 전체적인 증착속도를 느리게 하고, 반응부산물을 다량으로 생성시켜 박막의 물성을 떨어뜨린다. 이때, 과잉 공급된 전구체는 분해가 일어나면 퍼지가 불가능하기 때문에, 증착 온도(기판 온도) 또한 제한되었다. As described above, the conventional ALCVD naturally assumed that the raw material gas and the reactant gas were excessively purged and then purged. Therefore, the vapor pressure of the raw material was kept relatively high at about 10 Torr at 100 ° C. so that the raw material gas and the reactant gas were excessive in the reactor. Has been supplied. The supply and purge of such raw materials lengthens one cycle time to about 4 to 20 seconds, slowing down the overall deposition rate, and generating a large amount of reaction byproducts, thereby lowering the physical properties of the thin film. At this time, since the oversupplied precursor is impossible to purge when decomposition occurs, the deposition temperature (substrate temperature) was also limited.

또한, 기존의 ALCVD에서는, 반응기의 압력을 1 내지 10 Torr로 하여 증착을 수행하였으나, 이러한 압력 범위에서는 원료기체의 증기압을 조절하고 밸브로 원료의 주입량을 조절해도 싸이클 당 단원자층을 정교하게 증착시키는 것이 불가능하였다.In addition, in the conventional ALCVD, the deposition was performed using a reactor pressure of 1 to 10 Torr, but in this pressure range, even if the vapor pressure of the raw material gas is adjusted and the injection amount of the raw material is adjusted by the valve, the monoatomic layer per cycle is precisely deposited. It was impossible.

이에 본 발명자들은 예의 연구한 결과, ALCVD에 있어서 원료기체와 반응기체의 주입시간 및 원료의 증기압(주입량)을 적절히 조절함으로써 퍼지단계 없이 빠른 속도로 우수한 전기적 특성을 갖는 박막을 제조할 수 있음을 발견하고 본 발명을 완성하게 되었다.
As a result of intensive studies, the present inventors found that in ALCVD, by appropriately controlling the injection time of the raw material gas and the reactive gas and the vapor pressure (injection amount) of the raw material, it is possible to manufacture a thin film having excellent electrical properties at a high speed without a purge step. This invention was completed.

본 발명의 목적은 퍼지단계의 생략이 가능한, 1 싸이클 소요시간이 단축된 원자층 화학증착법을 제공하는 것이다.
SUMMARY OF THE INVENTION An object of the present invention is to provide an atomic layer chemical vapor deposition method in which the cycle time is shortened, and the purge step can be omitted.

상기 목적을 달성하기 위하여 본 발명에서는, 원자층 화학증착법에 있어서, 10-1 내지 10-8 Torr의 반응기 압력 하에서, 기판이 위치한 반응기로의 원료기체와 반응기체의 온/오프(on/off) 펄스주입시간을 0.01 내지 10초로 조절하고, 원료의 증기압을 0.001 내지 1 Torr로 조절하는 것을 특징으로 하는, 원자층 화학증착법을 제공한다.In order to achieve the above object, in the present invention, in the atomic layer chemical vapor deposition method, under the reactor pressure of 10 -1 to 10 -8 Torr, the raw gas and the reactor gas on / off to the reactor in which the substrate is located (on / off) Provided is an atomic layer chemical vapor deposition method characterized in that the pulse injection time is adjusted to 0.01 to 10 seconds, and the vapor pressure of the raw material is adjusted to 0.001 to 1 Torr.

이하 본 발명에 대하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

도 1은 본 발명에 사용되는 ALCVD 장치의 개략도로서, 본 발명의 방법에 따르면, 수 개의 펌프, 예를 들면 터보분자(turbomolecular) 펌프, 부스터(booster) 펌프 및 자동(mechanical) 펌프를 사용하거나, 반응기체의 양 또는 필요에 따라 원료기체의 운반에 사용되는 운반기체의 양을 변화시켜, 반응기의 압력을 10-1 내지 10-8 Torr의 넓은 범위 내에서 적절히 조절하면서, 솔레노이드 밸브를 통해 반응기로 주입되는 원료기체와 반응기체의 온/오프 펄스주입시간을 0.01 내지 10초로 미세하게 조절하고, 원료의 증기압을 0.001 내지 1 Torr로 낮게 조절한다(기존 방법은 기판 온도 100℃에서 약 10 Torr의 원료의 증기압을 갖는다). 1 is a schematic diagram of an ALCVD apparatus for use in the present invention, in accordance with the method of the present invention, using several pumps, for example turbomolecular pumps, booster pumps and mechanical pumps, By varying the amount of the reactor gas or the amount of carrier gas used to transport the raw material gas as necessary, the pressure of the reactor is properly controlled within a wide range of 10 −1 to 10 −8 Torr to the reactor through the solenoid valve. The on / off pulse injection time of the injected raw material gas and the reactor gas is finely adjusted to 0.01 to 10 seconds, and the vapor pressure of the raw material is controlled to be low to 0.001 to 1 Torr (the conventional method is about 10 Torr at the substrate temperature of 100 ° C). Vapor pressure).

이때, 원료기체와 반응기체의 유량은 유량조절기에 의해 조절하고, 원료를 담는 용기의 온도를 조절하여 원료의 증기압(주입량)을 변화시킬 수 있다. 또한, 50 내지 500℃의 넓은 범위 내에서 기판 온도(증착 온도)를 변화시킬 수 있으며, 샤워 헤드(shower head)와 기판 사이의 거리는 1 내지 25cm일 수 있다.At this time, the flow rate of the raw material gas and the reactor gas may be adjusted by a flow controller, and the vapor pressure (injection amount) of the raw material may be changed by adjusting the temperature of the container containing the raw material. In addition, the substrate temperature (deposition temperature) may be varied within a wide range of 50 to 500 ° C., and the distance between the shower head and the substrate may be 1 to 25 cm.

본 발명에 따른 원료로는 화학증착가능한 모든 전구체를 사용할 수 있고, 반응기체로는, 금속산화물 박막의 경우에는 물, 과산화수소, 오존, 산소 및 산소라디칼과 같은 산화력을 갖는 것이면 모두 가능하고, 금속박막의 경우에는 수소 등을 사용할 수 있다. 이때, 원료기체와 반응기체를 동시에 주입하지 않고 각각 교대로 주입함으로써, 두 기체간의 예비기상반응을 억제하는 것이 바람직하다. As a raw material according to the present invention, all precursors capable of chemical vapor deposition can be used, and as the reactive gas, any metal oxide thin film can be used as long as it has oxidation power such as water, hydrogen peroxide, ozone, oxygen and oxygen radical. In this case, hydrogen or the like can be used. At this time, it is preferable to suppress the pre-gas reaction between the two gases by alternately injecting the raw material gas and the reactive gas without being injected at the same time.                     

이와 같은 본 발명의 ALCVD에 의하면, 원료의 주입량을 제어하여 싸이클 당 기판 표면에 도달하는 반응물의 플럭스를 단원자층 이하로 조절할 수 있으므로, 종래의 ALCVD와는 달리 퍼지단계가 필요없어 1 싸이클 소요시간이 월등히 단축되며, 반응부산물의 형성이 억제되어 전기적 특성이 우수한 박막을 정교하게 신속하게 형성할 수 있다. 본 발명의 ALCVD에 의해 형성된 박막은 도체, 유전체, 자성체, 절연체 및 반도체 등으로서 반도체 소자에 유용하게 사용될 수 있다.According to the ALCVD of the present invention, since the flux of the reactant that reaches the substrate surface per cycle can be controlled below the monoatomic layer by controlling the injection amount of the raw material, unlike the conventional ALCVD, the time required for one cycle is excellent because no purge step is required. It is shortened and the formation of the reaction by-products is suppressed, so that a thin film excellent in electrical characteristics can be formed precisely and quickly. The thin film formed by the ALCVD of the present invention can be usefully used in semiconductor devices as conductors, dielectrics, magnetic bodies, insulators and semiconductors.

이하, 본 발명을 하기 실시예에 의거하여 좀더 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 한정하지는 않는다.
Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are not intended to limit the invention only.

실시예 Example

도 1에 도시된 본 발명에 따른 ALCVD 장치를 사용하여 Si 기판 위에 ZrO2 막을 성장시켰다. 원료로서 아연(디메틸아미노에톡시드)4를, 반응기체로서 산소기체를 사용하였다. 5×10-4 Torr의 반응기 압력 하에서, 반응기로 주입되는 원료기체와 반응기체의 온/오프 펄스주입시간을 0.1초로 하고, 원료의 증기압을 0.01 Torr로 하였다. 이때, 원료용기의 온도는 0℃로, 원료기체 주입관의 온도는 원료의 응축을 방지하기 위해 원료보다 높은 20℃로 유지하였으며, 샤워 헤드와 기판 사이의 거리는 10cm로 하고, 기판의 온도는 100 내지 500℃ 내에서 변화시켰다. 1 싸이클을 수행하는데 소요되는 시간은 평균 1초이었다.A ZrO 2 film was grown on a Si substrate using an ALCVD apparatus according to the invention shown in FIG. 1. Zinc (dimethylaminoethoxide) 4 was used as a raw material, and oxygen gas was used as a reactive gas. Under a reactor pressure of 5 × 10 −4 Torr, the on / off pulse injection time of the raw material gas and the reactor gas injected into the reactor was 0.1 second, and the vapor pressure of the raw material was 0.01 Torr. At this time, the temperature of the raw material container was 0 ℃, the temperature of the raw material gas injection tube was maintained at 20 ℃ higher than the raw material to prevent the condensation of the raw material, the distance between the shower head and the substrate is 10cm, the temperature of the substrate is 100 To within 500 ° C. The average time to perform one cycle was 1 second.

형성되는 ZrO2 박막에 대해, 싸이클 당 [원료의 분압×원료기체 주입시간](Torr×sec)에 따른 증착속도(Å)의 변화(기판 온도 250℃)를 도 3에, 기판 온도에 따른 증착속도의 변화를 도 4에 나타내었다. 0.001 Torr×sec에서 0.7Å의 박막이 증착되는 도 3의 결과는 종래의 ALCVD에 따른 결과와 유사하나, 본 발명의 ALCVD는 퍼지단계를 필요로 하지 않아 1 싸이클에 소요되는 시간이 도 2에 그 장치를 도시하는 종래의 방법(평균 4 내지 20초)보다 평균 75%까지 단축됨을 알 수 있다. 또한, 도 4로부터, 원료의 주입량이 일정하게 조절되기 때문에 증착속도가 온도에 따라 크게 변하지 않고 일정함을 알 수 있다.For the ZrO 2 thin film to be formed, the variation of the deposition rate (substrate temperature 250 ° C.) according to [partial pressure of raw material × raw material gas injection time] (Torr × sec) per cycle is shown in FIG. 3 according to the substrate temperature. The change in speed is shown in FIG. 4. The result of FIG. 3, in which 0.7 Å thin film is deposited at 0.001 Torr × sec, is similar to that of the conventional ALCVD, but the ALCVD of the present invention does not require a purge step, and thus the time required for one cycle is shown in FIG. It can be seen that the average is shortened by 75% over the conventional method of showing the device (average 4-20 seconds). In addition, it can be seen from FIG. 4 that the deposition rate does not change greatly with temperature because the injection amount of the raw material is constantly controlled.

또한, 상기 ALCVD 공정(기판 온도 250℃)을 170 싸이클 수행하여 두께 120Å의 ZrO2 박막을 형성하였다. 형성된 박막에 대해, 전압(V)에 따른 커패시턴스(capacitance, pF)의 변화를 측정하여 그 결과를 도 5에 나타내었다. 도 5로부터, 본 발명의 방법에 따라 형성된 ZrO2 박막이 우수한 전기적 특성을 나타냄을 확인할 수 있다.
In addition, 170 cycles of the ALCVD process (substrate temperature 250 ° C.) was performed to form a ZrO 2 thin film having a thickness of 120 μs. For the formed thin film, a change in capacitance (pF) according to voltage V was measured and the results are shown in FIG. 5. 5, it can be seen that the ZrO 2 thin film formed according to the method of the present invention exhibits excellent electrical properties.

본 발명의 ALCVD에 의하면, 원료의 주입량을 제어하여 싸이클 당 기판 표면에 도달하는 반응물의 플럭스를 단원자층 이하로 조절할 수 있으므로, 종래의 ALCVD와는 달리 퍼지단계가 필요없어 1 싸이클 소요시간이 월등히 단축되며, 반응부산물의 형성이 억제되어 전기적 특성이 우수한 박막을 정교하고 신속하게 형성할 수 있다.According to the ALCVD of the present invention, since the flux of the reactant that reaches the substrate surface per cycle can be controlled to less than the monoatomic layer by controlling the injection amount of the raw material, unlike the conventional ALCVD, the cycle time required for one cycle is significantly shortened. In addition, the formation of the reaction by-products is suppressed, so that a thin film having excellent electrical characteristics can be formed precisely and quickly.

Claims (4)

원자층 화학증착법에 있어서, 10-1 내지 10-8 Torr의 반응기 압력 하에서, 기판이 위치한 반응기로의 원료기체와 반응기체의 온/오프(on/off) 펄스주입시간을 0.01 내지 10초로 조절하고, 원료의 증기압을 0.001 내지 1 Torr로 조절하는 것을 특징으로 하는, 원자층 화학증착법.In the atomic layer chemical vapor deposition method, under the reactor pressure of 10 -1 to 10 -8 Torr, the on / off pulse injection time of the raw material gas and the reactor gas to the reactor where the substrate is located is adjusted to 0.01 to 10 seconds , Atomic layer chemical vapor deposition, characterized in that the vapor pressure of the raw material is adjusted to 0.001 to 1 Torr. 제 1 항에 있어서,The method of claim 1, 기판의 온도를 50 내지 500℃로 조절하는 것을 특징으로 하는 원자층 화학증착법.Atomic layer chemical vapor deposition, characterized in that the temperature of the substrate is controlled to 50 to 500 ℃. 제 1 항 또는 제 2 항의 원자층 화학증착법에 의해 제조된 박막.A thin film prepared by the atomic layer chemical vapor deposition method of claim 1. 제 3 항의 박막을 포함하는 반도체 소자.A semiconductor device comprising the thin film of claim 3.
KR1020010034555A 2001-06-19 2001-06-19 Atomic layer chemical vapor deposition which does not require a purge step KR100731925B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010034555A KR100731925B1 (en) 2001-06-19 2001-06-19 Atomic layer chemical vapor deposition which does not require a purge step

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010034555A KR100731925B1 (en) 2001-06-19 2001-06-19 Atomic layer chemical vapor deposition which does not require a purge step

Publications (2)

Publication Number Publication Date
KR20020096230A KR20020096230A (en) 2002-12-31
KR100731925B1 true KR100731925B1 (en) 2007-06-25

Family

ID=27709818

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010034555A KR100731925B1 (en) 2001-06-19 2001-06-19 Atomic layer chemical vapor deposition which does not require a purge step

Country Status (1)

Country Link
KR (1) KR100731925B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI122749B (en) * 2007-12-20 2012-06-29 Beneq Oy coating System

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010096229A (en) * 2000-04-18 2001-11-07 황 철 주 Apparatus and method for forming ultra-thin film of semiconductor device
KR20010111448A (en) * 2000-06-08 2001-12-19 이경수 Method for forming a thin film
KR20020065245A (en) * 2001-02-06 2002-08-13 주식회사 하이닉스반도체 thin film deposition method using Plasma Enhanced Atomic Layer Deposition method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010096229A (en) * 2000-04-18 2001-11-07 황 철 주 Apparatus and method for forming ultra-thin film of semiconductor device
KR20010111448A (en) * 2000-06-08 2001-12-19 이경수 Method for forming a thin film
KR20020065245A (en) * 2001-02-06 2002-08-13 주식회사 하이닉스반도체 thin film deposition method using Plasma Enhanced Atomic Layer Deposition method

Also Published As

Publication number Publication date
KR20020096230A (en) 2002-12-31

Similar Documents

Publication Publication Date Title
US6465371B2 (en) Method for manufacturing zirconium oxide film for use in semiconductor device
US6730614B1 (en) Method of forming a thin film in a semiconductor device
US6124158A (en) Method of reducing carbon contamination of a thin dielectric film by using gaseous organic precursors, inert gas, and ozone to react with carbon contaminants
KR100574150B1 (en) Manufacturing method of semiconductor apparatus
KR100716654B1 (en) Method for manufacturing tetragonal zirconium oxide and method for manufacturing capacitor with the same
KR102521792B1 (en) Selective aluminum oxide film deposition
KR20060054387A (en) Surface preparation prior to deposition on germanium
JP2011246818A (en) System for depositing film onto substrate by use of gas precursor of low vapor pressure
KR20010065160A (en) Method of forming a aluminum oxide thin film in a semiconductor device
WO2003041124A2 (en) Method of fabricating a gate stack at low temperature
KR20050072087A (en) Atomic layer deposition of high k metal oxide
Lee et al. SrTa2O6 thin films deposited by plasma-enhanced atomic layer deposition
US20060051506A1 (en) Nitridation of high-k dielectrics
US6635571B2 (en) Process for forming aluminum or aluminum oxide thin film on substrates
JPH04361531A (en) Manufacture of semiconductor device
KR20060007325A (en) Method of manufacturing a dielectric layer using a plasma enhanced atomic layer deposition technique
KR100731925B1 (en) Atomic layer chemical vapor deposition which does not require a purge step
JP7485403B2 (en) Thin film formation method using surface protection material
KR20080064259A (en) Thin film deposition method comprising improved metal precursor feeding and purging step
US6759344B2 (en) Method for forming low dielectric constant interlayer insulation film
KR20020064126A (en) Method for forming gate oxide thin film using atomic layer chemical vapor deposition system
KR100531464B1 (en) A method for forming hafnium oxide film using atomic layer deposition
KR100576739B1 (en) Method for fabricating a metal-sili-aluminate thin film using atomic layer chemical vapor deposition
KR101021875B1 (en) Method of manufacturing Hf films with improved uniformity in metal organic chemical vapor deposition
KR100766007B1 (en) METHOD FOR FORMING HfO2 FILM USING Hf Metal Organic Compound

Legal Events

Date Code Title Description
A201 Request for examination
E801 Decision on dismissal of amendment
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110411

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee