KR100699692B1 - 전착법을 이용한 나노튜브형 카드뮴셀레나이드 박막의제조방법 - Google Patents

전착법을 이용한 나노튜브형 카드뮴셀레나이드 박막의제조방법 Download PDF

Info

Publication number
KR100699692B1
KR100699692B1 KR1020050084113A KR20050084113A KR100699692B1 KR 100699692 B1 KR100699692 B1 KR 100699692B1 KR 1020050084113 A KR1020050084113 A KR 1020050084113A KR 20050084113 A KR20050084113 A KR 20050084113A KR 100699692 B1 KR100699692 B1 KR 100699692B1
Authority
KR
South Korea
Prior art keywords
cdse
film
coated
aqueous solution
conductive polymer
Prior art date
Application number
KR1020050084113A
Other languages
English (en)
Other versions
KR20070029385A (ko
Inventor
주오심
정광덕
민선기
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020050084113A priority Critical patent/KR100699692B1/ko
Publication of KR20070029385A publication Critical patent/KR20070029385A/ko
Application granted granted Critical
Publication of KR100699692B1 publication Critical patent/KR100699692B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0004Apparatus specially adapted for the manufacture or treatment of nanostructural devices or systems or methods for manufacturing the same
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/006Nanostructures, e.g. using aluminium anodic oxidation templates [AAO]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 전착법을 이용하여 나노튜브 구조의 카드뮴셀레나이드(CdSe) 막을 제조한 후 막 표면에 광감응염료 및/또는 전도성고분자를 차례로 코팅하여, 나노튜브 CdSe 박막의 광특성과 수용액에서의 안정성을 증가시키는 방법에 관한 것으로서, 황산카드뮴(CdSO4) 수용액과 셀레늄산화물(SeO2) 수용액을 상온에서 교반하면서 섞어준 다음 여기에 상대전극(counter electrode: Pt sheet)과 작업전극(working electrode)으로서의 기판(ITO glass)을 침지시키고 일정 전류을 인가하여 나노튜브 형태의 CdSe 막을 제조하는 방법 및 이 막의 광특성과 수용액에서의 안정성을 증가시키기 위하여 광감응염료 및/또는 전도성고분자를 CdSe 막에 코팅하는 방법에 관한 것이다. 본 발명의 방법에 의하면, 튜브 형태의 나노구조 CdSe 박막을 간단하게 제조할 수 있으며 이렇게 제조된 CdSe 막에 광감응염료 및/또는 전도성고분자를 코팅함으로써 막의 광특성과 수용액에서의 안정성을 증가시킬 수 있으며 이렇게 처리된 CdSe 광전극은 전기나 화학원료를 얻기 위한 광전기화학전지의 전극으로 유용하게 사용될 수 있다.

Description

전착법을 이용한 나노튜브형 카드뮴셀레나이드 박막의 제조방법 {METHOD FOR PREPARING NANOTUBE CADMIUM SELENIDE FILM USING ELECTRODEPOSITION}
도 1은 본 발명에 따른 실시예 1에서 ITO 기판 위에 증착된 튜브형태의CdSe 막의 XRD 패턴으로서, (a)는 낮은 앵글(angle)에서의 XRD 패턴이고 (b)는 높은 앵글에서의 XRD 패턴이며,
도 2는 본 발명에 따른 실시예 1에서 ITO 기판 위에 증착된 CdSe 막의 주사전자현미경(SEM) 사진(a) 및 고배율 전자현미경 사진과 EDX 관찰결과((b) 내지 (d))이고,
도 3은 본 발명의 실시예 2에서 CdSe에 광감응염료만을 코팅한 경우의 초기 전류-전압특성 그래프이며,
도 4는 본 발명의 실시예 2에서 CdSe에 전도성고분자만을 코팅한 경우의 초기 전류-전압특성 그래프이며,
도 5는 본 발명의 실시예 2에서 CdSe에 광감응염료와 전도성고분자를 차례로 코팅한 경우의 초기 전류-전압특성 그래프이다.
본 발명은 전착법에 의해 나노튜브 결정구조의 카드뮴셀레나이드(CdSe) 막을 제조하고 이 막의 광특성 및 수용액에서의 안정성을 증가시키기 위하여 광감응염료 및/또는 전도성고분자를 코팅하는 방법에 관한 것이다.
다결정 박막 형태의 CdSe는 직접 전환(direct transition) 특성의 1.7eV의 적절한 띠 간격 및 짧은 빛 침투거리 등과 같은 고유 특성에 기인하여 광전기화학전지와 같은 광전자장치, 고상 태양전지, 광전도체, 감마선 검출기, 대형 액정디스플레이 등 여러 가지 기술적인 응용분야에 유용하게 사용될 수 있는 반도체 물질이다.
CdSe의 막은 스크린인쇄, 분무열분해, 동시증착, 화학증착, 진공증발, 전착, 화학적 방법 등 다양한 방법에 의해 제조가능한데, 대면적의 CdSe 박막을 간단하고 저렴하게 제조하는 방법으로서 전해질을 이용하는 전착법(electrodeposition)이 주로 사용된다.
전착법에 의한 CdSe 막의 제조는 카드뮴 이온과 셀레늄 이온을 적절한 형태로 포함하는 전해액 중에 작업전극과 상대전극을 담근 다음 적정 전류 또는 전압을 인가함으로써 수행되는데, 산성 또는 염기성 전해질 중에서 다양한 카드뮴 및 셀레늄 전구체를 사용하여 CdSe 막을 제조한 예가 발표된 바 있다[한국특허출원 제2004-0023643호].
미국 특허 제4,253,919호에는 pH 1 내지 3의 산성 전해액 중에서 염화카드뮴 수화물 및 셀레늄산화물을 이용하여 CdSe 막을 제조하는 방법이 개시되어 있는데, 이 방법에 의하면, 얻어진 막에서 과량의 셀레늄이 검출되므로, 증착된 막을 약 700℃ 이상의 고온에서 열처리하여 과량의 셀레늄을 제거해야 하는 문제점이 있으며 대개는 나노결정구조의 CdSe 막을 얻게 된다.
CdSe는 직접 전환(direct transition) 특성을 보이며 그 띠간격이 1.7eV로 태양광을 전기나 화학원료로 전환하는 시스템의 광전극으로 이용하기에 적절한 띠 간격 및 짧은 빛 침투거리 등과 같은 고유 특성을 가지지만 수용액에서의 안정성은 극히 낮다. 이런 CdSe를 광전극으로 사용하기 위해서는 막의 표면을 안정한 물질로 코팅하여 물과의 접촉을 방지하거나 빛을 받아서 발생된 양의 전하를 빠르게 제거해 주는 방법을 이용할 수 있다. 이런 방법은 우수한 광특성을 보이지만 수용액상에서 광부식현상을 보여 불안정한 CdS, GaP, GaAs, ZnO, CuInSe등 대부분의 반도체산화물 광전극에 이용할 수 있다.
이에, 본 발명자들은, 전착법을 이용하여 나노튜브 형태의 CdSe 막을 제조하고 이 막에 광감응염료와 전도성고분자를 차례로 코팅하여 CdSe 막의 광특성 및 수용액상에서 그 안정성이 현저히 증가하는 것을 발견하고 본 발명을 완성하게 되었다.
따라서, 본 발명의 목적은 광활성을 갖는, 나노튜브 형태의 CdSe 막을 제공하고 이 제조된 막의 광특성 및 수용액에서의 안정성을 증가시키는 간단하고 효율 적인 코팅 물질과 그 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여 본 발명에서는, 황산카드뮴(CdSO4) 수용액과 셀레늄산화물(SeO2) 수용액을 상온에서 교반하면서 섞어준 다음 여기에 상대전극(counter electrode: Pt sheet)과 작업전극(working electrode)으로서의 기판(ITO glass)을 침지시키고 전류를 인가하는 것을 포함하는, 나노튜브 형태의 CdSe 막의 제조방법을 제공한다.
또한, 본 발명에서는 상기 방법에 의해 얻어진 카드뮴셀레나이드 막의 안정성을 증가시키기 위하여 광감응염료 및/또는 전도성고분자를 CdSe 막에 추가로 코팅하는 방법을 제공한다.
이하 본 발명을 상세히 설명하면 다음과 같다.
본 발명의 방법은 황산카드뮴(CdSO4) 수용액과 셀레늄산화물(SeO2) 수용액을 상온에서 섞은 산성 수용액 전해질 중에서 전착을 수행하는 것을 특징으로 하며, 본 발명의 방법에 따르면, Cd2+와 Se2- 이온을 포함하는 산성의 수용액 전해질에 전류를 인가함으로써 CdSe 막을 작업전극 위에 증착시키고, 이 증착된 막을 200oC에서 열처리하여 나노튜브 형태의 CdSe 막을 제조하는 것을 특징으로 한다.
또한 본 발명은 이렇게 제조된 CdSe 막의 광특성 및 수용액에서의 안정성을 증가시키기 위하여 광감응염료 및/또는 전도성고분자를 표면에 코팅하는 것을 특징으로 한다.
구체적으로는, 먼저, 상온에서 황산카드뮴(CdSO4) 수용액을 교반하면서 셀레늄산화물(SeO2) 수용액을 첨가하는데, 이 수용액의 산도는 2 내지 3으로 조절하여 Cd2+와 Se2- 이온을 포함하는 산성의 수용액 전해질을 제조한다.
이어, 용액 중에 상대전극과 작업전극(ITO)으로서의 기판 각각을 침지시키고 충분한 양의 전류를 작업전극에 걸어주면, 작업전극 위에 CdSe 막이 형성된다. 반응조에 존재하는 Cd2+와 Se2- 이온의 전구체로부터의 CdSe의 전착 메커니즘은 아직 논쟁의 여지가 많은 분야로서, 전극 표면에 Cd와 Se가 동시증착하거나, Se-2가 먼저 증착된 후 CdSe 침전이 일어나거나, 물리적으로 접촉되어 있는 분리된 Cd와 Se 상들이 열처리에 의해 반응하여 CdSe를 형성할 수도 있다. 이와 같은 다양한 메커니즘이 증착 조건에 따라 서로 다른 정도로 기여함으로써 CdSe 막의 증착이 일어나는 것으로 예상된다. 이때, CdSe의 결정화를 최소화하기 위해서는 가능한 한 Se 이온의 작업전극에서의 표면 농도를 낮게 유지해야 하므로, 반응조에 용해된 Se 이온의 전체 농도를 낮출 필요가 있으며, 증착전류가 Se 이온의 물질전달에 의해 조정되도록 증착변수를 모니터할 필요가 있다.
본 발명에 사용되는 황산카드뮴과 셀레늄산화물은 5-10:1 몰비로 혼합될 수 있으며, 각각은 수용액으로서 0.01 내지 0.1M 농도로 반응에 사용될 수 있다.
본 발명에 따른 CdSe 막의 전착은 0 내지 40℃, 바람직하게는 20 내지 30℃의 증착조에서 0.5 내지 3.5 mA/cm2, 바람직하게는 1.5 내지 2.5 mA/cm2의 단락전류밀도를 인가하여 수행될 수 있다.
본 발명에 있어서, pH 2와 3 사이의 반응액의 산도는 황산카드뮴(CdSO4) 수용액과 셀레늄산화물(SeO2) 수용액의 혼합양에 따라 결정이 되며 적절한 비율로 혼합된 수용액에서의 전착공정에 의해서만 튜브형태의 CdSe 막이 제조될 수 있다.
본 발명에 사용가능한 작업전극 및 상대전극으로는 전도성이면서 전해질과 반응하지 않는 기판이 적합하며, 구체적으로는, 티타늄(Ti), 니켈(Ni), 몰리브덴(Mo), 카드뮴(Cd), 백금(Pt), 금(gold), 인듐-주석-산화물(ITO) 코팅된 유리, 스테인레스 스틸(stainless steel) 및 탄소 기판 등으로부터 각각 적절히 선택될 수 있다.
상기 작업전극의 기판은 매끄러운 연마용 페이퍼를 이용해 연마하고 3차 증류수로 세척한 후, 기판 표면으로부터 기름 성분을 제거하기 위하여, 증류수로 세척된 기재를 염산용액으로 에칭한 다음 3차 증류수를 이용해 초음파 세척기로 세척하는 것이 바람직하다.
CdSe 막이 원하는 두께로 작업전극 표면에 전착되면 그 작업전극을 전해질에서 꺼내 상온의 아르곤(Ar) 기체 분위기에서 건조시킨다.
이와 같은 간단하면서도 온화한 조건에서 본 발명의 방법에 의해 증착된 CdSe 막은 0.5 내지 2㎛의 두께를 갖는다. 필요에 따라, 형성된 CdSe 막을 100 내 지 300℃의 온도에서 30분 내지 2시간 동안 열처리할 수 있다.
본 발명의 방법에 의해 제조된 CdSe 막은 끝이 닫혀져 있는 튜브형태의 나노결정파이버가 형성된다. 튜브형태의 CdSe 막은 육방결정의 미세결정구조를 가지며표면적이 넓고, 대면적으로의 형성이 가능하며, 광활성을 보이고 적절한 띠간격(1.7∼1.8 eV)을 가지므로, 이 CdSe 막은 광에너지를 전기 또는 화학에너지로 전환하는 공정의 전극으로 유용하게 사용된다.
제조된 CdSe 막의 수용액에서의 안정성과 광특성을 증가시키기 위해서 광감응염료 및/또는 전도성고분자를 코팅해줄 수 있으며, 이 때 상기 광감응염료로는 하기 화학식 1의 구조를 가진 RuII(4,4-디카르복시-2,2-비피리딘)2(SCN)2이 바람직하다.
Figure 112005050537526-pat00001
또한, 상기 전도성고분자는 가능한 전도성이 크면서 염기성전해질에서 안정한 종류가 CdSe 안정성 증가에 기여가 크므로 바람직하다. 적합하게 사용될 수 있 는 전도성고분자로는 폴리[3,4-에틸렌디옥시티오펜]-폴리[스티렌설포네이트](PEDO T/PSS), 폴리[3-헥실티오펜](P3HT), 폴리[3-옥틸티오펜](P3OT) 및 폴리[2-메톡시-5-(2-에틸-헥실옥시)-1,4-페닐렌비닐렌](MEHPPV) 등이 있다.
상기 광감응염료는, 예를 들어, 침지법에 의해 코팅이 가능하고, 전도성고분자는, 예를 들어, 스핀코팅법에 의해 코팅이 가능하다. 전도성 고분자의 경우 코팅 두께는 약 50∼200nm가 적합하다.
전도성고분자의 스핀코팅 조건은 예를 들어, 약 1000rpm으로 0.5분내지 3분, 바람직하게는 1분 내지 1.5분 동안 스핀코팅하는 것이다.
이하, 본 발명을 하기 실시예에 의거하여 좀더 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 제한되는 것은 아니다.
실시예 1: CdSe 막의 제조
0.05M의 황산카드뮴(CdSO4) 수용액 6 ml에 동일 부피의 0.01M의 셀레늄산화물(SeO2) 수용액을 첨가하여 용액의 pH를 3.0으로 조절하였다.
백금 기판을 상대전극으로, ITO 코팅된 유리 기판을 작업전극으로 하는 두 개의 전극셀을 이용하여 상기 제조한 전해질 용액 중에서 CdSe 막의 전착을 수행하였다. 주사정전위전해장치(scanning potentiostat: EG and G model 273A)를 사용해 2mA의 전류를 ITO 작업전극과 백금 상대전극 사이에 인가하여 두께 500nm의 CdSe 막을 얻었다. 증착은 상온에서 20분 동안 수행하였으며, 증착 후 CdSe 막이 형성된 ITO 기판을 증착반응조로부터 꺼내어 3차 증류수로 세척하고 아르곤 분위기에서 건조하였다. 증착된 CdSe 막은 200℃에서 한시간 동안 열처리하였다. 증착반응조에 ITO 작업전극을 담그기 전에, 기판 표면으로부터 기름 성분을 제거하기 위하여, 초음파 세척기를 이용하여 비눗물에서 5분 동안 세척하고 나서 3차 증류수로 10분 동안 세척하고, 아세톤으로 5분 동안, 마지막으로 이소프로필알콜로 5분 동안 세척하였다.
실시예 1에서 얻은 CdSe 막의 X-선 회절(XRD(Rint/Pmax 2500, Rigaku, Japan)) 패턴을 도 1(a)(낮은 앵글) 및 (b)(높은 앵글)에 나타내었다. 도 1의 (a) 결과에서처럼 낮은 앵글에서 피크가 나타나는 것으로 보아 일정한 패턴의 기공의 존재 가능성을 알 수 있으며 기준 피크의 층간거리값과 관찰된 피크의 층간거리(d)값을 비교해 본 결과, 순수하게 육방결정구조 만으로 구성된 양질의 CdSe 막이 제조되었음을 알 수 있다.
CdSe 막의 표면특성을 20,000배율(도 2a)의 주사전자현미경(SEM(SM-634F, Jeol, Japan)) 사진을 통해 관찰하였다. 튜브형태의 CdSe 막이 형성됨을 알 수 있었으며, 고배율 전자 현미경(도 2b, 2c, 2d)으로 관찰한 결과, 끝이 막혀 있는 튜브 형태의 결정성 CdSe 막이 형성된 것을 알 수 있다. 관찰된 튜브의 크기는 100 내지 150nm 정도였으며 튜브 안에 비어있는 공간의 크기는 10 내지 30nm 정도이다.
실시예 2: CdSe 막 상의 광감응염료 및/또는 전도성고분자의 코팅
실시예 1에서 제조된 CdSe 막에 광감응염료를 코팅하기 위해, 0.3mM의 RuII(4,4-디카르복시-2,2-비피리딘)2(SCN)2(N3으로 칭함)를 에탄올에 녹인 후 CdSe 막을 침지 시킨 후 45oC의 항온조에서 하루 동안 유지한 다음 무수 에탄올로 세척하여 약 10 nm 이하의 광감응염료층을 얻었다. 또한, 이와는 별도로, 또는 상기 N3 코팅 후 이어서 그 위에, 전도성고분자(DEPOT)를 1000rpm에서 1분 동안 스핀코팅 하여 약 100nm 두께의 전도성 고분자층을 얻었다.
실시예 3: 막 평가
광감응염료 및/또는 전도성고분자를 코팅한 CdSe 막에 대해, 1M KOH-1M Na2S-1M S 용액(폴리설파이드) 전해질에서, ITO위에 Pt를 스퍼터링하여 투명하게 만든 Pt 상대전극(counter electrode) 및 Kiethley 2400 Source Meter를 이용하여 전류-전압 특성을 측정하였다. 전류-전압 특성 측정에는 에어 매스 필터와 1.5 워터 필터(Oriel Instrument)를 사용하였으며 광량은 100mW/cm2(450W Xenon lamp, Oriel Instrument)로 일정하게 유지하면서 실시예 2에서 제조한 작업전극인 CdSe/N3, CdSe/PEDOT, CdSe/N3/PEDOT에 일정량의 빛이 조사된 상태에서 광특성(Vmp, Voc, Jmp, Jsc)을 관찰하여 충진도(Vmp×Jmp/(Voc×Jsc)) 및 광효율(측정된 전류값×Voc×충진도/입사된 광량)을 계산하였다. 전류는 0.05mV 단위로 스캔하였다.
우선, 실시예 2에서, CdSe 막에 광감응염료만을 코팅한 경우는, 도 3과 같은 전류-전압특성곡선이 얻어졌으며, 광감응염료의 코팅으로 CdSe의 광특성인 개방전압(Voc)과 단락전류밀도(Jsc)는 큰 영향이 없었으나 CdSe의 수용액에서의 안정성은 증가하였으며 그 결과를 표 1에 나타내었다.
Figure 112006088073163-pat00007
표 1의 결과로부터, CdSe 막의 경우, 수용액전해질에 침지시킨 다음 광특성을 측정할 경우 두 번 째 횟수부터 그 광특성이 크게 감소하지만, CdSe 막에 광감응염료를 코팅하면, 그 광특성은 변화가 많지 않으나 수용액에서의 안정성은 크게 증가함을 알 수 있다.
또한, 실시예 2에서, CdSe 막에 전도성고분자(PEDOT)만을 코팅한 경우는, 도 4와 같은 전류-전압특성곡선이 얻어졌으며, 전도성고분자(PEDOT)의 코팅으로 CdSe의 광특성인 개방전압(Voc)과 단락전류밀도(Jsc)가 크게 증가하였고 CdSe 막에 비해 수용액에서의 안정성도 증가하였으며, 그 결과를 표 2에 나타내었다.
Figure 112006088073163-pat00008
상기 표 2로부터, CdSe 막에 전도성고분자만을 코팅할 경우 100번째 측정시에 그 광특성이 크게 감소하는 것으로 보아 PEDOT막의 코팅만으로는 수용액에서의 안정성 증가효과가 다소 낮은 것을 알 수 있다.
또한, 실시예 2에서, CdSe 막에 광감응염료와 전도성고분자(PEDOT)를 차례로 코팅한 경우는, 도 5와 같은 전류-전압특성곡선이 얻어졌으며, 광감응염료와 전도성고분자(PEDOT)의 코팅으로 CdSe의 광특성인 개방전압(Voc)과 단락전류밀도(Jsc)가 크게 증가하였으며 CdSe 막에 비해 수용액에서의 안정성도 크게 증가하였다. 그 결과를 표 3에 나타내었다.
Figure 112006088073163-pat00009
상기 표 2 및 3의 비교로부터, CdSe 막에 전도성고분자만을 코팅할 경우 광특성은 크게 증가하지만 수용액에서의 안정성 증가 효과는 크지 않은 반면 광감응염료와 전도성고분자를 차례로 코팅할 경우는 광특성 및 안정성 증가 효과가 매우 큼을 알 수 있다.
상술한 바와 같이, 본 발명의 CdSe 막 제법은 양질의 CdSe 막 제조를 위한 간단하고 효율적인 전착법으로서, 형성된 CdSe 막은 튜브형태의 육방결정의 미세결정구조를 가져 표면적이 넓고, 대면적으로의 형성이 가능하며, 광활성을 보이고 적절한 띠간격(1.7∼1.8 eV)을 가지며, 나아가 수용액에서의 안정성과 광효율을 높이기 위해 광감응염료 및/또는 전도성고분자를 코팅하는 경우, 광에너지를 전기 또는 화학에너지로 전환하는 공정의 전극으로 유용하게 사용할 수 있다.

Claims (12)

1) 황산카드뮴(CdSO4) 수용액에 셀레늄산화물(SeO2) 수용액을 첨가하여 산도(pH)를 2 내지 3으로 조절하고, 여기에 상대전극(counter electrode)과 작업전극(working electrode)으로서의 기판 각각을 침지시키고 전류을 인가하여 CdSe 막을 형성하는 단계; 및
2) 얻어진 CdSe 막에 광감응염료층, 전도성고분자층 또는 이들 층 모두를 코팅하는 단계를 포함하는, 코팅된 CdSe 막의 제조방법.
제 1 항에 있어서,
황산카드뮴 및 셀레늄산화물 수용액 각각이 0.01 내지 0.1 M 농도를 갖는 것임을 특징으로 하는, 코팅된 CdSe 막의 제조방법.
제 1 항에 있어서,
황산카드뮴과 셀레늄산화물이 5-10:1의 몰비로 혼합되는 것을 특징으로 하는, 코팅된 CdSe 막의 제조방법.
제 1 항에 있어서,
0 내지 40℃의 온도에서 0.5 내지 3.5 mA/cm2 범위의 단락전류밀도를 인가하는 것을 특징으로 하는, 코팅된 CdSe 막의 제조방법.
제 1 항에 있어서,
코팅단계 전에, 얻어진 CdSe 막을 100 내지 300℃에서 열처리하는 것을 추가로 포함함을 특징으로 하는, 코팅된 CdSe 막의 제조방법.
제 1 항에 있어서,
작업전극 또는 상대전극으로서의 기판이 티타늄(Ti), 니켈(Ni), 몰리브덴(Mo), 카드뮴(Cd), 백금(Pt), 금(gold), 인듐-주석-산화물(ITO) 코팅된 유리, 스테인레스 스틸(stainless steel) 및 탄소 기판으로 이루어진 군으로부터 선택된 것임을 특징으로 하는, 코팅된 CdSe 막의 제조방법.
삭제
제 1 항에 있어서,
전도성고분자가 폴리[3,4-에틸렌디옥시티오펜]-폴리[스티렌설포네이트], 폴리[3-헥실티오펜], 폴리[3-옥틸티오펜], 폴리[2-메톡시-5-(2-에틸-헥실옥시)-1,4-페닐렌비닐렌] 및 이들의 혼합물로 이루어진 군에서 선택되는 것을 특징으로 하는, 코팅된 CdSe 막의 제조방법.
제 1 항에 있어서,
광감응염료가 하기 화학식 1의 물질인 것을 특징으로 하는, 코팅된 CdSe 막의 제조방법.
화학식 1
Figure 112006088073163-pat00005
제 1 항에 있어서,
광감응염료층은 침지법을 이용하여 형성하고 전도성고분자층은 스핀코팅법을 이용하여 형성하는 것을 특징으로 하는, 코팅된 CdSe 막의 제조방법.
삭제
제 1 항의 방법에 의해 얻어진, 코팅된, 튜브형태의 미세 육방결정구조의 나노튜브형 카드뮴셀레나이드(CdSe) 막.
KR1020050084113A 2005-09-09 2005-09-09 전착법을 이용한 나노튜브형 카드뮴셀레나이드 박막의제조방법 KR100699692B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050084113A KR100699692B1 (ko) 2005-09-09 2005-09-09 전착법을 이용한 나노튜브형 카드뮴셀레나이드 박막의제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050084113A KR100699692B1 (ko) 2005-09-09 2005-09-09 전착법을 이용한 나노튜브형 카드뮴셀레나이드 박막의제조방법

Publications (2)

Publication Number Publication Date
KR20070029385A KR20070029385A (ko) 2007-03-14
KR100699692B1 true KR100699692B1 (ko) 2007-03-26

Family

ID=38101612

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050084113A KR100699692B1 (ko) 2005-09-09 2005-09-09 전착법을 이용한 나노튜브형 카드뮴셀레나이드 박막의제조방법

Country Status (1)

Country Link
KR (1) KR100699692B1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102060278A (zh) * 2010-12-21 2011-05-18 中国天辰工程有限公司 一种无机半导体硒化镉纳米管结构及其制备方法
KR101350749B1 (ko) 2011-12-07 2014-01-17 인텔렉추얼디스커버리 주식회사 광기전력 모듈
KR101540846B1 (ko) * 2013-06-19 2015-07-30 한양대학교 에리카산학협력단 염료감응형/양자점감응형 태양 전지 및 그 제조 방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106868563B (zh) * 2015-12-11 2019-01-25 中国海洋大学 一种硒化物薄膜修饰泡沫镍电极的制备方法及其应用
CN106757120B (zh) * 2017-02-05 2018-12-21 桂林理工大学 一种CdSe量子点的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040253919A1 (en) * 2003-06-12 2004-12-16 Jean-Guy Dube Ventilation barrier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040253919A1 (en) * 2003-06-12 2004-12-16 Jean-Guy Dube Ventilation barrier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102060278A (zh) * 2010-12-21 2011-05-18 中国天辰工程有限公司 一种无机半导体硒化镉纳米管结构及其制备方法
KR101350749B1 (ko) 2011-12-07 2014-01-17 인텔렉추얼디스커버리 주식회사 광기전력 모듈
KR101540846B1 (ko) * 2013-06-19 2015-07-30 한양대학교 에리카산학협력단 염료감응형/양자점감응형 태양 전지 및 그 제조 방법

Also Published As

Publication number Publication date
KR20070029385A (ko) 2007-03-14

Similar Documents

Publication Publication Date Title
Hu et al. Atomic layer deposition of TiO2 for a high-efficiency hole-blocking layer in hole-conductor-free perovskite solar cells processed in ambient air
Ciro et al. Self-functionalization behind a solution-processed NiO x film used as hole transporting layer for efficient perovskite solar cells
Hosono et al. Synthesis, structure and photoelectrochemical performance of micro/nano-textured ZnO/eosin Y electrodes
Park et al. Facile fabrication of vertically aligned TiO 2 nanorods with high density and rutile/anatase phases on transparent conducting glasses: high efficiency dye-sensitized solar cells
Liu et al. All low-temperature processed carbon-based planar heterojunction perovskite solar cells employing Mg-doped rutile TiO2 as electron transport layer
Ramarajan et al. Large-area spray deposited Ta-doped SnO2 thin film electrode for DSSC application
Upama et al. Role of fullerene electron transport layer on the morphology and optoelectronic properties of perovskite solar cells
KR100699692B1 (ko) 전착법을 이용한 나노튜브형 카드뮴셀레나이드 박막의제조방법
Pawar et al. Electrosynthesis and characterization of CdSe thin films: Optimization of preparative parameters by photoelectrochemical technique
Yang et al. Electrodeposition of hierarchical zinc oxide nanostructures on metal meshes as photoanodes for flexible dye-sensitized solar cells
Nandi et al. Morphological variations of ZnO nanostructures and its influence on the photovoltaic performance when used as photoanodes in dye sensitized solar cells
Song et al. In Situ Study of Degradation in P3HT–Titania-Based Solid-State Dye-Sensitized Solar Cells
Kırbıyık et al. Improving the performance of inverted polymer solar cells through modification of compact TiO2 layer by different boronic acid functionalized self-assembled monolayers
Sharma et al. Oxygen non-stoichiometry in TiO2 and ZnO nano rods: Effect on the photovoltaic properties of dye and Sb2S3 sensitized solar cells
Syrrokostas et al. Platinum decorated zinc oxide nanowires as an efficient counter electrode for dye sensitized solar cells
KR101726127B1 (ko) 블록 공중합체를 이용한 염료감응 태양전지용 상대전극 및 이를 포함하는 염료감응 태양전지
Zhang et al. Enhancing perovskite quality and energy level alignment of TiO2 nanorod arrays-based solar cells via interfacial modification
KR101828943B1 (ko) 금속 산화물 나노섬유, 나노막대 및 코팅층을 광전극으로 포함하는 페로브스카이트 태양전지 및 이의 제조방법
Wang et al. Effects of low pressure plasma treatments on DSSCs based on rutile TiO2 array photoanodes
Biçer et al. Fabrication and photoanode performance of ZnO nanoflowers in ZnO-based dye-sensitized solar cells
Bhojanaa et al. Dye-sensitized solar cells with efficiency enhancement surpassing 65% through layer-by-layer assembled plasmonic photoanodes
Nursam et al. Analysis of Catalytic Material Effect on the Photovoltaic Properties of Monolithic Dye-sensitized Solar Cells
Sui et al. CdS quantum dots-sensitized TiO2 nanotube arrays for solar cells
Hosseinzade et al. Electrochemical deposition of NiO bunsenite nanostructures with different morphologies as the hole transport layer in polymer solar cells
Wu et al. Performance comparison of dye-sensitized solar cells with different ZnO photoanodes

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120228

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130304

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee