KR100536735B1 - Calcium containing reagent for reducing acidic gases in syngas produced from the gasification of waste plastics - Google Patents

Calcium containing reagent for reducing acidic gases in syngas produced from the gasification of waste plastics Download PDF

Info

Publication number
KR100536735B1
KR100536735B1 KR10-2003-0019368A KR20030019368A KR100536735B1 KR 100536735 B1 KR100536735 B1 KR 100536735B1 KR 20030019368 A KR20030019368 A KR 20030019368A KR 100536735 B1 KR100536735 B1 KR 100536735B1
Authority
KR
South Korea
Prior art keywords
carbon dioxide
hydrogen sulfide
syngas
gasification
treatment
Prior art date
Application number
KR10-2003-0019368A
Other languages
Korean (ko)
Other versions
KR20040084360A (en
Inventor
한춘
유경선
박주원
김재권
Original Assignee
한춘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한춘 filed Critical 한춘
Priority to KR10-2003-0019368A priority Critical patent/KR100536735B1/en
Publication of KR20040084360A publication Critical patent/KR20040084360A/en
Application granted granted Critical
Publication of KR100536735B1 publication Critical patent/KR100536735B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/001Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by thermal treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/004Sulfur containing contaminants, e.g. hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/005Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/04Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Industrial Gases (AREA)

Abstract

본 발명은 가연성 폐기물의 가스화에 의하여 발생하는 합성가스를 이용하여 메탄올을 생산함에 있어 메탄올 합성에 용이한 조성을 갖도록 합성가스를 정제하는 기술에 관한 것으로서, 더욱 상세하게는 산화칼슘을 포함한 알루미나를 고온에서 열처리하여 칼슘알루미네이트로 전환시켜 합성가스내에 포함된 황화수소와 이산화탄소를 제거하는 방법에 관한 것이다. 종래의 방법으로는 황화수소와 이산화탄소를 아민계열의 흡수용액을 이용하여 습식 처리하는 방법과 흡착제를 이용한 건식처리 방법이 있으나, 습식처리의 경우 처리온도를 상온영역으로 낮추어 처리한 후 다시 재가열하여야 한다는 단점을 갖게 되고 건식 흡착처리의 경우 흡착능이 낮아 소요되는 흡착제 양의 증가와 CO, H2등의 가스흡착이 H2S, CO2 흡착과 동시에 진행될 수 있다는 문제점을 갖는다. 따라서 500℃ 이상의 고온에서 온도를 낮추지 않고 직접 산화칼슘과 알루미나를 이용한 반응제로 CO2와 H2S를 선택적으로 제거함으로써 가스화반응에 의하여 생성되는 합성가스를 보다 효과적으로 활용할 수 있게 하는 합성가스 정제용 반응제의 제조방법에 관한 것이다.The present invention relates to a technology for purifying syngas to have a composition that is easy for methanol synthesis in producing methanol using syngas generated by gasification of flammable waste, and more particularly, alumina containing calcium oxide at high temperature. The present invention relates to a method for removing hydrogen sulfide and carbon dioxide contained in syngas by converting it into calcium aluminate by heat treatment. Conventional methods include a method of wet treatment of hydrogen sulfide and carbon dioxide using an amine-based absorption solution and a dry treatment method using an adsorbent. However, in the case of wet treatment, the treatment temperature must be lowered to room temperature and then reheated. In the case of dry adsorption treatment, the adsorption capacity is low, and the amount of adsorbent required and gas adsorption such as CO and H 2 may be simultaneously performed with H 2 S and CO 2 adsorption. Therefore, at a high temperature of 500 ° C. or higher, a reaction for syngas purification, which makes it possible to effectively utilize syngas generated by gasification by selectively removing CO 2 and H 2 S as a reactant using calcium oxide and alumina directly without lowering the temperature. It relates to a manufacturing method of the agent.

Description

폐플라스틱 가스화로부터 생산되는 합성가스내 산성가스 정제용 칼슘계 반응제 {Calcium containing reagent for reducing acidic gases in syngas produced from the gasification of waste plastics}Calcium-containing reagent for reducing acidic gases in syngas produced from the gasification of waste plastics}

본 발명은 폐플라스틱 가스화로부터 생산되는 합성가스내 산성가스 정제용 칼슘계 반응제에 관한 것으로서, 더욱 상세하게는 폐플라스틱의 가스화 반응에 의하여 생성되는 합성가스를 이용하여 메탄올을 합성하는데 있어서 합성가스내에 포함된 황화수소와 이산화탄소를 제어하는 칼슘계 반응제에 관한 것이다. 반응제 제조에 사용되는 칼슘과 알루미나를 효과적으로 배합하여 제조한 반응제를 활용하면 고온에서 황화수소와 이산화탄소를 효과적으로 제어할 수 있다. 특히 고온에서도 합성가스내에 포함되어있는 수소와 일산화탄소와 같은 환원가스에 의하여 산화칼슘의 환원이 진행되고 그로인한 황화수소와 이산화탄소의 제거능 감소를 최소화하여 고온에서의 효과적인 산성가스 제어를 달성함으로서 합성가스를 이용한 메탄올 합성에 유용한 전처리 반응제로 작용한다.The present invention relates to a calcium-based reagent for refining acid gas in syngas produced from waste plastic gasification, and more particularly, in synthesizing methanol using syngas produced by gasification of waste plastic. It relates to a calcium-based reactant to control the contained hydrogen sulfide and carbon dioxide. By using a reagent prepared by effectively combining calcium and alumina used in the preparation of the reactant, hydrogen sulfide and carbon dioxide can be effectively controlled at high temperature. In particular, the reduction of calcium oxide proceeds by reducing gases such as hydrogen and carbon monoxide contained in the synthesis gas even at high temperatures, thereby minimizing the reduction of hydrogen sulfide and carbon dioxide removal ability to achieve effective acid gas control at high temperature. It serves as a useful pretreatment reagent for methanol synthesis.

일반적으로 합성가스를 이용하여 메탄올을 제조하는 경우 메탄올 합성을 위하여 합성가스내에 포함된 이산화탄소의 농도를 매우 낮게 유지하여야 하며 동시에 황화수소를 제거하여야 한다. 이를 달성하기 위하여 환원가스내에 포함된 황화수소와 이산화탄소의 제거에 아민계 용액을 이용하여 습식처리하거나 구리와 아연계 금속을 이용하여 제조한 반응제로 고온에서 건식처리 하는 것이 일반적이다. In general, when methanol is produced using syngas, the concentration of carbon dioxide contained in the syngas must be kept very low for the synthesis of methanol, and hydrogen sulfide must be removed at the same time. In order to achieve this, it is common to wet-treat using an amine-based solution to remove hydrogen sulfide and carbon dioxide contained in a reducing gas, or dry-treat at a high temperature with a reagent prepared using copper and zinc-based metals.

그러나 건식처리방법으로는 이산화탄소를 제거할 수 없고 습식처리의 경우는 배가스의 온도를 매우 낮은 온도로 낮추어 산성가스를 제어한 후 다시 온도를 승온시켜야 한다는 문제점이 발생하여 개선의 여지가 있었다.However, the dry treatment method cannot remove carbon dioxide, and in the case of the wet treatment, there is a problem of reducing the temperature of the exhaust gas to a very low temperature to control the acid gas and then raising the temperature again.

또한, 지속적인 산업의 진보로 인하여 발생하는 플라스틱 폐기물의 양이 증가하고 있으며 유한한 화석연료로 인하여 폐기물을 활용한 에너지원 또는 유효화학물질의 확보는 지속적으로 요구되는 추세여서 향후 가스화 반응에 의하여 생산되는 합성가스의 활용도는 크게 증가될 전망이다. 따라서, 폐기물 가스화반응에 의하여 생산되는 합성가스내에 포함된 산성가스의 정제기술은 합성가스의 활용도를 증가시키는데 있어서 매우 중요하며 그중 일산화탄소와 수소를 포함한 환원가스 분위기에서 이산화탄소와 황화수소를 동시에 효과적으로 제거하는 반응제의 개발이 매우 시급하게 요구되고 있는 실정이다.In addition, the amount of plastic wastes generated by the continuous industrial development is increasing, and finite fossil fuels are continuously required to secure energy sources or effective chemicals utilizing wastes. The utilization of syngas is expected to increase significantly. Therefore, the purification technology of acid gas contained in syngas produced by waste gasification reaction is very important for increasing the utilization of syngas, among which reaction to remove carbon dioxide and hydrogen sulfide effectively in reducing gas atmosphere including carbon monoxide and hydrogen. The development of goods is very urgently needed.

이에, 본 발명자들은 상기한 문제점들을 해결하여, 고온에서 일산화탄소와 수소를 포함하는 환원가스 분위기에서 황화수소와 이산화탄소를 효과적으로 제거하기 위하여 연구 노력한 결과, 금속산화물을 감마알루미나 담체에 담지한 후 고온으로 소성시키고 일부의 첨가제를 이용하면 금속산화물의 환원능을 극소화시키면서 황화수소와 이산화탄소를 효과적으로 제거할 수 있음을 알게 되어 본 발명을 완성하였다.Accordingly, the present inventors have solved the above problems, and as a result of research efforts to effectively remove hydrogen sulfide and carbon dioxide in a reducing gas atmosphere containing carbon monoxide and hydrogen at high temperatures, the metal oxide is supported on a gamma alumina carrier and then calcined at high temperature. By using some additives, the present invention has been found to effectively remove hydrogen sulfide and carbon dioxide while minimizing the reducing ability of metal oxides.

따라서, 본 발명은 종래의 아민계 수용액을 이용하지 않을 뿐 아니라 기존의 방법에서 사용된 구리나 아연과 같은 금속을 이용하지 않으면서도 황화수소와 이산화탄소의 저감효과가 우수한 칼슘계 반응제를 제공하는데 그 목적이 있다. Accordingly, the present invention is to provide a calcium-based reactive agent having an excellent effect of reducing hydrogen sulfide and carbon dioxide without using a conventional amine-based aqueous solution and using a metal such as copper or zinc used in the conventional method. There is this.

본 발명은 산화칼슘을 담지한 알루미나를 주성분으로 하는 황화수소, 이산화탄소 제거용 반응제에 있어서,In the present invention, a hydrogen sulfide and a carbon dioxide removal reactant mainly composed of alumina carrying calcium oxide,

산화칼슘의 담지량이 5 ~ 20 중량% 포함된 알루미나 반응제에 그 특징이 있다. The alumina reactant contains 5 to 20 wt% of the supported amount of calcium oxide.

이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.Referring to the present invention in more detail as follows.

본 발명은 산화칼슘을 알루미나에 담지함에 있어서 담지량이 5 ~ 20 중량%의 범위를 갖으며 담지된 반응제를 반응온도 700 ~ 1100℃ 로 처리함으로서 산화칼슘만을 이용하였을때 발생하는 환원반응을 억제함으로서 환원가스 분위기에서도 이산화탄소와 황화수소를 효과적으로 제거할 수 있도록 한 칼슘계 반응제에 관한 것이다.The present invention has a loading of 5 to 20% by weight in the support of calcium oxide in alumina, and by treating the supported reactant at a reaction temperature of 700 to 1100 ° C. to suppress the reduction reaction that occurs when using only calcium oxide. It relates to a calcium-based reactant to effectively remove carbon dioxide and hydrogen sulfide even in a reducing gas atmosphere.

본 발명에 따른 질소산화물 저감용 선택적 무촉매 환원제를 그 제조방법에 따라 더욱 구체화하여 설명하면 다음과 같다.The selective non-catalytic reducing agent for reducing nitrogen oxides according to the present invention will be described in more detail according to the preparation method as follows.

먼저, 수산화칼슘을 알루미나에 대한 칼슘질량비로 5 ~ 20 중량%가 되도록 정량하고 물과 알루미나가 담겨진 플라스크에 수산화칼슘을 첨가하여 완전 슬러리 상태의 용액이 되도록 50℃에서 교반하여 준다. 완전 교반이 이루어지면 회전증발 진공기에 플라스크를 장착하고 회전증발 진공기의 게이지압이 50mmHg 이하가 되도록 유지하며 플라스크의 외면의 온도를 50 ~ 70℃로 유지하여 플라스크내에 물이 모두 증발하도록 한다. 이때, 플라스크내의 물이 끓지 않도록 압력을 조절하여야 하며 수산화칼슘의 첨가량을 건조된 알루미나를 기준으로 5 ~ 20 중량%, 더욱 바람직하게는 10 ~ 20 중량%가 되도록 해야 한다. 산화스트론튬을 첨가제로 사용하여 1 ~ 10 중량%가 되도록 조절하면 더욱 바람직한 반응제가 될 수 있다. 산화칼슘과 산화스트론튬의 소량 첨가는 향후 황화수소와 이산화탄소의 제거능의 감소를 유발하며 과량 첨가는 담지된 산화물의 환원반응과 미세공을 막는 현상으로 다시 제거능의 감소를 동반하여 최적의 담지량을 조절하여야 한다. First, the calcium hydroxide is quantified to be 5 to 20% by weight in terms of the mass ratio of calcium to alumina, and calcium hydroxide is added to the flask containing water and alumina and stirred at 50 ° C. to form a fully slurry solution. After complete stirring, install the flask in the rotary evaporator, maintain the gauge pressure of the rotary evaporator below 50mmHg, and keep the temperature of the outer surface of the flask at 50 ~ 70 ℃ to evaporate all the water in the flask. At this time, the pressure in the flask should be adjusted so as not to boil, and the amount of calcium hydroxide should be 5 to 20% by weight, more preferably 10 to 20% by weight, based on the dried alumina. By using strontium oxide as an additive to adjust the amount to 1 to 10% by weight it can be a more preferable reactant. Small additions of calcium oxide and strontium oxide will lead to a reduction in the ability to remove hydrogen sulfide and carbon dioxide in the future. Excess addition should reduce the removal capacity of the supported oxides and prevent micropores. .

다음으로, 건조된 반응제를 질소가 흐르는 고온로에 장착하고 고온로의 온도를 700 ~ 1100 ℃로 24시간 유지하여 준다. 더욱 바람직하게는 850 ~ 1000 ℃로 유지하여야 한다. 온도가 낮으면 산화칼슘의 환원을 방지할 수가 없으며 온도가 너무 높으면 황화수소와 이산화탄소의 제거능이 감소하게 된다.Next, the dried reactant is mounted in a high temperature furnace in which nitrogen flows, and the temperature of the high temperature furnace is maintained at 700 to 1100 ° C. for 24 hours. More preferably it should be maintained at 850 ~ 1000 ℃. If the temperature is low, the reduction of calcium oxide cannot be prevented. If the temperature is too high, the removal ability of hydrogen sulfide and carbon dioxide is reduced.

따라서, 본 발명에 따른 합성가스내 이산화탄소와 황화수소를 제거하기 위한 칼슘계 반응제는 반응온도 500℃ 이상의 고온에서도 일산화탄소와 수소를 포함하는 환원가스내에서도 산화칼슘의 환원반응이 억제되며 이산화탄소와 황화수소를 효과적으로 제거하여 합성가스를 이용한 메탄올 합성공정에 적합한 합성가스를 제공할 수 있게 되어 폐기물 가스화에 의하여 생산되는 합성가스의 활용도 제고에 크게 기여할 수 있다.Therefore, the calcium-based reactant for removing carbon dioxide and hydrogen sulfide in the synthesis gas according to the present invention inhibits the reduction reaction of calcium oxide even in a reducing gas containing carbon monoxide and hydrogen at a reaction temperature of 500 ℃ or higher and effectively prevents carbon dioxide and hydrogen sulfide By removing it, it is possible to provide a syngas suitable for the methanol synthesis process using the syngas, thereby greatly contributing to the utilization of the syngas produced by waste gasification.

이하, 본 발명을 실시예에 근거하여 더욱 상세하게 설명하겠는바, 본 발명이 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by Examples.

실시예 1Example 1

산화칼슘 10 g과 감마알루미나 40 g을 물 200 g에 녹인 슬러리를 교반기를 이용하여 50 ℃에서 완전교반하여 슬러리를 제조한 후 회전진공증발기에 장착하여 진공압력게이지 값을 50mmHg 이하로 유지하며 플라스크의 온도를 50℃로 유지하여 플라스크내의 모든 물을 제거하여 건조한다. 건조된 입자는 고온로에 도가니를 이용하여 장착하고 로의 온도를 1000 ℃로 24시간 유지하여 합성가스내의 황화수소와 이산화탄소를 제거할 수 있는 반응제를 제조하였다.A slurry prepared by stirring 10 g of calcium oxide and 40 g of gamma alumina in 200 g of water was thoroughly stirred at 50 ° C. using a stirrer to prepare a slurry. The slurry was then mounted on a rotary vacuum evaporator to maintain a vacuum pressure gauge of 50 mmHg or less. The temperature is maintained at 50 ° C. to remove all water in the flask and to dry. The dried particles were mounted on a high temperature furnace using a crucible and the reactor was maintained at 1000 ° C. for 24 hours to prepare a reactant capable of removing hydrogen sulfide and carbon dioxide from the synthesis gas.

한편, 일산화탄소, 수소를 포함하는 모사합성가스를 질량유량계를 이용하여 제조하고 제조된 합성가스내에 황화수소와 이산화탄소를 각각 0.5 부피%, 16.6 부피%가 되도록 첨가시켜 온도가 조절되는 수정유리관내에 제조된 반응제 0.5 g을 장착하고 제조된 일산화탄소, 이산화탄소, 수소, 황화수소를 포함하는 합성가스를 반응기내로 투입하여 기체크로마토그라피로 반응기 출구의 농도를 분석함으로서 본 발명의 효과를 시험하였다. 이때, 사용된 장치의 구성을 자세히 설명하면 다음과 같다. 수정유리관은 내경 9mm, 길이 30cm로 제작되었고 PID 타입의 온도조절계와 써미스터가 장착된 희터의 내부에 장착하였다. 일산화탄소, 이산화탄소, 황화수소, 수소는 가스통에 압력조절계를 장착하여 질량유량계를 이용하여 혼합하고 반응기 입구로 주입하였다. 수정유리관으로 구성된 반응기 내부에는 반응제를 장착할 수 있는 수정다공판을 설치하여 반응제의 실험을 용이하도록 하였다. Meanwhile, a simulated synthetic gas containing carbon monoxide and hydrogen was prepared using a mass flow meter, and hydrogen sulfide and carbon dioxide were added to the prepared synthetic gas to be 0.5% by volume and 16.6% by volume, respectively. The effects of the present invention were tested by analyzing the concentration of the reactor outlet by gas chromatography by adding 0.5 g of a reactant and adding the prepared synthesis gas containing carbon monoxide, carbon dioxide, hydrogen, and hydrogen sulfide into the reactor. At this time, the configuration of the used device will be described in detail. The crystal glass tube was made with inner diameter of 9mm and length of 30cm and was mounted inside of the scarter equipped with PID type temperature controller and thermistor. Carbon monoxide, carbon dioxide, hydrogen sulfide, and hydrogen were equipped with a pressure regulator in the gas cylinder, mixed using a mass flow meter, and injected into the reactor inlet. Inside the reactor composed of quartz glass tube, a crystal perforated plate on which a reagent can be mounted was installed to facilitate the experiment of the reagent.

여기서는, 알곤에 혼합하여 유입되는 황화수소, 이산화탄소, 수소, 일산화탄소의 농도는 각각 0.5 부피%, 16.6 부피%, 16.6 부피%, 16.6 부피%로 조정되고 온도가 700 ℃로 유지되는 정제반응기 내부에 상기 제조된 반응제를 장착하고 농도가 조정된 합성가스와 황화수소, 이산화탄소를 주입하여 반응제의 황화수소, 이산화탄소의 제거능을 고찰하였다. 제거된 황화수소와 이산화탄소의 질량은 반응제의 중량기준으로 0.18 g/g 과 0.12 g/g을 나타내었다.Here, the concentrations of hydrogen sulfide, carbon dioxide, hydrogen, and carbon monoxide introduced by mixing in argon are adjusted to 0.5% by volume, 16.6% by volume, 16.6% by volume, and 16.6% by volume, and the temperature is maintained at 700 ° C. The reactants were prepared, and the concentrations of the adjusted gases, hydrogen sulfide, and carbon dioxide were injected to investigate the removal capability of the hydrogen sulfide and carbon dioxide. The masses of hydrogen sulfide and carbon dioxide removed were 0.18 g / g and 0.12 g / g based on the weight of the reactants.

실시예 2Example 2

상기 실시예 1과 동일한 방법으로 수행하되, 산화스트론튬을 5 중량%가 되도록 첨가하였다. 제거된 황화수소와 이산화탄소의 질량은 반응제의 중량기준으로 0.23 g/g 과 0.19 g/g을 나타내었다.It was carried out in the same manner as in Example 1, but strontium oxide was added to 5% by weight. The masses of hydrogen sulfide and carbon dioxide removed were 0.23 g / g and 0.19 g / g based on the weight of the reactants.

비교예 1Comparative Example 1

상기 실시예 1과 동일한 방법으로서 산화칼슘만을 반응제로 활용하여 성능평가를 수행한 결과 제거된 황화수소와 이산화탄소의 질량은 반응제의 중량기준으로 0.11 g/g 과 0.13 g/g을 나타내었다.As a result of performing the performance evaluation using only calcium oxide as a reactant as in Example 1, the masses of hydrogen sulfide and carbon dioxide removed were 0.11 g / g and 0.13 g / g based on the weight of the reactant.

상술한 바와 같이, 본 발명에 따른 합성가스내의 황화수소와 이산화탄소 제거용 반응제는 반응온도 700℃의 고온에서도 수소와 일산화탄소의 환원반응에 의한 황화수소와 이산화탄소의 제거능 감소가 크게 감소하여 우수한 황화수소, 이산화탄소 제거제로 활용할 수 있다. 따라서 습식처리와 같이 폐기물 가스화에 의하여 발생하는 합성가스의 온도를 낮추지 않으면서도 황화수소와 이산화탄소를 제거할 수 있고 구리와 아연계 흡착제와는 달리 황화수소를 제거하면서 동시에 이산화탄소를 제거하여 합성가스를 이용한 메탄올 합성반응에 효과적인 정제를 가능하게 하여 합성가스 활용도를 크게 향상시킬 수 있다. As described above, the reactive agent for removing hydrogen sulfide and carbon dioxide in the synthesis gas according to the present invention has a great reduction in the removal ability of hydrogen sulfide and carbon dioxide due to the reduction reaction of hydrogen and carbon monoxide even at a high temperature of reaction temperature of 700 ℃ excellent hydrogen sulfide, carbon dioxide removal agent Can be utilized as Therefore, it is possible to remove hydrogen sulfide and carbon dioxide without lowering the temperature of syngas generated by waste gasification, such as wet treatment. Unlike copper and zinc-based adsorbents, hydrogen sulfide and carbon dioxide are removed while simultaneously removing carbon dioxide to synthesize methanol using synthesis gas. Effective purification of the reaction can be enabled to significantly improve syngas utilization.

Claims (2)

폐플라스틱 가스화반응에 의하여 생산되는 합성가스를 이용하여 메탄올을 생산하고자 합성가스내에 포함된 황화수소와 이산화탄소를 제거함에 있어,In the removal of hydrogen sulfide and carbon dioxide contained in the synthesis gas to produce methanol using the synthesis gas produced by the waste plastic gasification reaction, 감마알루미나를 기준으로 산화칼슘함량이 5 ~ 20 중량% 포함된 칼슘알루미네이트를 특징으로 하는 황화수소 이산화탄소 제거 반응제.A hydrogen sulfide carbon dioxide removal reagent comprising calcium aluminate containing 5 to 20 wt% of calcium oxide based on gamma alumina. 제 1 항에 있어서, 산화스트론튬을 1 ~ 10 중량% 포함하는 것을 특징으로 하는 황화수소 이산화탄소 제거 반응제.The hydrogen sulfide carbon dioxide removal reagent according to claim 1, comprising 1 to 10% by weight of strontium oxide.
KR10-2003-0019368A 2003-03-28 2003-03-28 Calcium containing reagent for reducing acidic gases in syngas produced from the gasification of waste plastics KR100536735B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2003-0019368A KR100536735B1 (en) 2003-03-28 2003-03-28 Calcium containing reagent for reducing acidic gases in syngas produced from the gasification of waste plastics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0019368A KR100536735B1 (en) 2003-03-28 2003-03-28 Calcium containing reagent for reducing acidic gases in syngas produced from the gasification of waste plastics

Publications (2)

Publication Number Publication Date
KR20040084360A KR20040084360A (en) 2004-10-06
KR100536735B1 true KR100536735B1 (en) 2005-12-14

Family

ID=37367942

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0019368A KR100536735B1 (en) 2003-03-28 2003-03-28 Calcium containing reagent for reducing acidic gases in syngas produced from the gasification of waste plastics

Country Status (1)

Country Link
KR (1) KR100536735B1 (en)

Also Published As

Publication number Publication date
KR20040084360A (en) 2004-10-06

Similar Documents

Publication Publication Date Title
Liu et al. Selective removal of H2S from biogas using a regenerable hybrid TiO2/zeolite composite
Wu et al. Ordered mesoporous Zn-based supported sorbent synthesized by a new method for high-efficiency desulfurization of hot coal gas
Ma et al. Development of Mn/Mg-copromoted carbide slag for efficient CO2 capture under realistic calcium looping conditions
Meng et al. Removal of siloxane (L2) from biogas using methyl-functionalised silica gel as adsorbent
Jiao et al. Synthesis and CO 2 capture properties of mesoporous MgAl (O) sorbent
Liang et al. Enhanced HCl removal from CO2-rich mixture gases by CuOx/Na2CO3 porous sorbent at low temperature: Kinetics and forecasting
Tian et al. Simultaneous magnesia regeneration and sulfur dioxide generation in magnesium-based flue gas desulfurization process
CN110681410B (en) For enriching CO 2 Preparation method of SBA-15 molecular sieve based supported catalyst for desorbing amine solution
Chen et al. Siloxane-modified MnOx catalyst for oxidation of coal-related o-xylene in presence of water vapor
CN114225910B (en) Amination modified Co-MOFs material with NO adsorption separation performance
Li et al. Alkali-induced metal-based coconut shell biochar for efficient catalytic removal of H2S at a medium–high temperature in blast furnace gas with significantly enhanced S selectivity
Stefanelli et al. Single-step fabrication of templated Li4SiO4-based pellets for CO2 capture at high temperature
Ebrahim et al. Effect of amine type on acidic toxic gas adsorption at ambient conditions on modified CuBTC
Yuan et al. CaCO3-ZnO loaded scrap rice-derived biochar for H2S removal at room-temperature: Characterization, performance and mechanism
KR100653046B1 (en) Method for removal of hydrogen sulfide by reaction of catalyst
KR100536735B1 (en) Calcium containing reagent for reducing acidic gases in syngas produced from the gasification of waste plastics
JPS62500999A (en) Method for hydrolyzing COS and CS2 compounds contained in industrial gas to H2S
Wang et al. An efficient calcium-based sorbent for flue gas dry-desulfurization: promotion roles of nitrogen oxide and oxygen
CN104307463B (en) A kind of chemical modification calcium base CO 2adsorbent and preparation method thereof
CN114522691B (en) Preparation method of composite metal oxide for organic sulfur catalytic hydrolysis
KR100703465B1 (en) Production method of Lithium containing reagent and for reducing gases in syngas produced from the gasification of waste plastics
CN109482144A (en) A kind of desulfurization removes the preparation method of carbon adsorbent
CN115501741B (en) High-activity ferric oxide desulfurizing agent based on modified carrier, and preparation method and application thereof
KR20230000153A (en) Copper ferrite, manufacturing method of copper ferrite, method for removing hydrogen sulfide
CN113070053A (en) Pure-phase zirconium-based desulfurization catalyst and preparation method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20081127

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee