KR100703465B1 - Production method of Lithium containing reagent and for reducing gases in syngas produced from the gasification of waste plastics - Google Patents

Production method of Lithium containing reagent and for reducing gases in syngas produced from the gasification of waste plastics Download PDF

Info

Publication number
KR100703465B1
KR100703465B1 KR1020050072652A KR20050072652A KR100703465B1 KR 100703465 B1 KR100703465 B1 KR 100703465B1 KR 1020050072652 A KR1020050072652 A KR 1020050072652A KR 20050072652 A KR20050072652 A KR 20050072652A KR 100703465 B1 KR100703465 B1 KR 100703465B1
Authority
KR
South Korea
Prior art keywords
carbon dioxide
hydrogen sulfide
lithium
syngas
temperature
Prior art date
Application number
KR1020050072652A
Other languages
Korean (ko)
Other versions
KR20070018210A (en
Inventor
한춘
유경선
박주원
강동환
Original Assignee
한춘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한춘 filed Critical 한춘
Priority to KR1020050072652A priority Critical patent/KR100703465B1/en
Publication of KR20070018210A publication Critical patent/KR20070018210A/en
Application granted granted Critical
Publication of KR100703465B1 publication Critical patent/KR100703465B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1462Removing mixtures of hydrogen sulfide and carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1468Removing hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

본 발명은 폐기물 처리 방법의 하나인 가연성 폐기물 가스화에 의하여 발생하는 합성가스를 정제하는 기술에 관한 것으로서, 더욱 상세하게는 지르코니아와 탄산리튬을 고온에서 열처리하여 리튬지르코네이트로 전환시켜 허니콤에 담지한 후 흡착능 향상을 위해 염화물과 탄산염을 첨가하여 합성가스 내에 포함된 황화수소와 이산화탄소를 제거하는 복합산화물 반응제의 제조방법에 관한 것이다. 종래의 방법으로는 황화수소와 이산화탄소를 아민계열의 흡수용액을 이용하여 습식 처리하는 방법과 흡착제를 이용한 건식처리 방법이 있으나, 습식처리의 경우 처리온도를 상온영역으로 낮추어 처리한 후 다시 재가열하여야 한다는 단점을 갖게 되고 건식 흡착처리의 경우 흡착능이 낮아 소요되는 흡착제 양의 증가와 일산화탄소, 수소등의 가스흡착이 황화수소, 이산화탄소 흡착과 동시에 진행될 수 있다는 문제점을 갖는다. 따라서 500℃ 이상의 고온에서 온도를 낮추지 않고 직접 제조한 리튬계 복합산화물을 이용한 반응제로 황화수소와 이산화탄소를 선택적으로 제거함으로써 가스화반응에 의하여 생성되는 합성가스를 보다 효과적으로 활용할 수 있게 하는 합성가스 정제용 반응제의 제조방법에 관한 것이다. The present invention relates to a technology for purifying syngas generated by combustible waste gasification, which is one of waste treatment methods, and more specifically, zirconia and lithium carbonate are heat-treated at high temperature to be converted into lithium zirconate and supported on honeycomb. The present invention relates to a method for preparing a composite oxide reactant to remove hydrogen sulfide and carbon dioxide contained in a synthesis gas by adding chloride and carbonate to improve adsorption capacity. Conventional methods include a method of wet treatment of hydrogen sulfide and carbon dioxide using an amine-based absorption solution and a dry treatment method using an adsorbent. However, in the case of wet treatment, the treatment temperature must be lowered to room temperature and then reheated. In the case of dry adsorption treatment, the adsorption capacity is low, and the amount of adsorbent required and gas adsorption such as carbon monoxide and hydrogen may be simultaneously performed with hydrogen sulfide and carbon dioxide adsorption. Therefore, a reactive agent for syngas purification that makes effective use of syngas produced by gasification reaction by selectively removing hydrogen sulfide and carbon dioxide with a lithium-based composite oxide prepared directly without lowering the temperature at a temperature higher than 500 ° C. It relates to a manufacturing method of.

합성가스 정제, 황화수소, 이산화탄소, 리튬지르코네이트, 허니콤, 염화물, 탄산염 Syngas Refining, Hydrogen Sulfide, Carbon Dioxide, Lithium Zirconate, Honeycomb, Chloride, Carbonate

Description

폐플라스틱 가스화로부터 생산되는 합성가스 정제용 리튬계 반응제의 제조방법{Production method of Lithium containing reagent and for reducing gases in syngas produced from the gasification of waste plastics}Production method of Lithium containing reagent and for reducing gases in syngas produced from the gasification of waste plastics}

본 발명은 폐 플라스틱 가스화로부터 생산되는 합성가스 정제용 리튬계 반응제의 제조방법에 관한 것으로서, 더욱 상세하게는 폐 플라스틱의 가스화 반응에 의하여 생성되는 합성가스를 이용하는데 있어서 합성가스내에 포함된 황화수소와 이산화탄소를 제어하는 리튬계 복합산화물의 제조방법에 관한 것이다. 반응제 제조에 사용되는 지르코니아와 탄산리튬을 효과적으로 배합하여 제조한 복합산화물을 활용하면 고온에서 황화수소와 이산화탄소를 효과적으로 제어할 수 있으며 여기에 염화물과 탄산염을 첨가제로 사용하면 그 효율을 높일 수 있다. 특히 고온에서도 합성가스 내에 포함되어있는 수소와 일산화탄소와 같은 환원가스에 의하여 복합산화물의 환원이 진행되고 그로 인한 황화수소와 이산화탄소의 제거능 감소를 최소화하여 고온에서의 효과적인 황화수소 및 이산화탄소 제어를 달성함으로써 합성가스 이용시 유용한 전처리 반응제로 작용한다. 일반적으로 합성가스를 이용하여 제품을 생산하는 경우 합성가스내에 포함된 이산화탄소의 농도를 매우 낮게 유지하여야 하 며 동시에 황화수소를 제거하여야 한다. 이를 달성하기 위하여 환원가스내에 포함된 황화수소와 이산화탄소의 제거에 아민계 용액을 이용하여 습식처리하거나 구리와 아연계 금속을 이용하여 제조한 반응제로 고온에서 건식처리 하는 것이 일반적이다. 그러나 건식처리방법으로는 이산화탄소를 제거할 수 없고 습식처리의 경우는 배가스의 온도를 매우 낮은 온도로 낮추어 산성가스를 제어한 후 다시 온도를 승온시켜야 한다는 문제점이 발생하여 개선의 여지가 있었다. 또한, 지속적인 산업의 진보로 인하여 발생하는 플라스틱 폐기물의 양이 증가하고 있으며 유한한 화석연료로 인하여 폐기물을 활용한 에너지원 또는 유효화학물질의 확보는 지속적으로 요구되는 추세여서 향후 가스화 반응에 의하여 생산되는 합성가스의 활용도는 크게 증가될 전망이다. 따라서 폐기물 가스화반응에 의하여 생산되는 합성가스내에 포함된 산성가스의 정제기술은 합성가스의 활용도를 증가시키는데 있어서 매우 중요하며 그중 일산화탄소와 수소를 포함한 환원가스 분위기에서 이산화탄소와 황화수소를 동시에 효과적으로 제거하는 반응제의 개발이 매우 시급하게 요구되고 있는 실정이다.The present invention relates to a method for preparing a lithium-based reactant for syngas purification produced from waste plastic gasification, and more particularly, to using hydrogen gas contained in syngas in syngas produced by gasification of waste plastic. It relates to a method for producing a lithium-based composite oxide for controlling carbon dioxide. By using a composite oxide prepared by effectively combining zirconia and lithium carbonate used in the preparation of the reactant, hydrogen sulfide and carbon dioxide can be effectively controlled at high temperatures, and the use of chloride and carbonate as an additive can increase its efficiency. In particular, the reduction of complex oxides is carried out by reducing gases such as hydrogen and carbon monoxide contained in the synthesis gas even at high temperatures, thereby minimizing the reduction of the removal ability of hydrogen sulfide and carbon dioxide, thereby achieving effective hydrogen sulfide and carbon dioxide control at high temperatures. Acts as a useful pretreatment reactant. In general, when producing a product using syngas, the concentration of carbon dioxide contained in the syngas must be kept very low and hydrogen sulfide must be removed at the same time. In order to achieve this, it is common to wet-treat using an amine-based solution to remove hydrogen sulfide and carbon dioxide contained in a reducing gas, or dry-treat at a high temperature with a reagent prepared using copper and zinc-based metals. However, the dry treatment method cannot remove carbon dioxide, and in the case of the wet treatment, there is a problem of reducing the temperature of the exhaust gas to a very low temperature to control the acid gas and then raising the temperature again. In addition, the amount of plastic wastes generated by the continuous industrial development is increasing, and finite fossil fuels are continuously required to secure energy sources or effective chemicals utilizing wastes. The utilization of syngas is expected to increase significantly. Therefore, the purification technology of acid gas contained in syngas produced by waste gasification reaction is very important in increasing the utilization of syngas, among which reactants that effectively remove carbon dioxide and hydrogen sulfide simultaneously in reducing gas atmosphere containing carbon monoxide and hydrogen The development of is very urgently needed.

이에, 본 발명자들은 상기한 문제점들을 해결하여, 고온에서 일산화탄소와 수소를 포함하는 환원가스 분위기에서 황화수소와 이산화탄소를 효과적으로 제거하기 위하여 연구 노력한 결과, 복합산화물 반응제를 허니콤 담체에 담지한 후 고온으로 소성시키고 일부의 첨가제를 이용하면 복합산화물의 환원능을 극소화시키면서 황화수소와 이산화탄소를 효과적으로 제거할 수 있음을 알게 되어 본 발명을 완성하였다. 따라서, 본 발명은 종래의 아민계 수용액을 이용하지 않을 뿐 아니라 기존의 방법에서 사용된 구리나 아연과 같은 금속을 이용하지 않으면서도 황화수소와 이산화탄소의 저감효과가 우수한 리튬계 복합산화물 반응제를 제공하는데 그 목적이 있다.Accordingly, the present inventors have solved the above problems, and as a result of research efforts to effectively remove hydrogen sulfide and carbon dioxide in a reducing gas atmosphere containing carbon monoxide and hydrogen at a high temperature, after the composite oxide reactant is supported on a honeycomb carrier, The present invention was completed by sintering and using some additives to effectively remove hydrogen sulfide and carbon dioxide while minimizing the reducing ability of the composite oxide. Accordingly, the present invention provides a lithium-based composite oxide reactant having an excellent effect of reducing hydrogen sulfide and carbon dioxide without using a conventional amine-based aqueous solution and using a metal such as copper or zinc used in the conventional method. The purpose is.

본 발명은 리튬계 복합산화물을 담지한 허니콤을 주성분으로 하는 황화수소, 이산화탄소 제거용 반응제에 있어서, 리튬계 복합산화물의 담지량이 20 ~ 40 중량% 포함된 허니콤 반응제의 제조방법에 그 특징이 있다. 이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다. 본 발명은 복합산화물을 허니콤에 담지함에 있어서 담지량이 20 ~ 40 중량%의 범위를 갖으며 담지된 반응제를 반응온도 1000℃ 로 처리함으로서 복합산화물만을 이용하였을때 발생하는 환원반응을 억제함으로서 환원가스 분위기에서도 이산화탄소와 황화수소를 효과적으로 제거할 수 있도록 한 리튬계 복합산화물 반응제의 제조방법에 관한 것이다. 먼저 복합산화물은 지르코니아와 탄산리튬을 기본물질로 출발하여 합성한 리튬지르코네이트를 사용하였다. 순분말상을 1:1 몰비로 혼합하여 아세톤이 담겨진 플라스크에 지르코니아와 탄산리튬 혼합물을 첨가하여 완전 슬러리 상태의 용액이 되도록 상온에서 교반하여 준다. 완전 교반이 이루어지면 회전증발 진공기에 플라스크를 장착하고 회전증발 진공기의 게이지압이 50mmHg 이하가 되도록 유지하며 플라스크 내에 아세톤이 모두 증발하도록 한다. 첨가제로는 탄산칼륨, 탄산나트륨등의 탄산염과 염화나트륨, 염화리튬 등의 염화물을 사용하였고 초기 제법과 동일한 제조방법으로 제조하였다. 이때 사용된 첨가제의 양은 모두 몰비로 0.2가 되게 하였다. 탄산염과 염화물의 소량 첨가는 향후 황화수소와 이산화탄소의 제거능의 감소를 유발하며 과량 첨가는 담지된 복합산화물의 환원반응과 미세공을 막는 현상으로 다시 제거능의 감소를 동반하여 최적의 담지량을 조절하여야 한다. 다음으로, 건조된 반응제를 질소가 흐르는 고온로에 장착하고 고온로의 온도를 700 ~ 1100 ℃로 24시간 유지하여 준다. 더욱 바람직하게는 850 ~ 1000 ℃로 유지하여야 한다. 온도가 낮으면 복합산화물의 환원을 방지할 수가 없으며 온도가 너무 높으면 황화수소와 이산화탄소의 제거능이 감소하게 된다. 이렇게 제조된 복합산화물에 아세톤에 정량 분산시킨 후에 20 ~ 40 중량%의 비율로 열처리된 허니콤에 복합산화물을 담지한 후 상온에서 건조시켰다. 그 후 공기분위기의 고온로에서 반응온도 900 ~ 1000 ℃로 24시간 재 열처리하여 이산화탄소와 황화수소의 제거실험에 사용하였다. 따라서, 본 발명에 따른 합성가스내 이산화탄소와 황화수소를 제거하기 위한 리튬계 복합산화물은 반응온도 500℃ 이상의 고온에서도 일산화탄소와 수소를 포함하는 환원가스내에서도 복합산화물의 환원반응이 억제되며 이산화탄소와 황화수소를 효과적으로 제거하여 합성가스를 이용한 생산공정에 적합한 합성가스를 제공할 수 있게 되어 폐기물 가스화에 의하여 생산되는 합성가스의 활용도 제고에 크게 기여할 수 있다.The present invention is a method for producing a honeycomb reactant containing 20 to 40% by weight of a lithium sulfide-containing reactant in a hydrogen sulfide and a carbon dioxide removal reactant mainly composed of a honeycomb carrying a lithium-based composite oxide. There is this. Referring to the present invention in more detail as follows. The present invention has a range of 20 to 40% by weight in supporting the composite oxide in the honeycomb and by reducing the reduction reaction occurring when using only the composite oxide by treating the supported reactant at a reaction temperature of 1000 ℃ The present invention relates to a method for preparing a lithium-based composite oxide reactant to effectively remove carbon dioxide and hydrogen sulfide even in a gas atmosphere. First, as a composite oxide, lithium zirconate synthesized from zirconia and lithium carbonate as a base material was used. The pure powder phase is mixed in a 1: 1 molar ratio, and a mixture of zirconia and lithium carbonate is added to the flask containing acetone, and the mixture is stirred at room temperature to form a solution in a complete slurry state. Once complete stirring, the flask is placed in a rotary evaporator and the gauge pressure of the rotary evaporator is kept below 50 mmHg, allowing all acetone to evaporate in the flask. As an additive, carbonates such as potassium carbonate and sodium carbonate, and chlorides such as sodium chloride and lithium chloride were used, and they were prepared by the same preparation method as in the initial preparation. At this time, the amounts of the additives used were all 0.2 in molar ratio. Small additions of carbonates and chlorides will lead to a reduction in the ability to remove hydrogen sulfide and carbon dioxide in the future. Excess addition should reduce the removal capacity of the supported complex oxides and block the micropores. Next, the dried reactant is mounted in a high temperature furnace in which nitrogen flows, and the temperature of the high temperature furnace is maintained at 700 to 1100 ° C. for 24 hours. More preferably it should be maintained at 850 ~ 1000 ℃. When the temperature is low, the reduction of the composite oxide cannot be prevented. When the temperature is too high, the removal ability of hydrogen sulfide and carbon dioxide is reduced. After quantitatively dispersing the acetone in the composite oxide thus prepared, the composite oxide was supported on a honeycomb heat-treated at a rate of 20 to 40% by weight, and then dried at room temperature. Thereafter, the mixture was re-heated at a reaction temperature of 900 to 1000 ° C. for 24 hours in a high-temperature furnace in an air atmosphere, and used for removing carbon dioxide and hydrogen sulfide. Therefore, the lithium-based composite oxide for removing carbon dioxide and hydrogen sulfide in the synthesis gas according to the present invention suppresses the reduction reaction of the composite oxide even in a reducing gas containing carbon monoxide and hydrogen at a reaction temperature of 500 ° C. or higher, and effectively reduces carbon dioxide and hydrogen sulfide. By removing it, it is possible to provide a syngas suitable for the production process using the syngas, which can greatly contribute to enhancing the utilization of the syngas produced by waste gasification.

이하, 본 발명을 실시예에 근거하여 더욱 상세하게 설명하겠는바, 본 발명이 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by Examples.

실시예Example 1 One

지르코니아와 탄산리튬을 몰비로 1:1 하여 아세톤 200 g에 녹인 슬러리를 교반기를 이용하여 50 ℃에서 완전교반하여 슬러리를 제조한 후 회전진공증발기에 장착하여 진공압력게이지 값을 50 mmHg 이하로 유지하며 플라스크의 온도를 상온으로 유지하여 플라스크내의 모든 아세톤을 제거하여 건조한다. 건조된 입자는 고온로에 도가니를 이용하여 장착하고 로의 온도를 1000℃로 24시간 유지하여 합성가스내의 황화수소와 이산화탄소를 제거할 수 있는 반응제를 제조하였다. 또한 반응제의 황화수소와 이산화탄소의 제거능 향상을 위해 탄산칼륨, 탄산나트륨등의 탄산염과 염화나트륨, 염화리튬 등의 염화물을 각각 0.2의 몰비로 지르코니아와 탄산리튬과 함께 교반한 후 상기 과정을 반복하여 반응제를 제조하였다. 이렇게 제조한 복합산화물 반응제를 아세톤에 정량 분산 후 허니콤에 20 ~ 40 질량%로 담지하여 건조시킨 후 고온로에서 1000℃로 24시간 소성 후 이산화탄소와 황화수소의 정제실험을 실시하였다. 한편, 일산화탄소, 수소를 포함하는 모사합성가스는 질량유량계를 이용하여 제조하고 제조된 합성가스내의 황화수소와 이산화탄소를 각각 0.5 부피%, 16.6 부피%가 되도록 첨가시켜 온도가 조절되는 수정유리관내에 제조된 반응제를 장착하고 제조된 일산화탄소, 이산화탄소, 수소, 황화수소를 포함하는 합성가스를 반응기내로 투입하여 기체크로마토그래피로 반응기 출구의 농도를 분석함으로서 본 발명의 효과를 시험하였다. 이때, 사용된 장치의 구성을 자세히 설명하면 다음과 같다. 수정유리관은 외경 2.54cm, 길이 50cm로 제작되었고 PID 타입의 온도조절계와 서미스터가 장착된 히터의 내부에 장착하였다. 일산화탄소, 이산화탄소, 황화수소, 수소는 가스통에 압력조절계를 장착하여 질량유량계를 이용하여 혼합하고 반응기 입구로 주입하였다. 수정유리관으로 구성된 반응기 내부에는 반응제를 장착할 수 있는 수정다공판을 설치하여 반응제의 실험을 용이하도록 하였다. 여기서는, 알곤에 혼합하여 유입되는 황화수소, 이산화탄소, 수소, 일산화탄소의 농도는 각각 0.5 부피%, 16.6 부피%, 16.6 부피%, 16.6 부피%로 조정되고 온도가 700℃로 유지되는 정제반응기 내부에 상기 제조된 반응제를 장착하고 농도가 조정된 합성가스와 황화수소, 이산화탄소를 주입하여 반응제의 황화수소, 이산화탄소의 제거능을 고찰하였다. 제거된 황화수소와 이산화탄소의 질량은 반응제의 질량기준으로 0.34 g/g 과 0.24 g/g을 나타내었다.Zirconia and lithium carbonate 1: 1 in a molar ratio dissolved in 200 g of acetone using a stirrer completely stirred at 50 ℃ to prepare a slurry, and then mounted on a rotary vacuum evaporator to maintain a vacuum pressure gauge value of 50 mmHg or less The flask is kept at room temperature to remove all acetone in the flask and dried. The dried particles were mounted on a high temperature furnace using a crucible and the reactor was kept at 1000 ° C. for 24 hours to prepare a reactant capable of removing hydrogen sulfide and carbon dioxide from the synthesis gas. In addition, in order to improve the ability to remove hydrogen sulfide and carbon dioxide, carbonates such as potassium carbonate and sodium carbonate, and chlorides such as sodium chloride and lithium chloride are stirred together with zirconia and lithium carbonate at a molar ratio of 0.2, and the above steps are repeated. Prepared. The composite oxide reactant prepared in this way was quantitatively dispersed in acetone, dried at 20 to 40% by mass in a honeycomb, and calcined at 1000 ° C. for 24 hours in a high temperature furnace, followed by purification experiments of carbon dioxide and hydrogen sulfide. On the other hand, simulated synthetic gas containing carbon monoxide and hydrogen was prepared by using a mass flow meter and added hydrogen sulfide and carbon dioxide in the manufactured synthesis gas to be 0.5% by volume and 16.6% by volume, respectively. The effect of the present invention was tested by analyzing the concentration of the reactor outlet by adding a reactant and introducing the prepared synthesis gas containing carbon monoxide, carbon dioxide, hydrogen, and hydrogen sulfide into the reactor by gas chromatography. At this time, the configuration of the used device will be described in detail. The crystal glass tube was manufactured with an outer diameter of 2.54 cm and a length of 50 cm and mounted inside a heater equipped with a PID type temperature controller and thermistor. Carbon monoxide, carbon dioxide, hydrogen sulfide, and hydrogen were equipped with a pressure regulator in the gas cylinder, mixed using a mass flow meter, and injected into the reactor inlet. Inside the reactor composed of quartz glass tube, a crystal perforated plate on which a reagent can be mounted was installed to facilitate the experiment of the reagent. Here, the concentrations of hydrogen sulfide, carbon dioxide, hydrogen, and carbon monoxide introduced by mixing in argon are adjusted to 0.5% by volume, 16.6% by volume, 16.6% by volume, and 16.6% by volume, and the temperature is maintained at 700 ° C. The reactants were prepared, and the concentrations of the adjusted gases, hydrogen sulfide, and carbon dioxide were injected to investigate the removal capability of the hydrogen sulfide and carbon dioxide. The masses of hydrogen sulfide and carbon dioxide removed were 0.34 g / g and 0.24 g / g based on the mass of the reactants.

실시예Example 2 2

상기 실시 예 1과 동일한 방법으로 수행하되, 탄산칼륨, 탄산나트륨등의 탄산염과 염화나트륨, 염화리튬 등의 염화물을 각각 0.2의 몰비로 첨가하였다. 제거된 황화수소와 이산화탄소의 질량은 반응제의 중량기준으로 탄산칼륨 0.41g/g, 0.34g/g, 탄산나트륨 0.39g/g, 0.27g/g, 염화나트륨 0.37g/g, 0.29g/g, 염화리튬 0.36g/g,0.29g/g을 나타내었다.In the same manner as in Example 1, except that carbonates such as potassium carbonate and sodium carbonate and chlorides such as sodium chloride and lithium chloride were added in a molar ratio of 0.2, respectively. The mass of hydrogen sulfide and carbon dioxide removed was 0.41 g / g potassium carbonate, 0.34 g / g, sodium carbonate 0.39 g / g, 0.27 g / g, sodium chloride 0.37 g / g, 0.29 g / g, lithium chloride, based on the weight of the reactant. 0.36 g / g and 0.29 g / g.

상술한 바와 같이, 본 발명에 따른 합성가스내의 황화수소와 이산화탄소 제 거용 반응제는 반응온도 700℃의 고온에서도 수소와 일산화탄소의 환원반응에 의한 황화수소와 이산화탄소의 제거능 감소가 크게 감소하여 우수한 황화수소, 이산화탄소 제거제로 활용할 수 있다. 따라서 습식처리와 같이 폐기물 가스화에 의하여 발생하는 합성가스의 온도를 낮추지 않으면서도 황화수소와 이산화탄소를 제거할 수 있고 구리와 아연계 흡착제와는 달리 황화수소를 제거하면서 동시에 이산화탄소를 제거하여 합성가스의 효과적인 정제를 가능하게 하여 합성가스 활용도를 크게 향상시킬 수 있다.As described above, the reactive agent for removing hydrogen sulfide and carbon dioxide in the synthesis gas according to the present invention has a great reduction in the removal ability of hydrogen sulfide and carbon dioxide by the reduction reaction of hydrogen and carbon monoxide even at a high temperature of 700 ° C., thus providing an excellent hydrogen sulfide and carbon dioxide remover. Can be utilized as Therefore, it is possible to remove hydrogen sulfide and carbon dioxide without lowering the temperature of syngas generated by waste gasification, such as wet treatment. Unlike copper and zinc-based adsorbents, hydrogen sulfide can be removed and at the same time, carbon dioxide is removed to effectively purify syngas. This can greatly improve syngas utilization.

Claims (2)

폐플라스틱 가스화반응에 의하여 생산되는 합성가스 내에 포함된 황화수소와 이산화탄소를 제거함에 있어, 20 ~ 40질량%의 리튬지르코네이트가 허니콤에 담지되어 열처리 온도 900 ~ 1000℃로 처리한 것을 특징으로 하는 황화수소 이산화탄소 제거 복합산화물 반응제의 제조방법.In removing hydrogen sulfide and carbon dioxide contained in the synthesis gas produced by the waste plastic gasification reaction, 20 to 40% by mass of lithium zirconate is supported on a honeycomb and treated at a heat treatment temperature of 900 to 1000 ° C. Method for producing hydrogen sulfide carbon dioxide removal composite oxide reactant. 제 1 항에 있어서, 탄산칼륨, 탄산나트륨등의 탄산염과 염화나트륨, 염화리튬 등의 염화물을 각각 0.2 몰비로 포함하는 것을 특징으로 하는 황화수소 이산화탄소 제거 복합산화물 반응제의 제조방법.The method for producing a hydrogen sulfide carbon dioxide-removing composite oxide reactant according to claim 1, wherein the carbonates such as potassium carbonate and sodium carbonate and the chlorides such as sodium chloride and lithium chloride are each contained in a 0.2 molar ratio.
KR1020050072652A 2005-08-09 2005-08-09 Production method of Lithium containing reagent and for reducing gases in syngas produced from the gasification of waste plastics KR100703465B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050072652A KR100703465B1 (en) 2005-08-09 2005-08-09 Production method of Lithium containing reagent and for reducing gases in syngas produced from the gasification of waste plastics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050072652A KR100703465B1 (en) 2005-08-09 2005-08-09 Production method of Lithium containing reagent and for reducing gases in syngas produced from the gasification of waste plastics

Publications (2)

Publication Number Publication Date
KR20070018210A KR20070018210A (en) 2007-02-14
KR100703465B1 true KR100703465B1 (en) 2007-04-03

Family

ID=41624446

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050072652A KR100703465B1 (en) 2005-08-09 2005-08-09 Production method of Lithium containing reagent and for reducing gases in syngas produced from the gasification of waste plastics

Country Status (1)

Country Link
KR (1) KR100703465B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104974780B (en) * 2015-06-09 2017-03-08 武汉凯迪工程技术研究总院有限公司 Chlor-alkali adjusts technique and its equipment with F- T synthesis comprehensive utilization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209126A (en) 1998-01-20 1999-08-03 Japan Atom Energy Res Inst Production of small lithium zirconate sintered granule
JP2001252557A (en) 2000-03-14 2001-09-18 Toshiba Corp Carbon dioxide gas absorbing material and manufacturing method therefor
US20020037810A1 (en) 1999-03-23 2002-03-28 Kazuaki Nakagawa Carbon dioxide gas absorbent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209126A (en) 1998-01-20 1999-08-03 Japan Atom Energy Res Inst Production of small lithium zirconate sintered granule
US20020037810A1 (en) 1999-03-23 2002-03-28 Kazuaki Nakagawa Carbon dioxide gas absorbent
JP2001252557A (en) 2000-03-14 2001-09-18 Toshiba Corp Carbon dioxide gas absorbing material and manufacturing method therefor

Also Published As

Publication number Publication date
KR20070018210A (en) 2007-02-14

Similar Documents

Publication Publication Date Title
Hu et al. Synthesis of highly efficient, structurally improved Li4SiO4 sorbents for high-temperature CO2 capture
CN104759277B (en) A kind of CeOx‑MnOx/ graphene low-temperature SCR catalyst for denitrating flue gas and preparation method thereof
Wu et al. Ordered mesoporous Zn-based supported sorbent synthesized by a new method for high-efficiency desulfurization of hot coal gas
CN107362807A (en) A kind of Mn/Co bases low temperature SCO catalyst and preparation method thereof
Wang et al. High-capacity Li4SiO4-based CO2 sorbents via a facile hydration–NaCl doping technique
CN104772138B (en) MnOx/graphene low-temperature SCR flue gas denitration catalyst, preparation method and applications thereof
BR112015000913B1 (en) BETA TYPE ZEOLITE REPLACED WITH FE(II), PRODUCTION METHOD FOR THE SAME AND GAS ADSORBENT INCLUDING IT, AND NITRIC OXIDE AND HYDROCARBON REMOVAL METHOD
Liu et al. Simultaneous catalytic hydrolysis of HCN, COS and CS2 over metal-modified microwave coal-based activated carbon
Subha et al. Wet chemically derived Li4SiO4 nanowires as efficient CO2 sorbents at intermediate temperatures
CN106861626B (en) Adsorption-photocatalysis dual-function material, preparation method thereof and application thereof in volatile organic gas treatment process
Chen et al. Siloxane-modified MnOx catalyst for oxidation of coal-related o-xylene in presence of water vapor
Wang et al. Mesoporous MgO enriched in Lewis base sites as effective catalysts for efficient CO2 capture
Valsamakis et al. Stability of lanthanum oxide-based H2S sorbents in realistic fuel processor/fuel cell operation
CN114225910A (en) Aminated modified Co-MOFs material with NO adsorption separation performance
Bu et al. Reactivity and stability of Zr–doped CeO2 for solar thermochemical H2O splitting in combination with partial oxidation of methane via isothermal cycles
KR100703465B1 (en) Production method of Lithium containing reagent and for reducing gases in syngas produced from the gasification of waste plastics
WO2013024141A2 (en) Calcium sorbent doping process
CN111468158B (en) High-efficiency hydrogen sulfide selective oxidation catalyst and preparation method thereof
CN112316902A (en) Composite MgO adsorbent and preparation method and application thereof
CN109250763B (en) Method for preparing hydrogen by reforming hydrogen sulfide and methane
CN109248689B (en) Macroporous oxide catalyst
CN111804321A (en) Selective oxidation desulfurization catalyst for carbide/carbon nitride hydrogen sulfide and preparation method thereof
CN111569891B (en) Medium-temperature methane partial oxidation catalyst and preparation method and application thereof
KR100536735B1 (en) Calcium containing reagent for reducing acidic gases in syngas produced from the gasification of waste plastics
Feng et al. Photocatalytic activity of porous magnesium oxychloride cement combined with AC/TiO 2 composites

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee