KR100706378B1 - Method for improving thermal stress of cylinder head for automobile - Google Patents

Method for improving thermal stress of cylinder head for automobile Download PDF

Info

Publication number
KR100706378B1
KR100706378B1 KR1020050105885A KR20050105885A KR100706378B1 KR 100706378 B1 KR100706378 B1 KR 100706378B1 KR 1020050105885 A KR1020050105885 A KR 1020050105885A KR 20050105885 A KR20050105885 A KR 20050105885A KR 100706378 B1 KR100706378 B1 KR 100706378B1
Authority
KR
South Korea
Prior art keywords
cylinder head
thermal fatigue
silicon carbide
powder
aluminum
Prior art date
Application number
KR1020050105885A
Other languages
Korean (ko)
Inventor
하석
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020050105885A priority Critical patent/KR100706378B1/en
Application granted granted Critical
Publication of KR100706378B1 publication Critical patent/KR100706378B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/01Selective coating, e.g. pattern coating, without pre-treatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying

Abstract

본 발명은 자동차용 실린더헤드의 열피로 개선방법에 관한 것으로서, 저온분사 코팅이 가능한 알루미늄 분말 및 실리콘 카바이드(SiC) 분말을 혼합/제조하여 실린더헤드의 열피로에 대해 취약한 표면에 저온분사 코팅을 통해 국부적으로 알루미늄 복합재 코팅층을 형성시켜 그 코팅층의 상(phase)이 실린더헤드와 같은 열전도도값을 갖도록 함으로써, 저온분사 코팅공정을 진행시 소성가공이 되도록 하여 실린더헤드의 열피로로 인한 크랙을 개선할 수 있는 자동차용 실린더헤드의 열피로 개선방법에 관한 것이다.The present invention relates to a method for improving the thermal fatigue of a cylinder head for an automobile, by mixing / manufacturing a low-temperature spray coating of aluminum powder and silicon carbide (SiC) powder through a low temperature spray coating on a surface vulnerable to thermal fatigue of a cylinder head. By forming a local aluminum composite coating layer so that the phase of the coating layer has the same thermal conductivity value as the cylinder head, plastic processing is performed during the low temperature spray coating process to improve cracking due to thermal fatigue of the cylinder head. The present invention relates to a method for improving thermal fatigue of a cylinder head for an automobile.

실린더헤드, 저온분사 코팅, 피로 균열, 알루미늄, 실리콘 카바이드, 소성가공 Cylinder Head, Low Temperature Spray Coating, Fatigue Crack, Aluminum, Silicon Carbide, Plastic Processing

Description

자동차용 실린더헤드의 열피로 개선방법{Method for improving thermal stress of cylinder head for automobile}Method for improving thermal stress of cylinder head for automobile

도 1은 본 발명에 따른 본 발명에 따른 자동차용 실린더헤드의 시험편의 밀착력을 나타내는 그래프,1 is a graph showing the adhesion of the test piece of the cylinder head for automobiles according to the present invention,

도 2는 본 발명에 따른 자동차용 실린더헤드의 시험편의 피로 강도를 나타내는 그래프이다. 2 is a graph showing the fatigue strength of the test piece of the cylinder head for automobiles according to the present invention.

본 발명은 자동차용 실린더헤드의 열피로 개선방법에 관한 것으로서, 더욱 상세하게는 저온분사 코팅이 가능한 알루미늄 분말 및 실리콘 카바이드(SiC) 분말을 혼합/제조하여 실린더헤드의 열피로 취약부에 저온분사 코팅을 실시함으로써, 열응력 누적에 따라 발생하는 크랙을 방지할 수 있는 자동차용 실린더헤드의 열피로 개선방법에 관한 것이다. The present invention relates to a method for improving the thermal fatigue of a cylinder head for an automobile, and more particularly, a low temperature spray coating is applied to a weak portion of a thermal fatigue of a cylinder head by mixing / manufacturing an aluminum powder and a silicon carbide (SiC) powder capable of low temperature spray coating. The present invention relates to a method for improving thermal fatigue of a cylinder head for an automobile that can prevent cracks caused by accumulation of thermal stress.

일반적으로, 자동차용 엔진의 실린더헤드는 높은 강도와 연신율 및 좋은 표 면 품질등이 요구된다. In general, the cylinder head of an automotive engine requires high strength, elongation, and good surface quality.

종래의 자동차용 엔진의 실린더헤드에는 표면처리가 사용되지 않았지만, 최근 들어 디젤 엔진에서 요구되는 폭발압이 높아짐에 따라 실린더헤드의 연소실부의 내열 피로 성질이 증대되고 있는 추세이다. Although the surface treatment is not used for the cylinder head of a conventional automobile engine, in recent years, as the explosion pressure required for a diesel engine is increased, the heat-resistant fatigue property of the combustion chamber portion of the cylinder head is increasing.

일반적으로 열피로 크랙이 발생하는 이유는 실린더헤드 내부의 온도가 상온에서부터 약 250℃ 까지 변화하기 때문으로서, 이때의 응력조건은 헤드볼트에 의해 구속되어있는 상태이기 때문에 자유 수축/팽창을 하지 못하여 취약부(특히 Glow plug hole)에 계속해서 잔류응력이 남아있는 상태가 된다. In general, thermal fatigue cracks occur because the temperature inside the cylinder head varies from room temperature to about 250 ° C. At this time, the stress condition is constrained by the head bolts, which prevents free shrinkage / expansion. (Especially glow plug holes) will continue to have residual stress.

이렇게 생성된 잔류응력은 균열의 시작점으로 작용할 수 있게 되는 바, 이러한 이유로 필연적으로 생기는 취약부의 열피로 크랙을 없애주기 위해서 최근에는 실린더헤드 연소실부의 국부적인 강화 기구의 필요성이 대두되고 있다.The residual stresses generated in this way can act as a starting point of cracking, and for this reason, the need for local reinforcement mechanisms in the cylinder head combustion chamber has recently emerged in order to eliminate thermal fatigue cracks inevitably occurring in weak areas.

이중에서도 알루미늄(Al) 분말 및 실리콘 카바이드(SiC) 분말은 우수한 내열성과, 모재와 같은 열전도도 및 우수한 알루미늄 접합성을 보이고 있다. Among them, aluminum (Al) powder and silicon carbide (SiC) powder have excellent heat resistance, thermal conductivity such as a base material, and excellent aluminum bonding.

보통의 경우, 실리콘 카바이드 분말은 융점이 높게 형성되어 복합재를 통한 주조공정이 많이 행해지고 있다.In general, silicon carbide powder has a high melting point, and many casting processes are performed through the composite material.

상기 복합재 주조공정에서 연속공정이 실시되고 있으나, 실린더헤드의 형상이 평면이 아니기 때문에 상기 실린더헤드의 단차가 생기는 부분에 실리콘 카바이드가 집중되는 현상이 발생하여 일반적인 중력 주조법으로는 제조가 불가능하게 된다.Although the continuous process is performed in the composite casting process, since the shape of the cylinder head is not flat, silicon carbide is concentrated in a portion where the step of the cylinder head occurs, which makes it impossible to manufacture by a general gravity casting method.

그 대신에 스퀴즈 캐스팅이라는 특수 공법을 사용하게 되는 바, 이는 제조공 정상의 원가를 상승시키는 요인이 된다. Instead, a special technique called squeeze casting is used, which increases the cost of the top of the manufacturing process.

또한, 상기 실린더헤드와 같은 대물류의 부품 전체를 주조하기는 어렵다는 단점이 있다.In addition, there is a disadvantage that it is difficult to cast the whole part of the object such as the cylinder head.

따라서, 본 발명은 상기와 같은 문제점을 해결하기 위해 발명한 것으로서, 저온분사 코팅이 가능한 알루미늄 분말 및 실리콘 카바이드(SiC) 분말을 혼합/제조하여 실린더헤드의 열피로에 대해 취약한 표면에 저온분사 코팅을 통해 국부적으로 알루미늄 복합재 코팅층을 형성시켜 그 코팅층의 상(phase)이 실린더헤드와 같은 열전도도값을 갖도록 함은 물론, 저온분사 코팅 공정을 진행시 소성가공 효과를 주어 압축잔류 응력을 형성함으로써, 실린더헤드의 열피로로 인한 크랙을 개선할 수 있는 자동차용 실린더헤드의 열피로 개선방법을 제공하는데 그 목적이 있다.Therefore, the present invention has been invented to solve the above problems, by mixing / manufacturing the aluminum powder and silicon carbide (SiC) powder capable of low temperature spray coating to provide a low temperature spray coating on the surface vulnerable to thermal fatigue of the cylinder head Locally formed aluminum composite coating layer through the phase of the coating layer to have the same thermal conductivity value as the cylinder head, as well as to give a plastic working effect during the low-temperature spray coating process to form a compressive residual stress, It is an object of the present invention to provide a method for improving thermal fatigue of a cylinder head for a vehicle that can improve cracking due to thermal fatigue of a head.

이하, 상기와 같은 목적을 달성하기 위한 본 발명의 특징에 대해 설명하면 다음과 같다. Hereinafter, the features of the present invention for achieving the above object are as follows.

본 발명은, 자동차용 실린더헤드의 열피로 개선방법에 있어서,The present invention provides a method for improving thermal fatigue of an automobile cylinder head,

일정한 크기와 분율을 갖는 알루미늄 분말 및 실리콘 카바이드(SiC) 분말을 혼합/제조하여 실린더헤드의 열피로에 대해 취약한 표면에 저온분사 코팅을 통해 국부적으로 알루미늄 복합재 코팅층을 형성시켜 그 코팅층의 상(phase)이 실린더헤 드와 같은 열전도도값을 갖도록 하는 것을 특징으로 한다.Aluminum powder and silicon carbide (SiC) powder having a certain size and fraction are mixed / manufactured to form a locally coated aluminum composite coating layer on the surface vulnerable to thermal fatigue of the cylinder head through a low temperature spray coating to form a phase of the coating layer. It is characterized by having the same thermal conductivity as this cylinder head.

특히, 상기 알루미늄 분말의 크기는 200 ~ 300㎛이고, 분율이 70 ~ 80vol%이며, 상기 실리콘 카바이드의 크기는 20 ~ 30㎛이고, 분율이 20 ~ 30vol%인 것을 특징으로 한다. In particular, the size of the aluminum powder is 200 ~ 300㎛, the fraction is 70 to 80vol%, the size of the silicon carbide is characterized in that the 20 to 30㎛, the fraction is 20 to 30vol%.

이하, 첨부도면을 참조하여 본 발명의 구성에 대해 상세하게 설명하면 다음과 같다. Hereinafter, the configuration of the present invention with reference to the accompanying drawings in detail.

첨부한 도 1은 본 발명에 따른 본 발명에 따른 자동차용 실린더헤드의 시험편의 밀착력을 나타내는 그래프이고, 도 2는 본 발명에 따른 자동차용 실린더헤드의 시험편의 피로 강도를 나타내는 그래프이다. 1 is a graph showing the adhesion of the test piece of the cylinder head for a vehicle according to the invention according to the invention, Figure 2 is a graph showing the fatigue strength of the test piece of the cylinder head for a vehicle according to the invention.

본 발명은 자동차용 엔진 실린더헤드에 있어서, 실린더헤드 표면에 압축잔류 응력이 존재하고 있을 경우, 열피로 성질이 개선되며, 상기한 특성을 최적화하기 위해서는 압축잔류 응력 형성시 형상에 영향을 주는 코팅층의 두께를 최적화하여 형상 변화에 따른 열응력 누적을 통한 열피로를 최소화시키는 것이 중요하다. According to the present invention, in the engine cylinder head for automobiles, when the compressive residual stress is present on the surface of the cylinder head, thermal fatigue properties are improved, and in order to optimize the above characteristics, the coating layer affects the shape of the compressive residual stress. It is important to minimize the thermal fatigue through the accumulation of thermal stress due to the shape change by optimizing the thickness.

따라서, 본 발명은 자동차용 엔진 실린더헤드의 열피로 인한 크랙 방지를 위해 우수한 내열성을 확보하고, 상기 실린더헤드의 표면에 압축잔류 응력을 형성시킬 수 있도록 하는 알루미늄/실리콘 카바이드 코팅층을 제조하는데 그 목적이 있다. Accordingly, an object of the present invention is to provide an aluminum / silicon carbide coating layer to ensure excellent heat resistance for preventing cracking due to heat of the engine cylinder head for automobiles and to form compressive residual stress on the surface of the cylinder head. have.

일반적으로, 자동차용 엔진 실린더헤드의 재료로 쓰이는 알루미늄 합금 AC4CH는 상온에서 160 W/mK의 열전도도값을 갖는다.In general, aluminum alloy AC4CH, which is used as a material for automobile engine cylinder heads, has a thermal conductivity value of 160 W / mK at room temperature.

이에 비해 순수 알루미늄은 235 W/mK 의 열전도도값을 가지며, 실리콘 카바 이드는 100 ~ 150 W/mK의 열전도도값을 갖는다.In comparison, pure aluminum has a thermal conductivity of 235 W / mK, and silicon carbide has a thermal conductivity of 100 to 150 W / mK.

따라서, 초음속(500 ~ 1500m/s)의 속도를 갖는 입자를 실린더헤드의 표면에 분사, 충돌시켜 저온에서 코팅층을 형성시키는 저온분사 코팅을 통해 열응력의 변화를 방지하여 열피로 현상을 개선하기 위하여 실린더헤드의 모재와 그 코팅층의 열전도도값을 동일하게 해주는 것이 절대적으로 필요하다. Therefore, to improve the thermal fatigue phenomenon by preventing the change of thermal stress through the low-temperature spray coating to form a coating layer at a low temperature by spraying and colliding particles having a supersonic speed (500 ~ 1500m / s) to the surface of the cylinder head It is absolutely necessary to equalize the thermal conductivity of the base material of the cylinder head and the coating layer thereof.

이러한 안정화된 열전도도값은 알루미늄과 실리콘 카바이드를 적정한 비율로 혼합하여 얻을 수 있으며, 사용하는 분말의 크기도 열전도도에 영향을 미치게 된다. This stabilized thermal conductivity value can be obtained by mixing aluminum and silicon carbide in an appropriate ratio, and the size of the powder used also affects the thermal conductivity.

사용하는 분말의 크기가 작을수록 이론적인 값에 가까운 열전도도를 얻을 수 있다. The smaller the powder size is, the more the thermal conductivity close to the theoretical value can be obtained.

본 발명에서는 알루미늄 분말(크기 : 200 ~ 250㎛, 분율 : 70 ~ 80vol%)과 실리콘 카바이드 분말(크기 : 20 ~ 30㎛, 분율 : 20 ~ 30vol%)을 이용하여 실린더헤드 소재인 알루미늄 합금 AC4CH 소재의 열전도도값과 동일한 열전도도값인 160 W/mk를 얻을 수 있다. In the present invention, using aluminum powder (size: 200 ~ 250㎛, fraction: 70 ~ 80vol%) and silicon carbide powder (size: 20 ~ 30㎛, fraction: 20 ~ 30vol%) aluminum alloy AC4CH material which is a cylinder head material It is possible to obtain 160 W / mk, which is the same thermal conductivity as that of.

이렇게 형성된 열전도도값은 고온까지 상전이없이 직선적인 열팽창을 나타내게 된다. The thermal conductivity thus formed shows linear thermal expansion without phase transition to high temperature.

이때, 상기 실리콘 카바이드 분말은, 실린더헤드 표면에 소성가공 효과를 주어 압축잔류 응력을 형성하게 됨으로써, 열피로로 인한 크랙을 방지할 수 있도록 한다. At this time, the silicon carbide powder, by providing a plastic working effect on the surface of the cylinder head to form a compressive residual stress, thereby preventing cracks due to thermal fatigue.

Figure 112005063882893-pat00001
Figure 112005063882893-pat00001

상기와 같이, 표 1에서 볼 수 있는 바와 같이, 본 발명의 바람직한 실시예에 있어서, 알루미늄 분말의 크기가 200 ~ 300㎛이고, 분율이 70 ~ 80vol%이며, 실리콘 카바이드의 크기가 20 ~ 30㎛이고, 분율이 20 ~ 30vol%인 경우, 열전도도값이 실린더헤드와 유사하고 코팅층의 밀착력이 우수하여 열피로로 인한 크랙의 발생이 방지됨을 알 수 있다. As described above, as can be seen in Table 1, in a preferred embodiment of the present invention, the size of the aluminum powder is 200 ~ 300㎛, the fraction is 70 ~ 80vol%, the size of the silicon carbide 20 ~ 30㎛ And, if the fraction is 20 ~ 30vol%, the thermal conductivity value is similar to the cylinder head and the adhesion of the coating layer can be seen that the occurrence of cracks due to thermal fatigue is prevented.

그러나, 비교예 8 및 비교예 9는 알루미늄 분율 및 실리콘 카바이드 분율을 달리하여 실시한 경우로서, 모재와의 열전도도값이 차이가 나서 열응력이 변화될 수 있음을 알 수 있다. However, Comparative Example 8 and Comparative Example 9 is performed when the aluminum fraction and the silicon carbide fraction are different, and it can be seen that thermal stress can be changed due to a difference in thermal conductivity with the base material.

또한, 각각의 분말의 크기를 변화하여 실시한 비교예 10 및 비교예 11의 경우 역시 열전도도값의 변화가 발생함을 알 수 있다. In addition, it can be seen that in the case of Comparative Example 10 and Comparative Example 11 performed by changing the size of each powder, the change in the thermal conductivity value also occurs.

이는 상온에서 저온분사 코팅을 실시하는 경우, 각각의 분말의 크기와 분율이 열전도도값을 변화시킬 수 있음을 의미한다. This means that when cold spray coating is performed at room temperature, the size and fraction of each powder can change the thermal conductivity value.

한편, 도 1은 본 발명에 따른 자동차용 실린더헤드의 시험편의 밀착력을 나타낸 것으로서, 실리콘 카바이드의 분율이 25%인 경우, 실린더헤드의 모재와 코팅층이 서로 충분한 밀착력을 확보한 것을 알 수 있다. On the other hand, Figure 1 shows the adhesion of the test piece of the cylinder head for automobiles according to the present invention, it can be seen that when the fraction of silicon carbide is 25%, the base material and the coating layer of the cylinder head secured sufficient adhesion to each other.

또한, 도 2는 본 발명에 따른 자동차용 실린더헤드의 시험편의 피로 강도를 나타낸 것으로서, 종래의 자동차용 실린더헤드에 비하여 본 발명의 바람직한 실시예인 알루미늄 복합재 코팅층을 이루는 자동차용 실린더헤드의 수명이 100% 이상 증가함을 알 수 있다.In addition, Figure 2 shows the fatigue strength of the test piece of the automotive cylinder head according to the present invention, the life of the automotive cylinder head constituting the aluminum composite coating layer of a preferred embodiment of the present invention compared to the conventional automotive cylinder head 100% It can be seen that the increase.

따라서, 상기와 같은 실시예를 참조하여 본 발명을 구체화할 수 있으며, 이를 통해 자동차용 엔진 실린더헤드의 열피로로 인한 크랙을 방지할 수 있는 코팅층을 제조할 수 있게 된다. Therefore, the present invention can be embodied with reference to the above embodiments, and through this, it is possible to manufacture a coating layer that can prevent cracks due to thermal fatigue of the engine cylinder head for automobiles.

상술한 바와 같이, 본 발명에 따른 자동차용 실린더헤드의 열피로 개선방법 에 의하면, 열전도도값이 실린더헤드와 유사하며 밀착력이 우수한 코팅층을 제조할 수 있고, 이후 고온에서도 열전도도값을 유지할 수 있어 이를 통해 알루미늄을 적용한 부품의 열피로로 인한 크랙 방지를 통해 품질 확보가 가능하며, 더 나아가 설계의 자유도를 높여 제품의 상품성을 향상시킬 수 있는 효과가 있다. As described above, according to the method for improving the thermal fatigue of a cylinder head for an automobile according to the present invention, a coating layer having a high thermal conductivity similar to that of a cylinder head and excellent adhesion can be manufactured, and the thermal conductivity can be maintained even at a high temperature thereafter. Through this, it is possible to secure the quality by preventing cracks due to thermal fatigue of the parts to which aluminum is applied, and furthermore, it has the effect of increasing the degree of freedom of design to improve the productability of the product.

Claims (2)

삭제delete 일정한 크기와 분율을 갖는 알루미늄 분말 및 실리콘 카바이드(SiC) 분말을 혼합/제조하여 실린더헤드의 열피로에 대해 취약한 표면에 저온분사 코팅을 통해 국부적으로 알루미늄 복합재 코팅층을 형성시켜 그 코팅층의 상(phase)이 실린더헤드와 같은 열전도도값을 갖도록 하는 자동차용 실린더헤드의 열피로 개선방법에 있어서,Aluminum powder and silicon carbide (SiC) powder having a certain size and fraction are mixed / manufactured to form a locally coated aluminum composite coating layer on the surface vulnerable to thermal fatigue of the cylinder head through a low temperature spray coating to form a phase of the coating layer. In the method of improving the thermal fatigue of a cylinder head for a vehicle to have the same thermal conductivity as that of the cylinder head, 상기 알루미늄 분말의 크기는 200 ~ 300㎛이고, 분율이 70 ~ 80vol%이며, 상기 실리콘 카바이드의 크기는 20 ~ 30㎛이고, 분율이 20 ~ 30vol%인 것을 특징으로 하는 자동차용 실린더헤드의 열피로 개선방법.The size of the aluminum powder is 200 ~ 300㎛, the fraction is 70 ~ 80vol%, the size of the silicon carbide is 20 ~ 30㎛, the thermal fatigue of the cylinder head for automobiles, characterized in that the fraction is 20 ~ 30vol% How to improve.
KR1020050105885A 2005-11-07 2005-11-07 Method for improving thermal stress of cylinder head for automobile KR100706378B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050105885A KR100706378B1 (en) 2005-11-07 2005-11-07 Method for improving thermal stress of cylinder head for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050105885A KR100706378B1 (en) 2005-11-07 2005-11-07 Method for improving thermal stress of cylinder head for automobile

Publications (1)

Publication Number Publication Date
KR100706378B1 true KR100706378B1 (en) 2007-04-10

Family

ID=38161552

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050105885A KR100706378B1 (en) 2005-11-07 2005-11-07 Method for improving thermal stress of cylinder head for automobile

Country Status (1)

Country Link
KR (1) KR100706378B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101054912B1 (en) 2008-12-19 2011-08-05 재단법인 포항산업과학연구원 How to Form Metal / Ceramic Composites

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001000331A2 (en) 1999-06-29 2001-01-04 Delphi Technologies, Inc. Kinetic spray coating method and apparatus
US20020073982A1 (en) * 2000-12-16 2002-06-20 Shaikh Furqan Zafar Gas-dynamic cold spray lining for aluminum engine block cylinders
EP1321540A1 (en) 2000-08-25 2003-06-25 Obschestvo S Organichennoi Otvetstvenoctiju Obninsky Tsentr Poroshkovogo Naplyleniya Coating method
US20040142109A1 (en) * 2002-09-25 2004-07-22 Kaufold Roger W. Coated vehicle wheel and method
US20040247795A1 (en) * 2003-06-04 2004-12-09 Endicott Mark Thomas Method of producing a coated valve retainer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001000331A2 (en) 1999-06-29 2001-01-04 Delphi Technologies, Inc. Kinetic spray coating method and apparatus
EP1321540A1 (en) 2000-08-25 2003-06-25 Obschestvo S Organichennoi Otvetstvenoctiju Obninsky Tsentr Poroshkovogo Naplyleniya Coating method
US20020073982A1 (en) * 2000-12-16 2002-06-20 Shaikh Furqan Zafar Gas-dynamic cold spray lining for aluminum engine block cylinders
US20040142109A1 (en) * 2002-09-25 2004-07-22 Kaufold Roger W. Coated vehicle wheel and method
US20040247795A1 (en) * 2003-06-04 2004-12-09 Endicott Mark Thomas Method of producing a coated valve retainer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101054912B1 (en) 2008-12-19 2011-08-05 재단법인 포항산업과학연구원 How to Form Metal / Ceramic Composites

Similar Documents

Publication Publication Date Title
US4798770A (en) Heat resisting and insulating light alloy articles and method of manufacture
US11511515B2 (en) Piston including a composite layer applied to a metal substrate
US8486496B2 (en) Method of preparing wear-resistant coating layer comprising metal matrix composite and coating layer prepared thereby
US4830932A (en) Heat resistant light alloy articles and method of manufacturing same
US4885213A (en) Ceramic-sprayed member and process for making the same
JP2005147406A (en) Wear-resistant material containing intermetallic compound for piston ring
WO2012073101A2 (en) Heat-shielding film and method of forming the same
JP2007529667A (en) Piston for internal combustion engine, method for producing piston and use of copper alloy in piston production
CN1261296C (en) Article including a composite of unstabilized zirconium oxide particles in a metallic matrix, and its preparation
US10145330B2 (en) Cylinder liner for insert casting and method for manufacturing the same
JP4419027B2 (en) Cylinder lining of two-layer outer coating and manufacturing method of composite structure by fixing of lining
KR100706378B1 (en) Method for improving thermal stress of cylinder head for automobile
WO2020026604A1 (en) Sliding member and member for internal combustion engine
KR20190026580A (en) Prechamber arrangement
US20220220920A1 (en) Piston ring groove insert and methods of making
US5169689A (en) Method of producing thermal barrier coatings on a substrate
US20010024736A1 (en) Aluminum alloy member and production method thereof
KR100853071B1 (en) Manufacturing Method Of Aluminum Cylinder Block
JPH11158599A (en) Heat insulating layer and its production
KR100427281B1 (en) Manufacturing method of cylinder block for engine
GB2474791A (en) Sliding element having an adaptive coating and manufacturing method thereof
JP2003053508A (en) Heat-conductive cylindrical member and its producing method, and aluminum alloy-made engine using heat- conductive cylindrical member
KR100666773B1 (en) Die casting method of shift pork for vehicle
US8182881B2 (en) Methods for reducing stress when applying coatings, processes for applying the same and their coated articles
JP2001130975A (en) Ceramic sliding part

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment
FPAY Annual fee payment
LAPS Lapse due to unpaid annual fee