KR100705560B1 - Connecting structure between cft column and rc slab reinforced by high strength concrete - Google Patents

Connecting structure between cft column and rc slab reinforced by high strength concrete Download PDF

Info

Publication number
KR100705560B1
KR100705560B1 KR1020060046363A KR20060046363A KR100705560B1 KR 100705560 B1 KR100705560 B1 KR 100705560B1 KR 1020060046363 A KR1020060046363 A KR 1020060046363A KR 20060046363 A KR20060046363 A KR 20060046363A KR 100705560 B1 KR100705560 B1 KR 100705560B1
Authority
KR
South Korea
Prior art keywords
concrete
flat plate
cft
column
shear
Prior art date
Application number
KR1020060046363A
Other languages
Korean (ko)
Inventor
이철호
송진규
정광량
김진원
Original Assignee
재단법인서울대학교산학협력재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인서울대학교산학협력재단 filed Critical 재단법인서울대학교산학협력재단
Priority to KR1020060046363A priority Critical patent/KR100705560B1/en
Application granted granted Critical
Publication of KR100705560B1 publication Critical patent/KR100705560B1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/43Floor structures of extraordinary design; Features relating to the elastic stability; Floor structures specially designed for resting on columns only, e.g. mushroom floors
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/185Connections not covered by E04B1/21 and E04B1/2403, e.g. connections between structural parts of different material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts

Abstract

A joint structure between a CFT(concrete filled steel tube) column and a RC(reinforced concrete) flat plate with a compression zone reinforced by high-strength concrete is provided to transfer shear force by load added on a slab to a CFT column between a CFT column and a RC flat plate and to secure sufficient stability against punching shear. The invention relates to a joint structure between a CFT(concrete filled steel tube) column(10) composed of a steel pipe having a hollow and filled with concrete(1) in the hollow and a RC(reinforced concrete) flat plate(100) composed of a reinforced concrete slab, wherein a compression zone(200) on a joint between the CFT column and the RC flat plate is made of high strength concrete having the larger strength(42Mpa~80Mpa) than the strength of ordinary concrete on another zone of the RC flat plate to increase punching shear strength, deformation capacity and energy absorption capacity. In addition, a shear head(20) composed of a steel beam is installed on the side of the CFT column integrally to be buried under the RC flat plate on a joint between the CFT column and the RC flat plate to push out the dangerous cross section of punching shear, thereby to increase stability against the punching shear, and a horizontal support member(30) composed of a beam is connected between shear heads of the adjacent CFT columns to support each CFT column, thereby to secure stability of the CFT column while erecting a CFT column or performing successive construction and to function as a suspension member when punching shear failure occurs on the RC flat plate, thereby to prevent the chain breakdown of buildings.

Description

고강도 콘크리트에 의해 압축대가 보강된 콘크리트충전 강관기둥과 철근콘크리트 무량판의 접합구조{Connecting Structure between CFT Column and RC Slab Reinforced by High Strength Concrete}Connecting Structure between CFT Column and RC Slab Reinforced by High Strength Concrete}

도 1a는 본 발명의 일 실시예에 따라 CFT기둥과 RC무량판의 접합에 있어서 RC무량판의 압축대를 보강한 CFT기둥과 RC무량판 접합구조를 보여주는 개략적인 측단면도이다. Figure 1a is a schematic side cross-sectional view showing a CFT column and RC flat plate joint structure reinforced with the compression band of the RC flat plate in the bonding of the CFT column and RC flat plate according to an embodiment of the present invention.

도 1b는 도 1a에 도시된 실시예의 개략적인 평면도이다. FIG. 1B is a schematic plan view of the embodiment shown in FIG. 1A.

도 2는 본 발명의 또다른 실시예에 따른 CFT기둥의 개략적인 사시도이다. 2 is a schematic perspective view of a CFT pillar according to another embodiment of the present invention.

도 3a 및 도 3b는 각각 도 2에 도시된 CFT기둥의 개략적인 측면도 및 평면도이다.3A and 3B are schematic side and plan views, respectively, of the CFT column shown in FIG. 2.

도 4a는 복수의 층에 전단머리가 각각 구비된 본 발명에 따른 CFT기둥이 수직하게 세워져있는 상태의 측면도이다. Figure 4a is a side view of a state in which the CFT column is vertically erected in accordance with the present invention each of which is provided with shear heads in a plurality of layers.

도 4b는 도 4a에서 횡지지부재가 설치된 상태에서 최상부층을 개략적으로 도시한 사시도이다. FIG. 4B is a perspective view schematically illustrating a top layer in a state in which a horizontal support member is installed in FIG. 4A.

<도면의 주요 부분에 대한 설명>Description of the main parts of the drawing

1 : 콘크리트1: concrete

10 : 콘크리트충전 강관기둥10: concrete filled steel pipe pillar

20 : 전단머리20: shear head

30 : 횡지지부재30: lateral support member

50 : 탭50: tab

55 : 볼트55: bolt

55a : 너트55a: nuts

100 : 철근콘크리트 무량판100: reinforced concrete weightless plate

본 발명은 고강도 콘크리트에 의해 압축대가 보강된 콘크리트충전 강관기둥과 철근콘크리트 무량판의 접합구조에 관한 것으로서, 콘크리트충전 강관기둥(Concrete Filled Steel Tubular Column)(이하 "CFT기둥"이라고 약칭함)과 철근콘크리트 무량판을 접합하는 구조를 형성함에 있어서, CFT기둥과 철근콘크리트 무량판(이하, "RC무량판"라고 약칭함)이 접합되는 부분의 압축대에 고강도 콘크리트를 타설하고, 필요에 따라서는 추가적으로 RC무량판의 슬래브 내에 매립되도록 소정 길이의 빔으로 이루어진 전단머리를 CFT기둥에 설치함으로써, CFT기둥과 RC무량판의 접합부에서의 펀칭전단(punching shear)에 대한 위험단면을 외측으로 더 밀어 내어 펀칭전단의 주장을 확대시켜 펀칭전단 강도를 증대시킴과 동시에 시공성 향상 및 공기 단축을 도모할 수 있는 새로운 형식의 콘크리트충전 강관기둥과 철근콘크리트 무량판의 접합구조에 관한 것이다. The present invention relates to a joint structure of a concrete-filled steel pipe column and reinforced concrete flat plate reinforced by a compression table reinforced with high-strength concrete, and referred to as a concrete filled steel tubular column (hereinafter referred to as "CFT column") and reinforcing bars. In forming the structure for joining the concrete flat plate, high-strength concrete is poured on the compression table at the part where the CFT column and the reinforced concrete flat plate (hereinafter referred to as "RC flat plate") are joined, and additionally, if necessary. By installing a shear head consisting of a beam of a predetermined length on the CFT column so as to be embedded in the slab of the RC flat plate, the end of the risk of punching shear at the junction of the CFT column and the RC flat plate is further pushed outward It is a new type that can expand the claim of shear to increase the punching shear strength and improve the workability and shorten the air. The present invention relates to a joint structure of a concrete-filled steel pipe column and a reinforced concrete flat plate.

복수의 층으로 건축되는 건축물의 기둥으로서 중공의 각형 강관 내에 콘크리트를 타설하여 형성되는 CFT기둥을 이용하는 것이 주목을 받고 있다. CFT기둥을 이용하게 되면 철근조립 및 거푸집 공사를 생략할 수 있고, 시공 현장에서 해야 하는 작업을 최소화할 수 있으며, 콘크리트와 강관의 합성작용이 발휘됨에 따라 강재량을 절감할 수 있어, 시공성의 향상, 공기단축, 기둥 크기 축소에 따른 공간활용도 증대, 내진/내풍성능 및 내화성능 등의 향상, 그리고 고층 건축물에 대한 우수한 적용성 등의 효과를 얻을 수 있게 된다. Attention is drawn to the use of a CFT column formed by pouring concrete into a hollow square steel pipe as a pillar of a building constructed of a plurality of floors. The use of CFT columns can eliminate rebar assembly and formwork, minimize the work required at the construction site, and reduce the amount of steel due to the synthesis of concrete and steel pipes. Increasing the space utilization by reducing the air, reducing the size of the column, improving the seismic / wind resistance and fire resistance, and excellent applicability to high-rise buildings.

한편, 기둥과 바닥판 슬래브를 연결함에 있어서, 시공성 향상 및 비용절감의 효과를 발휘하는 무량판 접합구조 즉, 보가 없이 바닥판 슬래브가 하중을 직접 기둥으로 전달하는 무량판 접합구조의 사용이 주목을 받고 있다. On the other hand, in connecting the column and the slab of slab, attention is paid to the use of a flat plate bonding structure that exhibits the effect of improving the constructability and cost reduction, that is, a flat plate bonding structure in which the slab slab transfers the load directly to the column without a beam. I am getting it.

따라서 위와 같은 CFT기둥과 무량판 접합구조를 결합하면 두 기술의 장점을 극대화시킬 수 있다. 그런데 이 경우, CFT기둥과 바닥판 슬래브 사이에서, 슬래브에 가해지는 하중에 의한 전단력이 확실하게 CFT기둥으로 전달하도록 함과 동시에 펀칭전단에 대해서도 안전성을 확보할 수 있도록 하여야만 한다.  Therefore, combining the above-described CFT pillar and flat plate junction structure can maximize the advantages of both technologies. In this case, however, between the CFT column and the bottom slab, the shear force due to the load applied to the slab must be reliably transmitted to the CFT column, and the safety of the punching shear must be ensured.

특히, 일반적인 무량판 접합구조에 있어서는 무량판의 슬래브 내에 배근되는 휨철근이 우선적으로 항복하게 되는 것으로 설계를 하게 되는데, 이러한 휨철근의 항복하중 이상이 작용할 경우에는 압축대의 압괴에 의해 결국 기둥 주변으로 무량 판의 슬래브에 펀칭전단에 의한 펀칭파괴가 발생하게 된다. 따라서 CFT기둥과 무량판 접합구조를 결합함에 있어서, 이러한 압축대의 압괴를 지연시키는 것이 바람직하다. In particular, in the general flat plate joining structure, the design of the flexural reinforcing bars in the slab of the flat plate yields preferentially. Punching failure by punching shear occurs in slab of flat plate. Therefore, in combining the CFT column and the flat plate joint structure, it is desirable to delay the collapse of the compression zone.

또한, CFT기둥의 경우에는 통상 3개의 층을 하나의 단위로 시공을 하게 되는데, CFT기둥 세우기 작업 후의 시공과정에서 CFT기둥이 틀어지는 등의 안정성에 문제가 발생할 소지가 많으며 그에 따라 시공이 어려워진다. 따라서 이러한 CFT기둥의 시공상 발생할 수 있는 문제점을 해결할 수 있는 방안을 마련하는 것이 매우 중요하다. In addition, in the case of a CFT pillar, three layers are usually constructed as one unit. In the construction process after the CFT pillar construction work, there are many problems in stability such as twisting of the CFT pillar, and thus construction becomes difficult. Therefore, it is very important to prepare a way to solve the problems that may occur during the construction of the CFT pillar.

본 발명은 위와 같은 개념과 문제점의 인식에 기초하여 개발된 것으로서, 본 발명은 CFT기둥을 이용하여 건축물을 시공함에 있어서, 기둥-슬래브의 무량판 접합구조를 형성함으로써 CFT기둥이 가지는 장점과 무량판 접합구조가 가지는 장점을 극대화시킴과 동시에, CFT기둥과 무량판의 접합구조를 형성함에 있어서 CFT기둥과 바닥판 슬래브 사이에서 슬래브에 가하지는 하중에 의한 전단력이 확실하게 CFT기둥으로 전달하도록 하고 펀칭전단에 대해서도 충분한 안전성을 확보할 수 있도록 하는 것을 목적으로 한다. The present invention was developed on the basis of the above concept and the recognition of the problem, the present invention in the construction of the building using the CFT column, by forming a flat plate joint structure of column-slabs have the advantages and the flat plate having the CFT column While maximizing the advantages of the joint structure, the shear force due to the load applied to the slab between the CFT column and the bottom plate slab is reliably transmitted to the CFT column in forming the joint structure of the CFT column and flat plate. It aims to be able to ensure sufficient safety also.

특히, 압축대를 고강도 콘크리트를 이용하여 더욱 보강함으로써 압축대의 압괴를 지연시켜 펀칭전단 강도를 향상시키고 변형능력을 효과적으로 증진시킬 수 있도록 하는 것을 목적으로 한다. In particular, by further reinforcing the compression zone using high-strength concrete, the purpose of the present invention is to retard the collapse of the compression zone to improve the punching shear strength and effectively improve the deformation capacity.

또한 본 발명은, CFT기둥을 이용하여 복층의 건축물을 시공함에 있어서 CFT기둥이 틀어지는 등의 불안정성이 발생하는 것을 방지할 수 있도록 하는 것을 목적으로 한다. In addition, an object of the present invention is to be able to prevent the occurrence of instability, such as twisting the CFT pillar in the construction of a multi-storey building using the CFT pillar.

위와 같은 목적을 달성하기 위하여, 본 발명에서는 중공을 갖는 강관으로 이루어지며 상기 중공 내에는 콘크리트 타설되어 채워진 콘크리트충전 강관기둥과, 철근콘크리트 슬래브로 이루어진 철근콘크리트 무량판이 일체로 접합되는 접합구조로서, 상기 콘크리트충전 강관기둥과 상기 철근콘크리트 무량판이 접합되는 접합부분의 압축대는 42MPa 내지 80MPa의 강도 범위를 갖는 고강도 콘크리트로 이루어지는 것을 특징으로 하는 콘크리트충전 강관기둥과 철근콘크리트 무량판의 접합구조가 제공된다. In order to achieve the above object, in the present invention is made of a steel pipe having a hollow and in the hollow is filled with concrete filled steel pipe pillars and filled with reinforced concrete flat plate made of reinforced concrete slab, the joining structure is integrally bonded, The compression zone of the joint portion in which the concrete-filled steel pipe pillar and the reinforced concrete flat plate is joined is provided with a joined structure of the concrete-filled steel pipe pillar and the reinforced concrete flat plate, characterized in that the high-strength concrete having a strength range of 42MPa to 80MPa.

본 발명에서는 상기한 접합구조의 구체적인 실시예로서, 상기한 구조에 더하여, 상기 콘크리트충전 강관기둥과 상기 철근콘크리트 무량판이 접합되는 접합부분에서, 상기 콘크리트충전 강관기둥의 측면에는 상기 철근콘크리트 무량판내에 매립되도록 빔 부재로 이루어진 전단머리가 상기 콘크리트충전 강관기둥에 일체로 구비되는 것을 특징으로 하는 콘크리트충전 강관기둥과 철근콘크리트 무량판의 접합구조가 제공된다. In the present invention, as a specific embodiment of the above-described joint structure, in addition to the above structure, in the joint portion where the concrete-filled steel pipe pillar and the reinforced concrete flat plate are joined, the side of the concrete-filled steel pipe pillar in the reinforced concrete flat plate A shearing head made of a beam member to be embedded is provided with a joint structure of the concrete-filled steel pipe pillar and the reinforced concrete flat plate, characterized in that it is provided integrally with the concrete-filled steel pipe pillar.

이러한 본 발명에서, 서로 이웃하게 설치된 상기 콘크리트충진 강관기둥들을 서로 지지할 수 있도록 하기 위하여, 상기 이웃하게 설치된 콘크리트충진 강관기둥 의 전단머리간에는 빔으로 이루어진 횡지지부재가 일체로 조립 연결되어 상기 철근콘크리트 무량판 내에 매립되어 구비되도록 할 수 있다. In the present invention, in order to be able to support the concrete-filled steel pipe pillars installed next to each other, the transverse support member made of a beam is integrally assembled and connected between the shear heads of the concrete-filled steel pipe pillars installed next to the reinforced concrete It may be embedded in a flat plate.

이하 도면을 참조하여 본 발명의 CFT기둥과 무량판의 접합구조를 설명한다. Hereinafter, the bonding structure of the CFT pillar and the flat plate of the present invention will be described with reference to the drawings.

도 1a에는 본 발명의 일 실시예에 따라 CFT기둥(10)과 RC무량판(100)의 접합에 있어서 RC무량판(100)의 압축대를 보강한 CFT기둥(10)과 RC무량판(100) 접합구조를 보여주는 개략적인 측단면도가 도시되어 있고, 도 1b에는 그 평면도가 도시되어 있다. FIG. 1A illustrates a CFT column 10 and an RC flat plate 100 that reinforce the compression band of the RC flat plate 100 in the bonding of the CFT column 10 and the RC flat plate 100 according to one embodiment of the present invention. A schematic side cross-sectional view showing a junction structure is shown, and its plan view is shown in FIG.

도면에 도시된 실시예와 같이, 본 발명에 있어서, 상기 CFT기둥(10)과 RC무량판(100)이 접합되는 부분의 압축대(200)는 고강도 콘크리트로 구성된다. 즉, 도면에서 W1과 W2를 변으로 하는 압축대(200) 영역을, RC무량판(100)의 다른 영역을 이루는 보통의 콘크리트 강도보다 더 큰 강도(42MPa ~ 80MPa)를 가지는 콘크리트로 형성하는 것이다. 상기 압축대(200)의 영역은 일반적으로 보-기둥의 구조해석을 통해서 결정된다. 본 발명에서는 위와 같이, 펀칭전단에 의한 펀칭파괴가 일어나게 되는 압축대(200) 영역에 고강도 콘크리트를 타설함으로써 펀칭전단 강도 및 변형능력, 그리고 에너지 흡수능력이 효과적으로 증가되는 장점을 발휘하게 된다. As shown in the drawings, in the present invention, the compression table 200 of the portion where the CFT pillar 10 and the RC flat plate 100 is bonded is made of high-strength concrete. That is, in the drawing, the compression zone 200 in which the sides of W1 and W2 are formed is formed of concrete having a higher strength (42 MPa to 80 MPa) than the normal concrete strength forming the other area of the RC flat plate 100. . The region of the compression zone 200 is generally determined through structural analysis of the beam column. In the present invention, as shown above, by placing high-strength concrete in the compression zone 200 area where the punching failure caused by the punching shear occurs, the punching shear strength and deformation capacity, and the energy absorption capacity is effectively increased.

도 2에는 상기한 본 발명의 구성에 추가적으로 전단머리를 더 부가하는 실시예를 보여주는 CFT기둥(10)의 개략적인 사시도가 도시되어 있다. 도 3a 및 도 3b에는 각각 도 2에 도시된 CFT기둥(10)의 개략적인 측면도 및 평면도가 도시되어 있는데, 도 3a에서 편의상 CFT기둥(10)과 접합되는 RC무량판(100)은 일점쇄선으로 도 시하였으며, RC무량판(100) 내에 배근되는 철근은 도시를 생략하였다. 2 is a schematic perspective view of a CFT column 10 showing an embodiment of further adding a shear head in addition to the configuration of the present invention described above. 3A and 3B show a schematic side view and a plan view of the CFT pillar 10 shown in FIG. 2, respectively. In FIG. 3A, the RC flat plate 100 bonded to the CFT pillar 10 is illustrated by a dashed line. As shown, the reinforcing bars in the RC flat plate 100 is omitted.

도면에 도시된 실시예에서는, CFT기둥(10)과 RC무량판(100)이 접합되는 부분에서, CFT기둥(10)의 측면에는 철근콘크리트 슬래브로 이루어지는 RC무량판(100)내에 매립되도록 소정 길이의 빔으로 이루어진 전단머리(20)가 일체로 설치된다. In the embodiment shown in the figure, at a portion where the CFT column 10 and the RC flat plate 100 are joined, a predetermined length is embedded in the RC flat plate 100 made of a reinforced concrete slab on the side of the CFT column 10. Shear head 20 made of a beam is integrally installed.

구체적으로 상기 CFT기둥(10)은 중공(12)을 갖는 강관으로 이루어지며 하부의 형성된 개구를 통해 콘크리트(1)가 상향으로 가압 타설되어 채워진다. 도면에 도시된 실시예에서 상기 CFT기둥(10)은 4각형의 강관으로 이루어져 있으나, CFT기둥(10)의 단면형상은 단지 사각형에만 한정되지 않으며, 원형기둥 등 다양한 단면형상이 될 수도 있다. Specifically, the CFT column 10 is made of a steel pipe having a hollow 12 and is filled with the concrete 1 is poured upward through the opening formed in the lower portion. In the embodiment shown in the figure the CFT pillar 10 is made of a steel pipe of a square, the cross-sectional shape of the CFT pillar 10 is not limited to only a rectangular, it may be a variety of cross-sectional shape, such as a circular column.

상기 전단머리(20)는 강재 빔으로 이루어져 그 일단부가 CFT기둥(10) 측면의 접합부(15)에 일체로 고정되어 RC무량판(100) 방향으로 돌출된 형태로 구비된다. 상기 CFT기둥(10)에 설치되는 상기 전단머리(20)는 도 3a에 도시된 것처럼 CFT기둥(10)과 접합되는 RC무량판(100)내에 완전히 매립된다.The shear head 20 is made of a steel beam, one end of which is integrally fixed to the junction 15 of the side of the CFT pillar 10 and provided in the form of protruding toward the RC flat plate 100. The shear head 20 installed on the CFT pillar 10 is completely embedded in the RC flat plate 100 bonded to the CFT pillar 10 as shown in FIG. 3A.

상기 전단머리(20)의 돌출길이는, 설계시 산정된 펀칭전단 강도에 따라 결정된다. 즉, 전단머리(20)를 구비하지 아니한 일반적인 보-기둥 접합구조에 대한 구조 해석 및 설계에 의하여 펀칭전단 강도 및 펀칭전단의 위험단면을 결정할 수 있는데, 상기 전단머리(20)의 돌출길이를 CFT기둥(10)의 전면으로부터 상기 펀칭전단의 위험단면까지의 거리보다 더 크게 되도록 상기 전단머리(20)의 돌출길이를 정함으로써, 궁극적으로 본 발명의 CFT기둥(10)과 RC무량판(100) 접합구조에서의 펀칭전단 위험단면이 상기 전단머리(20)의 단부 외측에 위치하도록 하는 것이다. The protruding length of the shear head 20 is determined according to the punching shear strength calculated at design time. That is, the punching shear strength and the risk cross section of the punching shear can be determined by structural analysis and design of a general beam-column joint structure having no shear head 20. The protrusion length of the shear head 20 is determined by the CFT. By determining the protruding length of the shear head 20 to be greater than the distance from the front surface of the column 10 to the dangerous end surface of the punching shear, ultimately the CFT column 10 and RC flat plate 100 of the present invention. The punching shear risk cross section in the joining structure is positioned outside the end of the shear head 20.

이와 같이, 본 발명에서는 CFT기둥(10)에 돌출된 형태의 전단머리(20)를 설치하고 이를 RC무량판(100)내에 매립되도록 함으로써 펀칭전단의 위험단면을 더 외측으로 밀어낼 수 있고, 그만큼 펀칭전단의 주장이 확대됨으로 펀칭전단에 대한 안정성이 증대되는 효과가 발휘된다. As described above, in the present invention, by installing the shear head 20 of the protruding shape to the CFT column 10 and allowing it to be embedded in the RC flat plate 100, the end surface of the punching shear can be pushed outwards, As the claim of punching shear is expanded, stability of punching shear is increased.

한편, 본 발명에 있어서, 이웃하는 CFT기둥(10)과의 사이에서 전단머리(20)간에 빔으로 이루어진 횡지지부재(30)를 연결 설치하여 각각을 지지하도록 함으로써, 각각의 CFT기둥(10)의 시공시 발생할 수 있는 시공시의 틀어짐 등의 불안정성을 해소할 수도 있다. 도 4a에는 복수의 층에 전단머리(20)가 각각 구비된 본 발명에 따른 CFT기둥(10)이 수직하게 세워져있는 상태의 측면도가 도시되어 있고, 도 4b에는 도 3a에서 횡지지부재(30)가 설치된 상태에서 최상부층을 개략적으로 도시한 사시도가 도시되어 있다. 도면에 도시된 것처럼, 본 발명에서는 서로 이웃하는 CFT기둥(10)의 전단머리(20) 사이에 빔으로 이루어진 횡지지부재(30)를 일체로 조립 연결하여, CFT기둥(10) 간의 지지구조를 형성할 수 있다. On the other hand, in the present invention, by connecting the lateral support member 30 made of a beam between the shear head 20 between the adjacent CFT pillar 10 to support each, each CFT pillar 10 It can also solve instability such as distortion during construction that may occur during construction. 4A is a side view of a state in which the CFT column 10 according to the present invention, in which the shear heads 20 are provided in a plurality of layers, respectively, is placed vertically, and FIG. 4B is a side support member 30 in FIG. 3A. A perspective view schematically showing the top layer is shown in which state is installed. As shown in the figure, in the present invention by integrally connecting and connecting the lateral support member 30 made of a beam between the shear head 20 of the adjacent CFT pillar 10, the support structure between the CFT pillar 10 Can be formed.

상기 횡지지부재(30)는 CFT기둥(10)들을 서로 연결하여 보강함으로써 CFT기둥(10) 세우기 작업 및 후속 시공 과정에서 CFT기둥(10)에 대한 안정성을 확보할 수 있도록 하는 기능뿐만 아니라, RC무량판(100)에 펀칭파괴가 발생하는 경우, 현수부재로서도 기능하게 되어, 건축물의 연쇄 붕괴를 방지하게 되는 기능도 발휘하게 된다. 또한 상기 전단머리(20)와 마찬가지로 상기 횡지지부재(30)는 RC무량판(100)의 슬래브 내에 완전히 매립되어 RC무량판(100) 자체를 보강하는 기능도 발휘하게 된다. The lateral support member 30 is connected to the reinforcement of the CFT pillars 10 by reinforcing each other, as well as a function to ensure the stability of the CFT pillar 10 during the construction and subsequent construction process of the CFT pillar 10, RC When the punching break occurs in the flat plate 100, it also functions as a suspension member, thereby exhibiting a function of preventing the chain collapse of the building. In addition, similar to the shear head 20, the lateral support member 30 is fully embedded in the slab of the RC flat plate 100 to exhibit the function of reinforcing the RC flat plate 100 itself.

상기 전단머리(20)와 횡지지부재(30)를 연결하기 위해서, 전단머리(20)에 결합수단이 구비된다. 도면에 도시된 실시예에서, 상기 결합수단은 일측에 구멍(51)이 형성된 탭(50) 형태로 이루어져, 타측이 전단머리(20)의 단부에 용접되어 고정된다. 한편, 상기 탭(50)의 구멍(51)에 대응되는 위치에서 횡지지부재(30)의 단부측에도 대응 구멍(31)이 형성되어 볼트(55)와 너트(55a)에 의해 전단머리(20)와 횡지지부재(30)가 결합되어 연결된다. 위와 같은 탭(50) 형태로 이루어진 결합수단은 빔으로 이루어진 전단머리(20)와 횡지지부재(30)를 일체로 결합하여 연결하는 하나의 실시예로서, 구체적으로는 싱글쉬어탭을 사용할 수 있다. 그러나 본 발명에 있어서 상기 전단머리(20)와 횡지지부재(30)는 위에 예시한 것과 같은 탭을 이용한 방식에 의해서만 결합 연결되는 것은 아니며, 다양한 방식의 빔 연결구조에 의하여 서로 결합 연결될 수 있다. In order to connect the shear head 20 and the transverse support member 30, the shear head 20 is provided with a coupling means. In the embodiment shown in the figure, the coupling means is formed in the form of a tab 50 having a hole 51 on one side, the other side is fixed by welding to the end of the shear head 20. On the other hand, a corresponding hole 31 is also formed at the end side of the lateral support member 30 at a position corresponding to the hole 51 of the tab 50, so that the shear head 20 is formed by the bolt 55 and the nut 55a. And the lateral support member 30 are coupled to each other. Coupling means formed in the form of the tab 50 as described above as one embodiment to connect the shear head 20 and the lateral support member 30 made of a beam integrally connected, specifically, a single shear tab can be used. . However, in the present invention, the shear head 20 and the lateral support member 30 are not only connected to each other by a tab-type method as illustrated above, but may be connected to each other by various beam connection structures.

이와 같이, 본 발명에서는 펀칭전단에 의한 펀칭파괴가 일어나게 되는 압축대(200) 영역에 고강도 콘크리트를 타설함으로써 펀칭전단 강도 및 변형능력, 그리고 에너지 흡수능력이 효과적으로 증가시킬 수 있게 된다.  As described above, in the present invention, by placing high-strength concrete in the compression zone 200 where punching failure occurs due to the punching shear, punching shear strength, deformation capacity, and energy absorption capacity can be effectively increased.

특히, 본 발명에서는 CFT기둥(10)에 돌출된 형태의 전단머리(20)를 설치하고 이를 RC무량판(100) 슬래브 내에 매립되는 구조를 가질 수도 있는데, 이러한 구조에 의하면, CFT기둥(10)과 RC무량판(100) 간의 더욱 견고하고 일체화된 접합구조를 이룰 수 있게 된다. 따라서 CFT기둥(10)과 RC무량판(100) 사이에서 RC무량판(100) 에 가하지는 하중에 의한 전단력이 확실하게 CFT기둥(10)으로 전달되도록 할 수 있으며, CFT기둥(10)이 가지고 있는 장점들과 RC무량판(100) 접합구조가 가지고 있는 장점들이 극대화된 보-기둥 접합구조를 이룰 수 있게 된다. In particular, the present invention may have a structure in which the shear head 20 protruding from the CFT column 10 is installed and embedded in the slab of the RC flat plate 100, and according to such a structure, the CFT column 10 And the RC flat plate 100 can achieve a more robust and integrated joint structure. Therefore, the shear force due to the load applied to the RC flat plate 100 between the CFT column 10 and the RC flat plate 100 can be reliably transmitted to the CFT column 10, and the CFT column 10 has Advantages and advantages of the RC flat plate (100) bonding structure can be achieved to maximize the beam-column joint structure.

특히, 본 발명에서는 CFT기둥(10)에 설치된 전단머리(20)에 의하여 펀칭전단의 위험단면을 더 외측으로 밀어낼 수 있고, 그만큼 펀칭전단의 주장이 확대됨으로 펀칭전단에 대한 안정성이 증대되는 효과가 발휘된다. In particular, in the present invention, by the shear head 20 installed in the CFT column 10, the risk cross section of the punching shear can be pushed outwards, and the claim of the punching shear is expanded so that the stability of the punching shear is increased. Is exerted.

또한, CFT기둥의 내부에 콘크리트를 충전할 때, CFT기둥 내에 스티프너가 없어도 되므로 하부압입에 의한 타설뿐만 아니라 상부타설도 가능하여 시공성을 향상시킬 수 있다. In addition, when filling the concrete inside the CFT pillar, there is no need for a stiffener in the CFT pillar, so that not only the casting by the bottom press but also the upper casting is possible, thereby improving the workability.

한편, 본 발명에 있어서, 이웃하는 CFT기둥(10)과의 사이에서 전단머리(20)간에 빔으로 이루어진 횡지지부재(30)를 연결 설치하여 각각을 지지하도록 함으로써, 각각의 CFT기둥(10)의 시공시 발생할 수 있는 시공시의 틀어짐 등의 불안정성을 해소할 수도 있다. 즉, 상기 횡지지부재(30)에 의하여 CFT기둥(10)들을 서로 연결하여 보강함으로써 CFT기둥(10) 세우기 작업 및 후속 시공 과정에서 CFT기둥(10)에 대한 안정성을 확보할 수 있게 될 뿐만 아니라, RC무량판(100)에 펀칭파괴가 발생하는 경우에도 건축물의 연쇄 붕괴를 방지할 수 있으며, 상기 횡지지부재(30)에 의하여 RC무량판(100) 자체를 더욱 견고하게 보강할 수도 있게 되는 효과도 발휘된다. On the other hand, in the present invention, by connecting the lateral support member 30 made of a beam between the shear head 20 between the adjacent CFT pillar 10 to support each, each CFT pillar 10 It can also solve instability such as distortion during construction that may occur during construction. That is, by connecting and reinforcing the CFT pillars 10 by the lateral support member 30 as well as to ensure the stability of the CFT pillar 10 during the construction work and subsequent construction of the CFT pillar 10 as well as In addition, even when a punching break occurs in the RC flat plate 100, it is possible to prevent a chain collapse of the building, and the RC flat plate 100 may be more firmly reinforced by the lateral support member 30. The effect is also demonstrated.

특히, 위와 같은 횡지지부재(30)를 사용하여 CFT기둥(10)의 시공 중 안정성을 확보할 수 있게 되므로, 종래와 같은 버팀재, 가새 등의 추가적인 가설부재를 설치할 필요가 없으며 따라서 이러한 가설부재 설치에 따른 공사비를 절감할 수 있음은 물론 시공상의 장애도 없앨 수 있으며 현저한 공기단축효과를 달성할 수 있게 된다. In particular, it is possible to ensure the stability during the construction of the CFT pillar 10 by using the horizontal support member 30 as described above, there is no need to install additional temporary members such as braces, braces, etc. Therefore, such temporary members Not only can the construction cost of installation be reduced, but also the construction obstacles can be eliminated, and a significant air shortening effect can be achieved.

이러한 본 발명에 따른 접합구조는 초고층 주상복합 건물이나 아파트의 시공에서도 매우 유용하게 활용된다. The joint structure according to the present invention is very useful in the construction of high-rise residential buildings or apartments.

Claims (3)

중공(12)을 갖는 강관으로 이루어지며 상기 중공(12) 내에는 콘크리트(1)가 타설되어 채워진 콘크리트충전 강관기둥(10)과, 철근콘크리트 슬래브로 이루어진 철근콘크리트 무량판(100)이 일체로 접합되는 접합구조로서, Steel pipe having a hollow (12) and the inside of the hollow 12 is a concrete filled steel pipe pillar (10) filled with the concrete (1) is poured and the reinforced concrete flat plate (100) consisting of reinforced concrete slab integrally bonded As a joining structure, 상기 콘크리트충전 강관기둥(10)과 상기 철근콘크리트 무량판(100)이 접합되는 접합부분의 압축대는 42MPa 내지 80MPa의 강도 범위를 갖는 고강도 콘크리트로 이루어지는 것을 특징으로 하는 콘크리트충전 강관기둥(10)과 철근콘크리트 무량판(100)의 접합구조. The compression zone of the joint portion where the concrete-filled steel pipe pillar 10 and the reinforced concrete flat plate 100 is bonded is made of high-strength concrete having a strength range of 42 MPa to 80 MPa, and the concrete-filled steel pipe pillar 10 and reinforcing bars Bonding structure of the concrete flat plate (100). 제1항에 있어서,The method of claim 1, 상기 콘크리트충전 강관기둥(10)과 상기 철근콘크리트 무량판(100)이 접합되는 접합부분에서, 상기 콘크리트충전 강관기둥(10)의 측면에는 상기 철근콘크리트 무량판(100)내에 매립되도록 빔 부재로 이루어진 전단머리(20)가 상기 콘크리트충전 강관기둥(10)에 일체로 구비되는 것을 특징으로 하는 콘크리트충전 강관기둥(10)과 철근콘크리트 무량판(100)의 접합구조. In the joint portion where the concrete filled steel pipe column 10 and the reinforced concrete flat plate 100 are joined, a side of the concrete filled steel pipe column 10 is made of a beam member to be embedded in the reinforced concrete flat plate 100 Joining structure of the concrete-filled steel pipe pillar 10 and the reinforced concrete weightless plate 100, characterized in that the shear head 20 is integrally provided in the concrete-filled steel pipe pillar (10). 제1항 또는 제2항에 있어서,The method according to claim 1 or 2, 서로 이웃하게 설치된 상기 콘크리트충진 강관기둥(10)들을 서로 지지할 수 있도록 하기 위하여, 상기 이웃하게 설치된 콘크리트충진 강관기둥(10)의 전단머리(20)간에는 빔으로 이루어진 횡지지부재(30)가 일체로 조립 연결되어 상기 철근콘크리트 무량판(100) 내에 매립되어 구비되어 있는 것을 특징으로 하는 콘크리트충전 강관기둥(10)과 철근콘크리트 무량판(100)의 접합구조. In order to support the concrete-filled steel pipe pillars 10 installed next to each other, the transverse supporting members 30 made of beams are integrated between the shear heads 20 of the concrete-filled steel pipe pillars 10 installed adjacent to each other. Joining structure of the concrete-filled steel pipe pillar 10 and the reinforced concrete weightless plate 100, characterized in that the assembly is connected to be embedded in the reinforced concrete weightless plate 100.
KR1020060046363A 2006-05-24 2006-05-24 Connecting structure between cft column and rc slab reinforced by high strength concrete KR100705560B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060046363A KR100705560B1 (en) 2006-05-24 2006-05-24 Connecting structure between cft column and rc slab reinforced by high strength concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060046363A KR100705560B1 (en) 2006-05-24 2006-05-24 Connecting structure between cft column and rc slab reinforced by high strength concrete

Publications (1)

Publication Number Publication Date
KR100705560B1 true KR100705560B1 (en) 2007-08-10

Family

ID=38601301

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060046363A KR100705560B1 (en) 2006-05-24 2006-05-24 Connecting structure between cft column and rc slab reinforced by high strength concrete

Country Status (1)

Country Link
KR (1) KR100705560B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101525904B (en) * 2009-04-01 2010-12-29 天津大学 Square steel tube concrete combined special-shaped column sleeve beam column node and manufacturing method
KR101155930B1 (en) 2009-08-26 2012-06-20 (주)대우건설 Reinforcing structure of slab-column junction having improved punching shear capacity and reinforcing method of slab-column junction
CN103528847A (en) * 2013-10-30 2014-01-22 东南大学 Push-out test piece for embedded shear connector
KR101701495B1 (en) 2015-09-08 2017-02-09 (주)더나은구조엔지니어링 Top-down construction method using steel tube column with horizontal and vertical reinforcement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060072394A (en) * 2004-12-23 2006-06-28 재단법인 포항산업과학연구원 Connection structure of concrete filled steel tube column and flat plate slab
KR20060075229A (en) * 2004-12-28 2006-07-04 삼성물산 주식회사 Joint structure of cft column and rc flat plate
KR20060107256A (en) * 2005-04-08 2006-10-13 한밭대학교 산학협력단 Reinforcing system for connection of flat plate-column a building

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060072394A (en) * 2004-12-23 2006-06-28 재단법인 포항산업과학연구원 Connection structure of concrete filled steel tube column and flat plate slab
KR20060075229A (en) * 2004-12-28 2006-07-04 삼성물산 주식회사 Joint structure of cft column and rc flat plate
KR20060107256A (en) * 2005-04-08 2006-10-13 한밭대학교 산학협력단 Reinforcing system for connection of flat plate-column a building

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
1020060072394
1020060075229
1020060107256

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101525904B (en) * 2009-04-01 2010-12-29 天津大学 Square steel tube concrete combined special-shaped column sleeve beam column node and manufacturing method
KR101155930B1 (en) 2009-08-26 2012-06-20 (주)대우건설 Reinforcing structure of slab-column junction having improved punching shear capacity and reinforcing method of slab-column junction
CN103528847A (en) * 2013-10-30 2014-01-22 东南大学 Push-out test piece for embedded shear connector
KR101701495B1 (en) 2015-09-08 2017-02-09 (주)더나은구조엔지니어링 Top-down construction method using steel tube column with horizontal and vertical reinforcement

Similar Documents

Publication Publication Date Title
KR100770023B1 (en) Connecting structure between cft column and rc slab using shear head
KR101767677B1 (en) Compisite column structure for steel and concrete
JP4823790B2 (en) Column unit and method of building building using column unit
CN109339229B (en) Prefabricated assembled concrete-filled steel tube frame structure of perforation thick liquid anchor
KR101228012B1 (en) Precast concrete column connecting structure
KR101995496B1 (en) the rigid connection structure between the upper precast concrete column and the lower precast concrete column and the rigid connection structure of the precast concrete girder using the same
KR100646661B1 (en) Hybrid beam for slim-floor and slim-floor structure using the same
KR101844344B1 (en) the rigid connection structure between precast concrete column and precast concrete beam, the construction method of rigid connection structure using the same
KR101429430B1 (en) Double PC girder and construction method thereof
KR102240257B1 (en) Precast wall reinforced with built-in pressure resistance
KR20110003884A (en) Heterogeneity reinforcing composite profile beam
KR100705560B1 (en) Connecting structure between cft column and rc slab reinforced by high strength concrete
KR101206792B1 (en) Diagrid joining structure
KR101995497B1 (en) the rigid connection structure between the upper precast concrete column and the lower precast concrete column and the rigid connection structure of the precast concrete girder using the same
CN101503888A (en) Interlayer connection node between outer shear wall, plate and shear walls
KR20090098641A (en) Reinforcement
KR101458435B1 (en) Half precast concrete column manufacturing method using saddle-type ties and dual hoops and constructing method using the same
CN111962951A (en) Steel tube concrete column-H-shaped steel beam-steel support-Pi-shaped connecting piece combined type corner column bottom node and manufacturing method
KR20190036248A (en) Seismic retrofit structure for building and seismic retrofit method using the same
KR100658733B1 (en) Joint structure of CFT column and RC flat plate
KR200469319Y1 (en) Construction structure for joining steel or reinforced steel concrete column and beam with reinforcing end part
KR101226778B1 (en) Structure of connecting steel beam and column having improved earthquake resistance ability
KR101149034B1 (en) Prefab building connecting materials which improved bending stress of beam
CN201433465Y (en) Outer shear wall, board and shear wall interlayer connection node
KR100578641B1 (en) Steel-Concrete Hybrid Column, Hybrid Structure System Using the Same, and Construction Method Thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120402

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130403

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150226

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151224

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170403

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180404

Year of fee payment: 12