KR100695072B1 - - 1 Stress-Inducible 1 Gene and Protein Enhancing Tolerance to Abitoic Stress - Google Patents

- 1 Stress-Inducible 1 Gene and Protein Enhancing Tolerance to Abitoic Stress Download PDF

Info

Publication number
KR100695072B1
KR100695072B1 KR1020050019847A KR20050019847A KR100695072B1 KR 100695072 B1 KR100695072 B1 KR 100695072B1 KR 1020050019847 A KR1020050019847 A KR 1020050019847A KR 20050019847 A KR20050019847 A KR 20050019847A KR 100695072 B1 KR100695072 B1 KR 100695072B1
Authority
KR
South Korea
Prior art keywords
plant
stress
osasr1
plants
cold
Prior art date
Application number
KR1020050019847A
Other languages
Korean (ko)
Other versions
KR20060043798A (en
Inventor
김성룡
김수진
Original Assignee
서강대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서강대학교산학협력단 filed Critical 서강대학교산학협력단
Publication of KR20060043798A publication Critical patent/KR20060043798A/en
Application granted granted Critical
Publication of KR100695072B1 publication Critical patent/KR100695072B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B31/00Chucks; Expansion mandrels; Adaptations thereof for remote control
    • B23B31/02Chucks
    • B23B31/24Chucks characterised by features relating primarily to remote control of the gripping means
    • B23B31/28Chucks characterised by features relating primarily to remote control of the gripping means using electric or magnetic means in the chuck
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Genetics & Genomics (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Manufacturing & Machinery (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Human Computer Interaction (AREA)
  • Mechanical Engineering (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 식물체에서 과발현되는 경우 식물체에 저온, 염 또는 건조 스트레스에 대한 내성을 증진시키는 비생물성 스트레스-유도성 OsAsr1 유전자 및 단백질에 관한 것으로서, 본 발명의 OsAsr1 유전자 및 단백질은 식물체에 저온, 염 또는 건조 스트레스에 대한 내성을 증진하는 데 매우 유효하다.The present invention relates to abiotic stress-induced OsAsr1 genes and proteins that promote resistance to low temperature, salt or dry stress in plants when overexpressed in plants, wherein the OsAsr1 genes and proteins of the present invention are low temperature, salts in plants. Or very effective in enhancing resistance to dry stress.

식물, 벼, 저온, 건조, 염. 스트레스, OsAsr1, 형질전환 Plant, paddy, low temperature, dry, salt. Stress, OsAsr1, transformation

Description

비생물성 스트레스에 대한 내성을 증진시키는 스트레스-유도성 OsAsr1 유전자 및 단백질{Stress-Inducible OsAsr1 Gene and Protein Enhancing Tolerance to Abitoic Stress}Stress-Inducible Oss1 Gene and Protein Enhancing Tolerance to Abitoic Stress

도 1은 CLUSTALW 프로그램으로 실시한 OsAsr1 단백질과 다른 공지의 Asr 단백질의 아미노산 비교를 보여주는 도면이다. 추정 Zn2+ DNA 결합 위치 및 핵내 위치지정 시그널 (NLS)은 밑줄 부분이다. 검은 상자 내의 백색체는 16 서열 모두에서 완전히 일치하는 서열을 나타낸다.1 is a view showing the amino acid comparison of the OsAsr1 protein and another known Asr protein carried out by the CLUSTALW program. The putative Zn 2+ DNA binding site and intranuclear positioning signal (NLS) are underlined. White bodies in black boxes show sequences that match completely in all 16 sequences.

도 2는 벼 유사체에서 다양한 Asr 단백질의 유전계통학적 분석을 보여주는 덴드로그램이다. 인디카 벼 WGS 콘티그 (contig)에 대한 TBLASTN 검색으로부터 벼 유사체들에 대한 정보를 얻었다. 덴드로그램은 ClustalX 및 Mega2 프로그램을 이용하여 구축하였다. 각각의 접근번호는 식물명 옆에 기재되어 있다. 수평선의 길이는 진화거리를 나타낸다.2 is a dendrogram showing genetic analysis of various Asr proteins in rice analogs. Information on rice analogs was obtained from the TBLASTN search for indica rice WGS contig. Dendrograms were constructed using the ClustalX and Mega2 programs. Each accession number is listed next to the plant name. The length of the horizontal line represents the evolutionary distance.

도 3은 OsAsr1의 서던 블롯 분석 결과이다. 3가지 자포니카 재배종, 남양 21 (1), 오대 (2) 및 동진 (3)을 EcoRI (E), HindⅢ (H) 및 BamHI (B)으로 절단하고 방사능표지 OsAsr1 프로브로 혼성화 하였다. HindⅢ로 절단된 OsAsr1 DNA의 위 치 및 kb 크기가 표시되어 있다.3 shows Southern blot analysis of OsAsr1 . Three Japonica cultivars, Namyang 21 (1), Odae (2) and Dongjin (3) were digested with Eco RI (E), Hind III (H) and Bam HI (B) and hybridized with radiolabeled OsAsr1 probes. The location and kb size of OsAsr1 DNA digested with Hind III are shown.

도 4a-4e는 다양한 비생물성 스트레스 및 ABA 처리 하에서 OsAsr1 발현 분석 결과이다: 도 4a-4c는 OsAsr1의 노던 블롯 분석 결과이다. 총 RNA 30 ㎍ (A) 또는 10 ㎍ (B 및 C)을 분리하고, 블롯팅한 다음, 방사능표지 OsAsr1 프로브로 혼성화 하였다. 도 4a는 다양한 기관 또는 조직에서 OsAsr1 발현을 나타낸다. 레인: 1, 캘러스; 2, 유식물체의 신초; 3, 유식물체의 뿌리; 4, 성숙 잎; 5, 플랙 잎의 잎집; 6, 프리헤드 단계에서의 노드 I 및 Ⅱ 사이의 인터노드; 7, 1-2 cm 원추 화서; 8, 3-8 cm 원추 화서; 9, 개화기 전의 성숙 원추 화서; 10, 수분 (DAP) 3일째의 발달중 종자 (DAP); 11, 6 DAP의 발달중 종자. 도 4b는 OsAsr1의 저온 유도성 발현을 보여준다. 성숙된 식물체를 12℃에서 4일 동안 처리하였다. L, 잎; CL, 저온처리 잎; F, 플로릿; CF, 저온 처리 플로릿. 도 4c는 상이한 온도 및 ABA에 의한 OsAsr1의 발현을 보여준다. 30℃에서 성장한 유식물체를 4℃, 12℃ 또는 3시간, 6시간 및 20시간 동안 10 μM ABA로 처리. 도 4d는 OsAsr1의 준-정량적 RT-PCR 분석으로 SalT를 건조-, 저온-, 염- 및 ABA-반응 대조군으로 사용하였다. 벼 액틴 유전자의 전사체는 PCR 분석에서 내재적 대조군을 나타낸다. 도 4e는 실-시간 PCR을 이용한 OsAsr1 발현 수준의 분석으로 오차 막대는 표준편차를 나타낸다. 8-일 유식물체를 4℃ (c), 250 mM NaCl (s), 건조 (d) 또는 100 μM ABA (A)로 처리하고 주기적으로 수확하였다. 벼 액틴 유전자의 전사체는 PCR 분석에서 내재적 대조군을 나타낸다.4A-4E show the results of OsAsr1 expression analysis under various abiotic stress and ABA treatments. FIGS. 4A-4C show Northern blot analysis of OsAsr1 . 30 μg (A) or 10 μg (B and C) of total RNA were isolated, blotted and hybridized with radiolabeled OsAsr1 probes. 4A shows OsAsr1 expression in various organs or tissues. Lanes: 1, callus; 2, shoots of seedlings; 3, the root of the seedlings; 4, mature leaves; 5, leaf leaf of the flag leaf; 6, internode between nodes I and II in the freehead stage; 7, 1-2 cm cone inflorescences; 8, 3-8 cm conical inflorescences; 9, mature cone inflorescence before flowering; 10, seed during development on day 3 (DAP); 11, 6 seeds during development of DAP. Figure 4b shows a low-temperature inducible expression of OsAsr1. Mature plants were treated at 12 ° C. for 4 days. L, leaves; CL, pasteurized leaves; F, florets; CF, low temperature treated florets. 4C shows the expression of OsAsr1 with different temperatures and by ABA. Seedlings grown at 30 ° C. were treated with 10 μM ABA for 4 ° C., 12 ° C. or 3 h, 6 h and 20 h. Figure 4d is a semi OsAsr1 - it was used as a control group and ABA- reaction-drying SalT quantitative RT-PCR analysis, a low-temperature-salt. Transcripts of the rice actin gene represent intrinsic controls in PCR analysis. Figure 4E shows the analysis of OsAsr1 expression levels using real-time PCR. Error bars represent standard deviations. 8-day seedlings were treated with 4 ° C. (c), 250 mM NaCl (s), dry (d) or 100 μM ABA (A) and harvested periodically. Transcripts of the rice actin gene represent intrinsic controls in PCR analysis.

도 5a 및 5b는 OsAsr1 mRNA의 인 시투 국부위치화를 보여주는 사진이다. 헤딩전 4일째의 벼 꽃 및 4일 동안 12℃에 노출된 잎의 절단면을 디곡시게닌-표지 안티센스 (A, C, E, 및 G) 또는 센스 (B, D, F 및 H) OsAsr1 프로브로 혼성화시켰다. 절단면의 높은 배율이 나타나 있다 (C, D, G 및 H). an, 꽃밥; lm, 외영; pa, 내영; l.e.p, 내영의 하부 표피; LVB, 큰 유관속; mc, 모터 세포; xy, 목부; ph, 사부; me, 엽육. 막대 = 0.3 mm5A and 5B are photographs showing in situ localization of OsAsr1 mRNA. Sections of rice flowers at 4 days before heading and leaves exposed to 12 ° C. for 4 days were treated with digoxigenin-labeled antisense (A, C, E, and G) or sense (B, D, F and H) OsAsr1 probes. Hybridized. High magnifications of the cut planes are shown (C, D, G and H). an anther; lm, external appearance; pa, inner spirit; lep, lower epidermis of inner ear; LVB, large flow rate; mc, motor cell; xy, neck; ph, quadruplet; me, lobules. Rod = 0.3 mm

도 6a-6c는 센스 및 안티센스 방향으로 OsAsr1을 발현하는 형질전환 식물체의 분석 결과를 보여준다. 도 6a는 벼 형질전환을 위한 OsAsr1 센스 (pSK167) 및 안티센스 (pSK168) 발현 벡터의 구조이다. PUBI, 옥수수 유비퀴틴 프로모터; P35S, CaMV 35S 프로모터; TNOS, 노팔린 신타아제 종결자 서열; T7, 전사체 7의 종결자 서열; hph, 형질전환 캘러스를 선택하기 위한 하이그로마이신 포스포트랜스퍼라아제 유전자; RB 및 LB, 아그로박테리움 튜머페이션스 (Agrobacterium tumefaciens)의 Ti 플라스미드의, 각각 우측 및 좌측 보더 서열. 도 6b는 형질전환 유전자의 서던 블롯 분석 결과이다. 형질전환 식물체로부터 얻는 지놈 DNA를 HindⅢ로 절단한 10 ㎍을 이용하여 서던 블롯을 실시하였다. 형질전환 벡터에서 유비퀴틴 프로모터 단편을 프로브로 이용하였다. HindⅢ로 절단된 OsAsr1 DNA의 위치 및 kb 크기가 표시되어 있다. 도 6c는 센스 형질전환 벼 (Ubiquitin::OsAsr1)에서 OsAsr1의 발현을 보여주는 사진이다. 정상 성장 조건 하의 야생형 분리자 (WS) 및 센스 형질전환 식물체로붙 얻은 잎의 총 RNA를 분리하고, 블롯팅한 다음, 방사능표지 OsAsr1 프로브로 혼성화시켰다. 숫자는 각각의 형질전환주를 나타낸다. EtBr- 염색 rRNA 밴드는 동일한 양이 로딩되었음을 보여준다.6A-6C show the analysis results of transgenic plants expressing OsAsr1 in the sense and antisense directions. Figure 6a is a structure of OsAsr1 sense (pSK167) and antisense (pSK168) expression vector for the transfection of rice conversion. P UBI , corn ubiquitin promoter; P 35S , CaMV 35S promoter; T NOS , nopaline synthase terminator sequence; T7, terminator sequence of transcript 7; hph , hygromycin phosphotransferase gene to select for transforming callus; RB and LB, right and left border sequences, respectively, of Ti plasmids of Agrobacterium tumefaciens . 6B shows Southern blot analysis of the transgene. Southern blots were performed using 10 μg of the genome DNA obtained from the transgenic plant with Hin dIII. Ubiquitin promoter fragments were used as probes in the transformation vectors. The position and kb size of OsAsr1 DNA digested with Hind III are indicated. Figure 6c is a photograph showing OsAsr1 expression of the sense transgenic rice (Ubiquitin :: OsAsr1). Total RNA of leaves obtained with wild type separator (WS) and sense transgenic plants under normal growth conditions was isolated, blotted and hybridized with radiolabeled OsAsr1 probe. Numbers represent each transformant. EtBr-stained rRNA bands show that the same amount was loaded.

도 7은 클로로필 형광 측정에 의해 판정된 Ubiquitin::OsAsr1 식물체의 스트레스 내성을 나타내는 그래프. 저온 스트레스 하의 연장된 잎의 클로로필 형광의 변화를 측정하였다. Fv/Fm 값의 평균 및 표준편차를 측정함으로써 광합성의 기능적 손상을 평가하였다. 7 is a graph showing the stress resistance of Ubiquitin :: OsAsr1 plants as determined by chlorophyll fluorescence measurements. Changes in chlorophyll fluorescence of elongated leaves under cold stress were measured. The functional impairment of photosynthesis was assessed by measuring the mean and standard deviation of the Fv / Fm values.

도 8은 CBF1 형질전환 벼에서 OsAsr1의 발현을 보여주는 사진이다. 대조군 (30℃) 또는 저온처리 (4℃)에서 두가지 강한 CBF1-발현자 (18-2 및 18-3) 및 야새형 비형질전환주 (NT)의 성숙된 잎으로부터 얻은 총 RNA를 방사능표지 OsAsr1 프로브와 혼성화시켰다. EtBr-염색 rRNA 밴드는 동일한 양이 로딩되었음을 보여준다.8 is a photograph showing the OsAsr1 expression in transgenic rice CBF1. Here expression (18-2 and 18-3) and non-transfected be saehyeong the total RNA obtained from the mature leaf of the switching state (NT) radiolabeled OsAsr1 - two kinds of strong CBF1 in the control group (30 ℃) or low-temperature treatment (4 ℃) Hybridization with probes. EtBr-stained rRNA bands show that the same amount was loaded.

도 9는 센스 (9a) 또는 (9b) 안티센스 방향에서 OsAsr1 를 발현하는 형질전환 벼의 염 내성을 보여준다: 12일령된 유식물체를 200 mM NaCl에서 1 일 (센스 식물체) 또는 12 시간 (안티센스 식물체)로 처리하고 정상 조건 하에서 2 일 동안 회복시켰다.Figure 9 shows the salt resistance of transgenic rice expressing OsAsr1 in the sense (9a) or (9b) antisense direction: 12 day old seedlings at 200 mM NaCl for 1 day (sense plant) or 12 hours (antisense plant) And recovered for 2 days under normal conditions.

도 10은 벼 품종 및 형질전환 OsAsr1벼 식물체의 위조 비율을 보여준다: 12일령 유식물체를 200 mM NaCl에서 1 일 (센스 식물체) 또는 12 시간 (안티센스 식물체)로 처리하고 정상 조건하에서 2 일 동안 회복시켰다.FIG. 10 shows the fake rate of rice varieties and transgenic OsAsr1 rice plants: 12 day old seedlings were treated in 200 mM NaCl for 1 day (sense plant) or 12 hours (antisense plant) and recovered for 2 days under normal conditions. .

도 11은 센스 (11a) 또는 (11b) 안티센스 방향에서 OsAsr1 를 발현하는 형질전환 벼의 건조 내성을 보여준다: 14일령 유식물체에 4일 동안 물을 공급하지 않고, 다시 정상 조건하에서 7 일 동안 회복시켰다.FIG. 11 shows the dry resistance of transgenic rice expressing OsAsr1 in the sense (11a) or (11b) antisense direction: 14 days old seedlings without water for 4 days, again restored for 7 days under normal conditions .

도 12는 벼 품종 및 형질전환 OsAsr1벼 식물체의 위조 비율을 보여준다: 14 일령 유식물체에 4일 동안 물을 공급하지 않고, 다시 정상 조건하에서 7 일 동안 회복시켰다.FIG. 12 shows the forgery rates of rice varieties and transgenic OsAsr1 rice plants: 14 days old seedlings were not fed with water for 4 days, and then recovered for 7 days under normal conditions.

본 발명은 저온, 건조 또는 염 스트레스에 대한 내성을 증진시키는 비생물성 스트레스-유도성 OsAsr1 유전자 및 단백질에 관한 것이다.The present invention relates to abiotic stress-induced OsAsr1 genes and proteins that promote resistance to cold, dry or salt stress.

고착성 유기체로서의 식물은 환경 스트레스, 예컨대, 저온, 건조 및 염해 등 비생물성 스트레스에 대응을 하여야 한다. 이러한 노출 이후에, 유전자 발현의 패턴에서 일련의 변화가 일어난다 (Guy, 1999). 이러한 반응은 성장속도, 생산성 및 종 분포에 영향을 미친다. 열대 또는 아열대 원산지를 갖는 곡물류로서의 벼는 종종 저온 손상을 받으며, 이러한 손상을 받은 식물체는 퇴록, 괴사 또는 상장 지연과 같은 다양한 증상을 나타낸다 (De Datta, 1981). 온대 지역에서, 벼는 종종 개화시기 동안에 저온-여름 손상뿐만 아니라 유식물체 단계에서 저온에 직면하게 된다.Plants as fixed organisms must cope with environmental stresses such as non-biological stresses such as low temperature, drying and salting. After this exposure, a series of changes occur in the pattern of gene expression (Guy, 1999). This reaction affects growth rate, productivity and species distribution. Rice, as cereals with tropical or subtropical origin, is often subjected to cold damage, and the damaged plants show various symptoms such as medulla, necrosis or delayed listing (De Datta, 1981). In temperate zones, rice is often faced cold during the flowering period as well as cold-summer damage.

비생물성 스트레스-반응 기전을 이해하기 위하여, 연구자들은 몇 종의 식물체에서 비생물성-유도성 단백질을 코딩하는 다수의 유전자를 분리하였다 (Guy, 1999; Thomashow, 1999). 칼시뉴린 B-유사 1 (CBL 1) 유전자는 건조, 염 및 저온 스트레스에 의하여 상당하게 유도된다. 또한, CBL1-과발현 식물체는 증진된 염 및 건조 내성을 보여주었다 (Cheong, Y.H., Kim, K.N., Pandey, G.K., Gupta, R., Grant, J.J., and Luan, S. 2003. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell 15:1833-1845). 저온 하에서 유도되는 유전자들은 다양한 유전산물을 생성시킴으로써 세포를 보호하는 기능을 하는 것으로 예측된다. 예를 들어, 아라비돕시스 (Arabidopsis) MAP 키나아제 (ATMPK4 및 ATMPK6) and C-반복/DRE 결합 인자 (CBF/DREB) 전사 인자는 저온 스트레스 신호전달에 관여하며 (Mizoguchi et al., 1993; Stockinger et al., 1997), 지질 탈포화효소는 냉각 동안에 막 변형에 관여한다 (Gibson et al., 1994). 저온-유도성 발병-관련 단백질, 예컨대, 키티나아제-유사 및 타우마틴-유사 단백질은 항동결 단백질로서의 작용을 한다 (Hiilovaara-Teijo et al., 1999). 또한, 샤페론, 후기 배발생 풍부 (LEA) 단백질, 칼모듈린-관련 단백질 및 동결 내성을 증진시키는 것으로 예측된다 (Thomashow, 1999). 최종적으로, 당, 프롤린과 베타인과 같은 다양한 삼투보호제의 생합성에 필요한 효소는, 또한 저온 노출 후의 식물 삼투압 조절에 매우 중요하다 (Kishor et al., 1995; Igarashi et al., 1997; Scott et al., 1999). To understand the abiotic stress-response mechanism, the researchers isolated a number of genes encoding abiotic-induced proteins in several plants (Guy, 1999; Thomashow, 1999). The calcineurin B-like 1 (CBL 1) gene is significantly induced by dryness, salt and cold stress. In addition, CBL1-overexpressing plants showed enhanced salt and dry resistance (Cheong, YH, Kim, KN, Pandey, GK, Gupta, R., Grant, JJ, and Luan, S. 2003. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis .Plant Cell 15: 1833-1845). Genes derived under low temperatures are expected to function to protect cells by producing a variety of genetic products. For example, Arabidopsis (Arabidopsis) MAP kinases (ATMPK4 and ATMPK6) and C-repeat / DRE binding factor (CBF / DREB) transcription factors are involved in cold stress signaling (Mizoguchi et al., 1993; Stockinger et al., 1997), lipid desaturase Is involved in membrane modification during cooling (Gibson et al., 1994). Cold-induced onset-related proteins such as chitinase-like and tautin-like proteins act as antifreeze proteins (Hiilovaara-Teijo et al., 1999). It is also predicted to enhance chaperone, late embryogenic abundance (LEA) protein, calmodulin-related protein and freeze resistance (Thomashow, 1999). Finally, enzymes necessary for biosynthesis of various osmoprotectants such as sugars, proline and betaine are also very important for regulating plant osmotic pressure after cold exposure (Kishor et al., 1995; Igarashi et al., 1997; Scott et al. , 1999).

ABA (abscisic acid), 삼투압 스트레스 (osmotic stress) 및 성숙 (ripening)에 반응성을 나타내는 Asr 유전자들은 토마토, 감자, 살구, 테다소나무, 나리, 옥수수, 펌메로, 포도와 벼와 같은 다양한 종에서 동정되었다 (Iusem et al., 1993; Canel et al., 1995; Silhavy et al., 1995; Wang et al., 1998; Chang et al., 1996; Mbeguie-A-Mbeguie et al., 1997; Vaidyanathan et al., 1999; Hong et al., 2002; Jeanneau et al., 2002; Cakir et al., 2003). 토마토 Asr1 mRNA의 높은 수준이 성숙된 과일 및 수 스트레스를 받은 잎에서 검출되었다 (Hagit et al., 1995). 나리 ASR 단백질의 양은 화분 성숙 동안에 건조에 의해 증가한다 (Wang et al., 1998). 그러나, ASR 단백질의 생리학적 역할은 지금도 불명이다. 토마토 ASR1 단백질이 핵에 국부적으로 위치한다는 사실은 토마토 ASR1 단백질이 비히스톤 염색체 단백질로 작용한다는 것을 제안케 한다 (Rossi and Iusem, 1994). 또한, 몇 종의 ASR 단백질이 후기 배발달 풍부 (LEA) 단백질 또는 디히드린 단백질과 구조적 및 기능적으로 유사하다는 사실로부터, ASR이 종자 발달에 관여할 것이라는 추론을 할 수 있다 (Maskin et al., 2001; Silhavy et al., 1995). 다수의 공지 ASR 단백질은 N-말단 부위에 추정의 Zn-결합 위치 및 C-말단에 약 70 아미노산의 추정의 핵내 위치지정 서열 (NLS)에 해당하는 두 개의 보전 부위를 갖는다 (Cakir et al., 2003; Silhavy et al., 1995). 이러한 사실들 그리고 단당류 운반 유전자의 프로모터 서열에 포도 ASR (VvMSA)이 결합한다는 사실들로부터, VvMSA가 당 및 ABA 시그널링에 관여하는 전사-조절 복합체의 성분일 것이라는 추론을 할 수 있다 (Cakir et al., 2003). A variety of species such as ABA Asr genes showing the reactivity (abscisic acid), osmotic stress (osmotic s tress) and mature (r ipening) are tomatoes, potatoes, apricots, Te somewhat trees, lily, corn, Firm booties, and grapes and rice (Iusem et al., 1993; Canel et al., 1995; Silhavy et al., 1995; Wang et al., 1998; Chang et al., 1996; Mbeguie-A-Mbeguie et al., 1997; Vaidyanathan et al., 1999; Hong et al., 2002; Jeanneau et al., 2002; Cakir et al., 2003). High levels of tomato Asr1 mRNA were detected in mature fruits and leaves under water stress (Hagit et al., 1995). The amount of Lilium ASR protein is increased by drying during pollen maturation (Wang et al., 1998). However, the physiological role of ASR protein is still unknown. The localization of tomato ASR1 protein in the nucleus suggests that tomato ASR1 protein acts as a nonhistone chromosome protein (Rossi and Iusem, 1994). In addition, from the fact that several ASR proteins are structurally and functionally similar to late developmental rich (LEA) proteins or dihydrin proteins, one can infer that ASR is involved in seed development (Maskin et al., 2001). Silhavy et al., 1995). Many known ASR proteins have two conserved sites corresponding to the putative Zn-binding position at the N-terminal site and the putative in-nuclear positioning sequence (NLS) of about 70 amino acids at the C-terminus (Cakir et al., 2003; Silhavy et al., 1995). From these facts and the fact that grape ASR (VvMSA) binds to the promoter sequence of the monosaccharide transport gene, one can infer that VvMSA is a component of the transcriptional-regulatory complex involved in sugar and ABA signaling (Cakir et al. , 2003).

Vaidyanathan et al. (1999)은 포칼리 (Pokkali) 벼로부터 ASR cDNA, OsAsr1를 동정하였고, 이 유전자는 ABA- 및 삼투압 (NaCl) 스트레스-유도성임을 규명하였다. 하지만, 친수성 알파 나선 구조를 갖는 OsAsr1의 기능은 대부분 알려져 있지 않다.Vaidyanathan et al. (1999) were identified Po Carly (Pokkali) rice from the ASR cDNA, OsAsr1, this gene ABA- and osmotic pressure (NaCl) stress-induced were identified for ordination. However, the function of OsAsr1 with a hydrophilic alpha helix structure is largely unknown.

본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용은 괄호 내에 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준과 본 발명의 내용이 보다 명확하게 설명된다.Throughout this specification, numerous papers and patent documents are referenced and their citations are indicated in parentheses. The disclosures of cited papers and patent documents are incorporated herein by reference in their entirety, and the level of the technical field to which the present invention belongs and the contents of the present invention are more clearly described.

본 발명자들은 비생물성 스트레스에 대하여 내성을 증진시킬 수 있는 유전자를 발굴하고자 예의 노력한 결과, 벼 (Oryza sativa)로부터 스트레스에 의해 유도되는 OsAsr1 (Oryza sativa responsive to ABA, osmotic stress, and ripening gene 1) 유전자를 발굴하고 상기 유전자에 의해 형질전환된 식물체가 저온, 염 또는 건조에 대하여 증진된 내성을 나타낸다는 것을 확인함으로써, 본 발명을 완성하게 되었다.The present inventors abiotic efforts example to identify genes which can enhance resistance results against sex stress, rice (OsAsr1 induced by stress from (Oryza sativa) Oryza sativa responsive to ABA, osmotic s tress, and r ipening gene 1 ) The present invention was completed by discovering a gene and confirming that the plant transformed by the gene exhibits enhanced resistance to low temperature, salt, or drying.

따라서, 본 발명의 목적은 저온, 염 또는 건조 스트레스에 대한 내성을 증진시키는 비생물성 스트레스-유도성 OsAsr1 단백질을 제공하는 데 있다.Accordingly, it is an object of the present invention to provide abiotic stress-induced OsAsr1 protein that enhances resistance to cold, salt or dry stress.

본 발명의 다른 목적은 비생물성 스트레스-유도성 OsAsr1 단백질을 코딩하는 뉴클레오타이드 서열을 포함하는 핵산분자을 제공하는 데 있다.Another object of the present invention is to provide a nucleic acid molecule comprising a nucleotide sequence encoding a non-biological stress-induced OsAsr1 protein.

본 발명의 또 다른 목적은 비생물성 스트레스-유도성 OsAsr1 단백질을 코딩하는 뉴클레오타이드 서열을 포함하는 핵산분자를 포함하는 벡터를 제공하는 데 있다.It is still another object of the present invention to provide a vector comprising a nucleic acid molecule comprising a nucleotide sequence encoding a non-biotic stress-induced OsAsr1 protein.

본 발명의 다른 목적은 상기 본 발명의 벡터에 의해 형질전환된 형질전환체를 제공하는 데 있다.Another object of the present invention is to provide a transformant transformed by the vector of the present invention.

본 발명의 다른 목적은 저온, 염 또는 건조 스트레스 내성이 증진된 형질전환 식물체의 제조방법을 제공하는 데 있다.Another object of the present invention to provide a method for producing a transgenic plant having enhanced low temperature, salt or dry stress resistance.

본 발명의 다른 목적은 저온, 염 또는 건조 스트레스 내성을 갖는 형질전환 식물체를 제공하는 데 있다.Another object of the present invention is to provide a transgenic plant having low temperature, salt or dry stress resistance.

본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.Other objects and advantages of the present invention will become apparent from the following detailed description, claims and drawings.

본 발명의 일 양태에 따르면, 본 발명은 서열목록 제 2 서열의 아미노산 서열을 포함하며 식물체에서 과발현되는 경우 상기 식물체에 저온, 염 또는 건조 스트레스에 대한 내성을 증진시키는 비생물성 스트레스-유도성 OsAsr1 단백질 또는 상기 단백질과 80% 이상의 아미노산 서열 상동성을 나타내는 단백질을 제공한다.According to one aspect of the invention, the invention comprises the amino acid sequence of SEQ ID NO: 2 sequence and when overexpressed in a plant abiotic stress-induced OsAsr1 which enhances resistance to cold, salt or dry stress in the plant Provided is a protein or a protein that exhibits at least 80% amino acid sequence homology with the protein.

본 발명자들은 저온, 염 또는 건조 스트레스에 대하여 내성을 증진시킬 수 있는 유전자를 발굴하고자 노력한 결과, 벼 (Oryza sativa)로부터 스트레스에 의해 유도되는 OsAsr1 (Oryza sativa responsive to ABA, osmotic stress, and ripening gene 1) 유전자를 발굴하고 상기 유전자에 의해 형질전환된 식물체가 저온, 염 또 는 건조에 대하여 증진된 내성을 나타낸다는 것을 확인하였다.The present inventors have cold, salt or effort results to identify genes which can enhance the resistance to drought stress, rice Oryza sativa responsive to ABA, OsAsr1 (induced by stress from (Oryza sativa) osmotic s tress, and r ipening gene 1 ) The gene was excavated and confirmed that the plant transformed by the gene exhibits enhanced resistance to low temperature, salt or drying.

본 명세서에서 용어 "비생물성 스트레스"는 저온, 염 및 건조와 같은 비생물학적 요인에 의해 유도되는 스트레스를 의미한다.As used herein, the term “abiotic stress” refers to stress induced by abiotic factors such as low temperature, salt and drying.

본 명세서에서 용어 "저온 스트레스"는 저온, 바람직하게는 15℃ 이하, 보다 바람직하게는 12℃ 이하, 가장 바람직하게는 10℃ 이하의 저온에 의한 스트레스를 의미한다.As used herein, the term "cold stress" means a stress caused by a low temperature, preferably 15 ° C. or less, more preferably 12 ° C. or less, and most preferably 10 ° C. or less.

본 발명의 비생물성 스트레스-유도성 OsAsr1 단백질은 상기한 아미노산 서열에 대하여 실질적인 동일성 (substantial identity)을 나타내며, 동시에 저온, 염 또는 건조 스트레스에 대한 내성 증진을 할 수 있는 범위 내에서의 아미노산 서열을 포함하는 것으로 해석된다. 상기의 실질적인 동일성은, 상기한 본 발명의 아미노산 서열과 임의의 다른 서열을 최대한 대응되도록 얼라인하고, 당업계에서 통상적으로 이용되는 프로그램 (예: ClustalX 및 PROSIS)을 이용하여 얼라인된 서열을 분석한 경우에, 최소 80%의 상동성, 보다 바람직하게는 최소 90%의 상동성, 가장 바람직하게는 최소 95%의 상동성을 나타내는 아미노산 서열을 의미한다.The non-biological stress-induced OsAsr1 protein of the present invention exhibits a substantial identity to the above-described amino acid sequence, and at the same time the amino acid sequence within a range capable of enhancing resistance to low temperature, salt or dry stress. It is to be interpreted as including. Such substantial identity is to align the amino acid sequence of the present invention with any other sequence to the maximum correspondence, and to analyze the aligned sequence using programs commonly used in the art (eg, ClustalX and PROSIS). In one case it is meant an amino acid sequence which exhibits at least 80% homology, more preferably at least 90% homology, and most preferably at least 95% homology.

한편, 본 발명의 스트레스-유도성 OsAsr1 단백질은 다음과 같이 특정될 수 있다: (a) 벼 (Oryza sativa L.)로부터 분리; (b) N-말단 부위에 하나의 Zn-결합 모티프가 있음; 및 (c) C-말단 부위에 하나의 핵내 위치지정 (nuclear localizaton) 도메인이 있음. (. Oryza sativa L): - On the other hand, according to the present invention stress inducible OsAsr1 protein can be specified as follows: separation from (a) rice; (b) there is one Zn-binding motif at the N-terminal site; And (c) there is one nuclear localizaton domain at the C-terminal site.

본 발명의 다른 양태에 따르면, 본 발명은 상기 비생물성 스트레스-유도성 OsAsr1 단백질을 코딩하는 뉴클레오타이드 서열을 포함하는 핵산분자를 제공한다.According to another aspect of the present invention, the present invention provides a nucleic acid molecule comprising a nucleotide sequence encoding the abiotic stress-induced OsAsr1 protein.

본 명세서에서 용어 "핵산 분자"는 DNA (gDNA 및 cDNA) 그리고 RNA 분자를 포괄적으로 포함하는 의미를 갖으며, 핵산 분자에서 기본 구성 단위인 뉴클레오타이드는 자연의 뉴클레오타이드 뿐만 아니라, 당 또는 염기 부위가 변형된 유사체 (analogue)도 포함한다 (Scheit, Nucleotide Analogs, John Wiley, New York(1980); Uhlman 및 Peyman, Chemical Reviews, 90:543-584(1990)).As used herein, the term “nucleic acid molecule” is meant to encompass DNA (gDNA and cDNA) and RNA molecules inclusively, and the nucleotides that are the basic building blocks of nucleic acid molecules are naturally modified nucleotides, as well as modified sugar or base sites. Analogs are also included (Scheit, Nucleotide Analogs, John Wiley, New York (1980); Uhlman and Peyman, Chemical Reviews , 90: 543-584 (1990)).

가장 바람직하게는, 본 발명의 핵산 분자는 서열목록 제 1 서열의 뉴클레오타이드 서열 중 서열번호 67-480의 뉴클레오타이드 서열을 포함한다. 비생물성 스트레스-유도성 OsAsr1 단백질을 코딩하는 본 발명의 핵산 분자는 상기한 뉴클레오타이드 서열에 대하여 실질적인 동일성을 나타내는 뉴클레오타이드 서열도 포함하는 것으로 해석된다. 상기의 실질적인 동일성은, 상기한 본 발명의 뉴클레오타이드 서열과 임의의 다른 서열을 최대한 대응되도록 얼라인하고, 당업계에서 통상적으로 이용되는 프로그램 (예: ClustalX 및 DNASIS)을 이용하여 얼라인된 서열을 분석한 경우에, 최소 80%의 상동성, 보다 바람직하게는 최소 90%의 상동성, 가장 바람직하게는 최소 95%의 상동성을 나타내는 뉴클레오타이드 서열을 의미한다.Most preferably, the nucleic acid molecule of the present invention comprises the nucleotide sequence of SEQ ID NOs: 67-480 in the nucleotide sequence of SEQ ID NO: 1. Nucleic acid molecules of the present invention encoding non-biogenic stress-inducing OsAsr1 proteins are also construed to include nucleotide sequences that exhibit substantial identity to the nucleotide sequences described above. The substantial identity above aligns the nucleotide sequence of the present invention with any other sequence to the maximum correspondence, and analyzes the aligned sequence using programs commonly used in the art (eg, ClustalX and DNASIS). In one case it is meant a nucleotide sequence that exhibits at least 80% homology, more preferably at least 90% homology, and most preferably at least 95% homology.

본 발명의 또 다른 양태에 따르면, 본 발명은 상술한 비생물성 스트레스-유도성 OsAsr1 단백질을 코딩하는 뉴클레오타이드 서열을 포함하는 벡터를 제공한다. 본 발명의 바람직한 구현예에 따르면, 본 발명의 벡터는 (a) 비생물성 스트레스-유도성 OsAsr1 단백질을 코딩하는 뉴클레오타이드 서열 및 (b) 상기 뉴클레오타이드 에 작동적으로 결합된 (operably linked) 프로모터를 포함하는 벡터를 제공한다.According to another aspect of the invention, the invention provides a vector comprising a nucleotide sequence encoding the abiotic stress-induced OsAsr1 protein described above. According to a preferred embodiment of the present invention, the vector of the present invention comprises (a) a nucleotide sequence encoding a non-biological stress-induced OsAsr1 protein and (b) a promoter operably linked to the nucleotide. Provide a vector

본 명세서에서 용어 "작동적으로 결합된"은 핵산 발현 조절 서열 (예: 프로모터, 시그널 서열, 또는 전사조절인자 결합 위치의 어레이)과 다른 핵산 서열사이의 기능적인 결합을 의미하며, 이에 의해 상기 조절 서열은 상기 다른 핵산 서열의 전사 및/또는 트랜스레이션을 조절하게 된다.As used herein, the term “operably linked” refers to a functional binding between a nucleic acid expression control sequence (eg, an array of promoters, signal sequences, or transcriptional regulator binding sites) and other nucleic acid sequences, whereby such regulation The sequence will control the transcription and / or translation of said other nucleic acid sequence.

본 발명의 벡터 시스템은 당업계에 공지된 다양한 방법을 통해 구축될 수 있으며, 이에 대한 구체적인 방법은 Sambrook et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press(2001)에 개시되어 있으며, 이 문헌은 본 명세서에 참조로서 삽입된다.The vector system of the present invention may be constructed through various methods known in the art, and specific methods thereof are disclosed in Sambrook et al., Molecular Cloning, A Laboratory Manual , Cold Spring Harbor Laboratory Press (2001), This document is incorporated herein by reference.

본 발명의 벡터는 전형적으로 클로닝을 위한 벡터 또는 발현을 위한 벡터로서 구축될 수 있다. 또한, 본 발명의 벡터는 원핵 세포 또는 진핵 세포를 숙주로 하여 구축될 수 있다.Vectors of the present invention can typically be constructed as vectors for cloning or vectors for expression. In addition, the vector of the present invention can be constructed using prokaryotic or eukaryotic cells as hosts.

예를 들어, 본 발명의 벡터가 발현 벡터이고, 원핵 세포를 숙주로 하는 경우에는, 전사를 진행시킬 수 있는 강력한 프로모터 (예컨대, pL λ프로모터, trp 프로모터, lac 프로모터, T7 프로모터, tac 프로모터 등), 해독의 개시를 위한 라이보좀 결합 자리 및 전사/해독 종결 서열을 포함하는 것이 일반적이다. 숙주 세포로서 E. coli가 이용되는 경우, E. coli 트립토판 생합성 경로의 프로모터 및 오퍼레이터 부위 (Yanofsky, C., J. Bacteriol., 158:1018-1024(1984)) 그리고 파아지 λ 의 좌향 프로모터 (pL λ프로모터, Herskowitz, I. and Hagen, D., Ann. Rev. Genet., 14:399-445(1980))가 조절 부위로서 이용될 수 있다. For example, the vector is an expression vector of the present invention, in the case of a prokaryotic cell as a host, the strong promoter that can proceed with the transfer (e.g., p L λ promoter, trp promoter, lac promoter, T7 promoter, tac promoter, etc. ), It is common to include ribosomal binding sites and transcription / detox termination sequences for initiation of translation. When E. coli is used as the host cell, the promoter and operator site of the E. coli tryptophan biosynthetic pathway (Yanofsky, C., J. Bacteriol. , 158: 1018-1024 (1984)) and the leftward promoter of phage λ (p L λ promoter, Herskowitz, I. and Hagen, D., Ann. Rev. Genet. , 14: 399-445 (1980)) can be used as regulatory sites.

한편, 본 발명에 이용될 수 있는 벡터는 당업계에서 종종 사용되는 플라스미드 (예: pSC101, ColE1, pBR322, pUC8/9, pHC79, pGEX 시리즈, pET 시리즈 및 pUC19 등), 파지 (예: λgt4·λB, λ-Charon, λΔz1 및 M13 등) 또는 바이러스 (예: SV40 등)를 조작하여 제작될 수 있다.On the other hand, vectors that can be used in the present invention are plasmids (eg, pSC101, ColE1, pBR322, pUC8 / 9, pHC79, pGEX series, pET series and pUC19, etc.) which are often used in the art, phage (e.g. λgt4.λB , λ-Charon, λΔz1 and M13, etc.) or viruses (eg SV40, etc.).

한편, 본 발명의 벡터가 발현 벡터이고, 진핵 세포를 숙주로 하는 경우에는, 포유동물 세포의 지놈으로부터 유래된 프로모터 (예: 메탈로티오닌 프로모터) 또는 포유동물 바이러스로부터 유래된 프로모터 (예: 아데노바이러스 후기 프로모터, 백시니아 바이러스 7.5K 프로모터, SV40 프로모터, 사이토메갈로바이러스 프로모터 및 HSV의 tk 프로모터)가 이용될 수 있으며, 전사 종결 서열로서 폴리아데닐화 서열을 일반적으로 갖는다.On the other hand, when the vector of the present invention is an expression vector and the eukaryotic cell is a host, a promoter derived from the genome of the mammalian cell (e.g., a metallothionine promoter) or a promoter derived from a mammalian virus (e.g., adeno) Late viral promoter, vaccinia virus 7.5K promoter, SV40 promoter, cytomegalovirus promoter and tk promoter of HSV) can be used and generally have a polyadenylation sequence as a transcription termination sequence.

본 발명의 벡터는 그로부터 발현되는 비생물성 스트레스-유도성 OsAsr1 단백질의 정제를 용이하게 하기 위하여, 다른 서열과 융합될 수도 있다. 융합되는 서열은 예컨대, 글루타티온 S-트랜스퍼라제 (Pharmacia, USA), 말토스 결합 단백질 (NEB, USA), FLAG (IBI, USA) 및 6x His (hexahistidine; Quiagen, USA) 등이 있다. 상기 정제를 위한 추가적인 서열 때문에, 숙주에서 발현된 단백질은 친화성 크로마토그래피를 통하여 신속하고, 용이하게 정제된다.Vectors of the invention may also be fused with other sequences to facilitate purification of the non-biological stress-inducing OsAsr1 protein expressed therefrom. Sequences to be fused include, for example, glutathione S-transferase (Pharmacia, USA), maltose binding protein (NEB, USA), FLAG (IBI, USA) and 6x His (hexahistidine; Quiagen, USA). Because of the additional sequence for this purification, the protein expressed in the host is purified quickly and easily through affinity chromatography.

본 발명의 벡터는 선택표지로서, 당업계에서 통상적으로 이용되는 항생제 내 성 유전자를 포함할 수 있으며, 예를 들어 암피실린, 겐타마이신, 카베니실린, 클로람페니콜, 스트렙토마이신, 카나마이신, 게네티신, 네오마이신 및 테트라사이클린에 대한 내성 유전자가 있다.The vector of the present invention may include an antibiotic resistance gene commonly used in the art as an optional marker, for example, ampicillin, gentamicin, carbenicillin, chloramphenicol, streptomycin, kanamycin, geneticin, neo There are genes resistant to mycin and tetracycline.

본 발명의 유전자는 식물에서 분리되었고, 저온, 염 또는 건조 스트레스에 대한 식물체의 내성을 증진하는 작용을 할 수 있으므로, 식물에 대하여 가장 바람직한 유용성을 갖는다. 따라서, 본 발명의 벡터는 (ⅰ) 비생물성 스트레스-유도성 OsAsr1 단백질을 코딩하는 뉴클레오타이드 서열; (ⅱ) 상기 (ⅰ)의 뉴클레오타이드 서열에 작동적으로 연결되며 식물세포에서 작용하여 RNA 분자를 형성시키는 프로모터; 및 (ⅲ) 식물세포에서 작용하여 상기 RNA 분자의 3'-말단의 폴리아데닐화를 야기시키는 3'-비-해독화 부위를 포함하는 식물발현용 벡터를 제공한다.The genes of the present invention have been isolated from plants and have the most desirable utility for plants as they can act to enhance the plant's resistance to cold, salt or dry stress. Thus, the vectors of the present invention may comprise (i) nucleotide sequences encoding abiotic stress-induced OsAsr1 proteins; (Ii) a promoter operably linked to the nucleotide sequence of (iii) and acting on plant cells to form RNA molecules; And (iii) a 3'-non-detoxification site that acts on plant cells to cause polyadenylation of the 3'-end of the RNA molecule.

본 발명의 바람직한 구현예에 따르면, 본 발명에 적합한 프로모터는, 식물체의 유전자 도입을 위해 당업계에서 통상적으로 이용되는 어떠한 것도 이용될 수 있으며, 예를 들어, 옥수수의 유비퀴틴 프로모터, 콜리플라우어 모자이크 바이러스 (CaMV) 35S 프로모터, 노팔린 씬타아제 (nos) 프로모터, 피그워트 모자이크 바이러스 35S 프로모터, 수가크레인 바실리폼 바이러스 프로모터, 콤멜리나 엘로우 모틀 바이러러스 프로모터, 리불로오스-1,5-비스-포스페이트 카르복실라아제 스몰 서브유티트 (ssRUBISCO)의 광유도성 프로모터, 벼 사이토졸 트리오스포스페이트 이소머라아제 (TPI) 프로모터, 아라비돕시스의 아데닌 포스포리보실트랜스퍼라아제 (APRT) 프로모터 및 옥토파인 신타아제 프로모터를 포함한다.According to a preferred embodiment of the present invention, a promoter suitable for the present invention may be used any conventionally used in the art for the gene introduction of plants, for example, the ubiquitin promoter of corn, cauliflower mosaic virus (CaMV) 35S promoter, nopalin synthase (nos) promoter, pigwart mosaic virus 35S promoter, sugacran basilisform virus promoter, commelina yellow mottle virus promoter, ribulose-1,5-bis-phosphate carbide Photoinducible promoter of the carboxylase small subunit (ssRUBISCO), rice cytosolic triosphosphate isomerase (TPI) promoter, adenine phosphoribosyltransferase (APRT) promoter of Arabidopsis and octopine synthase promoter do.

본 발명의 바람직한 구현예에 따르면, 본 발명에 적합한 폴리아데닐화를 야 기시키는 3'-비-해독화 부위는 아그로박테리움 튜머페이션스의 노팔린 신타아제 유전자로부터 유래된 것 (nos 3' end) (Bevan et al., Nucleic Acids Research, 11(2):369-385(1983)), 아그로박테리움 튜머페이션스의 옥토파인 신타아제 유전자로부터 유래된 것, 토마토 또는 감자의 프로테아제 억제자 I 또는 Ⅱ 유전자의 3' 말단 부분 및 CaMV 35S 터미네이터를 포함한다.According to a preferred embodiment of the present invention, the 3'-non-detoxification site which causes polyadenylation suitable for the present invention is derived from the nopaline synthase gene of Agrobacterium turmeration (nos 3 'end). (Bevan et al., Nucleic Acids Research , 11 (2): 369-385 (1983)), derived from the Octopine synthase gene of Agrobacterium tumersions, protease inhibitor I or II gene of tomato or potato 3 'terminal portion of and CaMV 35S terminator.

선택적으로, 상기 벡터는 리포터 분자 (예: 루시퍼라아제 및 β-글루쿠로니다아제)를 코딩하는 유전자를 추가적으로 운반한다. 또한, 본 발명의 벡터는 선택 표지로서 항생제 (예: 네오마이신, 카베니실린, 카나마이신, 스펙티노마이신, 하이그로마이신 등) 내성 유전자 (예: 네오마이신 포스포트랜스퍼라아제 (nptⅡ), 하이그로마이신 포스포트랜스퍼라아제 (hpt), 등)를 포함한다.Optionally, the vector additionally carries a gene encoding a reporter molecule (eg, luciferase and β-glucuronidase). In addition, the vector of the present invention may be selected as an indicator for antibiotics (e.g. neomycin, carbenicillin, kanamycin, spectinomycin, hygromycin, and the like) and resistance genes (e.g. neomycin phosphotransferase ( nptII ), hygro Mycin phosphotransferase ( hpt ), and the like).

본 발명의 다른 양태에 따르면, 본 발명은 상술한 본 발명의 벡터에 의해 형질전환된 형질전환체를 제공한다.According to another aspect of the present invention, the present invention provides a transformant transformed with the vector of the present invention described above.

본 발명의 벡터를 안정되면서 연속적으로 클로닝 및 발현시킬 수 있는 숙주 세포는 당업계에 공지되어 어떠한 숙주 세포도 이용할 수 있으며, 예컨대, E. coli JM109, E. coli BL21, E. coli RR1, E. coli LE392, E. coli B, E. coli X 1776, E. coli W3110, 바실러스 서브틸리스, 바실러스 츄린겐시스와 같은 바실러스 속 균주, 그리고 살모넬라 티피무리움, 세라티아 마르세슨스 및 다양한 슈도모나스 종과 같은 장내균과 균주 등이 있다.Host cells capable of stable and continuous cloning and expression of the vectors of the present invention are known in the art and can be used with any host cell, for example, E. coli JM109, E. coli BL21, E. coli RR1, E. strains of the genus Bacillus, such as coli LE392, E. coli B, E. coli X 1776, E. coli W3110, Bacillus subtilis, Bacillus thuringiensis, and Salmonella typhimurium, Serratia marcensons, and various Pseudomonas species. Enterobacteria and strains.

또한, 본 발명의 벡터를 진핵 세포에 형질전환시키는 경우에는 숙주 세포로 서, 이스트 (Saccharomyce cerevisiae), 곤충 세포, 사람 세포 (예컨대, CHO 세포주 (Chinese hamster ovary), W138, BHK, COS-7, 293, HepG2, 3T3, RIN 및 MDCK 세포주) 및 식물세포 등이 이용될 수 있다. 한편, 본 발명의 Oslti 32 유전자는 식물에서 유용성이 크기 때문에, 상기 형질전환체는 세포뿐만 아니라, 식물 세포 또는 조직으로부터 유래된 캘러스를 포함한다.In addition, when transforming the vector of the present invention into eukaryotic cells, the host cells may be yeast ( Saccharomyce cerevisiae ), insect cells, human cells (eg, CHO cell line (Chinese hamster ovary), W138, BHK, COS-7, 293, HepG2, 3T3, RIN and MDCK cell lines) and plant cells and the like can be used. On the other hand, since the Oslti 32 gene of the present invention is highly useful in plants, the transformants include not only cells but also callus derived from plant cells or tissues.

본 발명의 벡터를 숙주 세포 내로 운반하는 방법은, 숙주 세포가 원핵 세포인 경우, CaCl2 방법 (Cohen, S.N. et al., Proc. Natl. Acac. Sci. USA, 9:2110-2114(1973)), 하나한 방법 (Cohen, S.N. et al., Proc. Natl. Acac. Sci. USA, 9:2110-2114(1973); 및 Hanahan, D., J. Mol. Biol., 166:557-580(1983)) 및 전기 천공 방법 (Dower, W.J. et al., Nucleic. Acids Res., 16:6127-6145(1988)) 등에 의해 실시될 수 있다. 또한, 숙주 세포가 진핵 세포인 경우에는, 미세 주입법 (Capecchi, M.R., Cell, 22:479(1980)), 칼슘 포스페이트 침전법 (Graham, F.L. et al., Virology, 52:456(1973)), 전기 천공법 (Neumann, E. et al., EMBO J., 1:841(1982)), 리포좀-매개 형질감염법 (Wong, T.K. et al., Gene, 10:87(1980)), DEAE-덱스트란 처리법 (Gopal, Mol. Cell Biol., 5:1188-1190(1985)), 및 유전자 밤바드먼트 (Yang et al., Proc. Natl. Acad. Sci., 87:9568-9572(1990)) 등에 의해 벡터를 숙주 세포 내로 주입할 수 있다.The method of carrying a vector of the present invention into a host cell is performed by the CaCl 2 method (Cohen, SN et al., Proc. Natl. Acac. Sci. USA , 9: 2110-2114 (1973), when the host cell is a prokaryotic cell). ), One method (Cohen, SN et al., Proc. Natl. Acac. Sci. USA , 9: 2110-2114 (1973); and Hanahan, D., J. Mol. Biol. , 166: 557-580 (1983)) and electroporation methods (Dower, WJ et al., Nucleic. Acids Res. , 16: 6127-6145 (1988)) and the like. In addition, when the host cell is a eukaryotic cell, fine injection method (Capecchi, MR, Cell , 22: 479 (1980)), calcium phosphate precipitation method (Graham, FL et al., Virology , 52: 456 (1973)), Electroporation (Neumann, E. et al., EMBO J. , 1: 841 (1982)), liposome-mediated transfection (Wong, TK et al., Gene , 10:87 (1980)), DEAE- Dextran treatment (Gopal, Mol. Cell Biol. , 5: 1188-1190 (1985)), and gene balm (Yang et al., Proc. Natl. Acad. Sci. , 87: 9568-9572 (1990)) Can be injected into the host cell.

숙주 세포 내로 주입된 벡터는 숙주 세포 내에서 발현되며, 이러한 경우에는 다량의 비생물성 스트레스-유도성 OsAsr1 단백질을 얻게 된다.The vector injected into the host cell is expressed in the host cell, in which case a large amount of abiotic stress-induced OsAsr1 protein is obtained.

본 발명의 다른 양태에 따르면, 본 발명은 (a) 식물 세포 또는 식물 조직을 상기 본 발명의 벡터로 형질전환하는 단계; (b) 형질전환된 식물세포 또는 식물조직을 선별하는 단계; 및 (c) 상기 형질전환된 식물세포 또는 식물조직으로부터 식물체를 재분화시켜 형질전환 식물체를 수득하는 단계를 포함하는 저온, 염 또는 건조 스트레스 내성이 증진된 형질전환 식물체의 제조방법을 제공한다.According to another aspect of the present invention, the present invention comprises the steps of (a) transforming a plant cell or plant tissue with the vector of the present invention; (b) selecting the transformed plant cells or plant tissues; And (c) regenerating the plant from the transformed plant cells or plant tissues to obtain a transformed plant, thereby providing a method for producing a transformed plant having enhanced low temperature, salt or dry stress resistance.

본 발명의 또 다른 양태에 따르면, 본 발명은 저온, 염 또는 건조 스트레스 내성을 갖는 형질전환 식물체를 제공한다.According to another aspect of the invention, the invention provides a transgenic plant having low temperature, salt or dry stress resistance.

본 발명에서 이용되는 익스플랜트로는 식물 세포 또는 식물 조직이며, 식물 조직을 이용하는 경우에는 캘러스를 이용하는 것이 바람직하다.The plant used in the present invention is a plant cell or plant tissue, and in the case of using plant tissue, it is preferable to use callus.

본 발명의 방법에 있어서, 식물세포의 형질전환은 당업계에 공지된 통상의 방법에 따라 실시될 수 있으며, 이는 전기천공 (Neumann, E. et al., EMBO J., 1:841(1982)), 입자 밤바드먼트 (Yang et al., Proc. Natl. Acad. Sci., 87:9568-9572(1990)) 및 아그로박테리움-중재 형질전환 (미합중국 특허 제 5,004,863, 5,349,124 및 5,416,011 호)을 포함한다. 이 중에서, 아그로박테리움-중재 형질전환이 가장 바람직하다. In the method of the present invention, the transformation of plant cells can be carried out according to a conventional method known in the art, which is electroporation (Neumann, E. et al., EMBO J. , 1: 841 (1982) ), Particle bombardment (Yang et al., Proc. Natl. Acad. Sci. , 87: 9568-9572 (1990)) and Agrobacterium-mediated transformation (US Pat. Nos. 5,004,863, 5,349,124 and 5,416,011) Include. Of these, Agrobacterium-mediated transformation is most preferred.

형질전환된 식물세포의 선별은 형질전환 배양물을 선택제 (예: 대사 억제제, 항생제 및 제초제)에 노출시켜 실시될 수 있다. 형질전환되고 선택제 내성을 부여하는 표지 유전자를 안정되게 포함하고 있는 식물 세포는 상기한 배양물에서 성장하고 분할한다. 예시적인 표지는, 하이그로마이신 포스포트랜스퍼라아제 유전 자, 글리코포스페이트 내성 유전자 및 네오마이신 포스포트랜스퍼라아제 (nptII) 시스템을 포함하나, 이에 한정되는 것은 아니다.Selection of transformed plant cells can be carried out by exposing the transformed culture to a selection agent (eg metabolic inhibitors, antibiotics and herbicides). Plant cells that are transformed and stably contain marker genes that confer selective resistance are grown and divided in the cultures described above. Exemplary labels include, but are not limited to, hygromycin phosphotransferase genes, glycophosphate resistance genes, and neomycin phosphotransferase (nptII) systems.

식물 원형질 또는 다양한 익스플랜드로부터 식물체의 발달 또는 재분화시키는 방법은 당업계에 잘 알려져 있다. 아그로박테리움에 의해 도입된 외래 유전자를 포함하는 식물체의 발달 또는 재분화는 당업계에 공지된 방법에 따라 달성될 수 있다 (미합중국 특허 제 5,004,863, 5,349,124 및 5,416,011 호). Methods for the development or regeneration of plants from plant protoplasts or various exploits are well known in the art. Development or regeneration of plants comprising foreign genes introduced by Agrobacterium can be accomplished according to methods known in the art (US Pat. Nos. 5,004,863, 5,349,124 and 5,416,011).

본 발명의 방법은 다양한 식물체에 적용되지만, 바람직하게는 벼, 보리, 밀 및 옥수수와 같은 곡류의 식물체 적용되며, 보다 바람직하게는 벼에 적용되며, 가장 바람직하게는 자포니카 재배종에 적용된다.The method of the present invention is applied to a variety of plants, but is preferably applied to plants of cereals such as rice, barley, wheat and corn, more preferably to rice, and most preferably to japonica cultivars.

본 발명에 있어서, 바람직한 형질전환 방법은 아그로박테리움 시스템을 이용하여 실시되며, 보다 바람직하게는 아그로박테리움 튜머페이션스 (Agrobacterium tumefaciens)-바이너리 벡터 시스템을 이용하여 실시된다.In the present invention, the preferred transformation method is carried out using the Agrobacterium system, more preferably using the Agrobacterium tumefaciens -binary vector system.

아그로박테리움 시스템을 이용하는 방법에 있어서, 구체적인 일 실시예는 다음의 단계를 포함한다: (a') 식물 세포의 지놈 DNA에 삽입될 수 있고 다음의 서열을 갖는 벡터가 내재되어 있는 아그로박테리움 튜머페이션스 (Agrobacterium tumefaciens)로 식물체의 익스플랜트를 감염시키는 단계: (ⅰ) 비생물성 스트레스-유도성 OsAsr1 단백질을 코딩하는 뉴클레오타이드 서열; (ⅱ) 상기 (ⅰ)의 뉴클레오타이드 서열에 작동적으로 연결되며 식물세포에서 작용하여 RNA 분자를 형성시키는 프로모터; (ⅲ) 식물세포에서 작용하여 상기 RNA 분자의 3'-말단의 폴리아데닐화를 야기시키는 3'-비-해독화 부위; (b') 상기 감염된 익스플랜트를 재분화 배지 에서 재분화하여 형질전환 식물체를 얻는 단계.In a method using the Agrobacterium system, one specific embodiment includes the following steps: (a ') an Agrobacterium tumer embedded in a genome DNA of a plant cell and having a vector having the sequence Infecting the plant's plant with Agrobacterium tumefaciens : (i) a nucleotide sequence encoding the abiotic stress-induced OsAsr1 protein; (Ii) a promoter operably linked to the nucleotide sequence of (iii) and acting on plant cells to form RNA molecules; (Iii) a 3'-non-detoxification site that acts on plant cells to cause 3'-end polyadenylation of the RNA molecule; (b ') regenerating the infected plant in regeneration medium to obtain a transgenic plant.

식물 세포의 형질전환은 Ti 플라스미드를 포함하는 아그로박테리움 튜머페이션스를 가지고 실시된다 (Depicker, A. et al., Plant cell transformation by Agrobacterium plasmids. In Genetic Engineering of Plants, Plenum Press, New York (1983)).Transformation of plant cells is carried out with Agrobacterium trimers comprising Ti plasmids (Depicker, A. et al., Plant cell transformation by Agrobacterium plasmids.In Genetic Engineering of Plants, Plenum Press, New York (1983) ).

보다 바람직하게는, pBin19, pRD400, pRD320, pGA1611 및 pGA1991과 같은 바이너리 벡터 시스템이 이용된다 (An, G. et al., Binary vectors" In Plant Gene Res. Manual, Martinus Nijhoff Publisher, New York(1986); An et al., 1988; 및 Lee et al., 1999). 본 발명에 적합한 바이너리 벡터는 (i) 식물에서 작동하는 프로모터; (ii) 상기 프로모터에 작동적으로 연결된 구조 유전자; 및 (iii) 폴리아데닐화 시그널 서열을 포함한다. 선택적으로, 상기 벡터는 리포터 분자 (예: 루시퍼라아제 및 글루쿠로니다아제)를 코딩하는 유전자를 추가적으로 운반한다. 바이너리 벡터에 이용되는 프로모터의 예는 CaMV 35S 프로모터, 1 프로모터, 2 프로모터 및 노팔린 씬타아제 (nos) 프로모터를 포함하나, 이에 한정되는 것은 아니다.More preferably, binary vector systems such as pBin19, pRD400, pRD320, pGA1611 and pGA1991 are used (An, G. et al., Binary vectors "In Plant Gene Res. Manual, Martinus Nijhoff Publisher, New York (1986) An et al., 1988 and Lee et al., 1999. Binary vectors suitable for the present invention include (i) a promoter that operates in a plant; (ii) a structural gene operably linked to the promoter; and (iii) Optionally, the vector additionally carries a gene encoding a reporter molecule (eg, luciferase and glucuronidase) An example of a promoter used in a binary vector is CaMV 35S. Promoters, 1 promoter, 2 promoters and nopaline synthase (nos) promoters.

아그로박테이룸 튜머페이션스에 의한 익스플랜트의 감염은 당업계에 공지된 방법을 포함한다. 가장 바람직하게는, 상기 감염 과정은 아그로박테이룸 튜머페이션스의 배양물에 익스플랜트를 함침시켜 공동배양하는 과정을 포함한다. 이에 의해 아그로박테이룸 튜머페이션스는 식물내로 감염된다.Infection of implants with Agrobacterium tuberculosis includes methods known in the art. Most preferably, the infection process comprises coculture with an implant impregnated with a culture of Agrobacterium tuberation. As a result, Agrobacterium trimmers are infected into plants.

아그로박테이룸 튜머페이션스에 의해 형질전환된 익스플랜트는 재분화 배지에서 재분화되며, 이는 최종적으로 형질전환 식물체를 형성한다.Plants transformed by Agrobacterium tumerization re-differentiate in regeneration medium, which finally forms transgenic plants.

본 발명에 따라 형질전환된 식물은 당업계에 공지된 방법에 의해 형질전환 여부가 확인된다. 예를 들어, 형질전환된 식물의 조직으로부터 얻은 DNA 시료를 이용하여, PCR을 실시하면 형질전환 식물의 지놈에 삽입된 외래 유전자가 규명될 수 있다. 택일적으로, 노던 또는 서던 블롯팅을 실시하여 형질전환 여부를 확인할 수 있다 (Maniatis et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.(1989).)Plants transformed according to the present invention is confirmed whether or not transformed by methods known in the art. For example, PCR can be performed using DNA samples obtained from tissues of transformed plants to identify foreign genes inserted into the genome of the transformed plants. Alternatively, Northern or Southern blotting can be performed to confirm transformation (Maniatis et al., Molecular Cloning, A Laboratory Manual , Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989)).

본 발명의 OsAsr1 유전자 및 단백질은 식물체에 저온, 염 또는 건조 스트레스에 대한 내성을 증진하는 데 매우 유효하다. OsAsr1 genes and proteins of the present invention are very effective in enhancing resistance to low temperature, salt or dry stress in plants.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. .

실시예 Example

실험재료 및 실험방법Experimental Materials and Methods

식물체 시료 및 박테리아 균주Plant Samples and Bacterial Strains

자포니카 벼 (Oryza sativa)의 재배종인 동진 (Dongjin)을 종자-코트 cDNA 라이브러리를 구축하고 형질전환 식물체를 제조하기 위하여 사용하였다. 저온 내 성 시험에 사용된 다른 재배종 또는 야생종은 표 1에 기재되어 있다. 종자를 표면-멸균처리하고, 물 또는 MS 아가 배지 (Murashige and Skoog, 1962)에서 발아시켰다. 또는, Yoshida 용액에서 발아시켰으며 (Yoshida et al., 1976), 이들을 29℃ 낯/21℃ 밤 온도, 16-시간-명/8-시간-암 주기 및 83% 상대습도 조건을 포함하는 수경재배법으로 조절된 조건하에서 배양하였다. 유식물체를 토양으로 옮기고 30℃ 연속광 (세기 60 to 70 μmol m-2 sec-1) 하에서 성장 챔버에 두었다. 저온 처리를 위하여, 암조건에서 4℃ 또는 12℃에 노출된 14일령 유식물체를 수확하였다. ABA 처리 연구를 위하여, 10 μM ABA-함유 MS 액체배지로 옮겨진 5일령 유식물체를 수확하였다. 염 또는 ABA 처리를 위하여, 유식물체를 250 mM NaCl 또는 100 μM ABA 을 포함하는 요시다 용액에 옮긴 다음, 주기적으로 수확하였다. 건조 처리를 위하여, 유식물체를 공기 중에서 건조시킨 후 주기적으로 수확하였다. 생식 단계에서의 저온 스트레스 영향을 연구하기 위하여, 헤딩전 4일째 재배지에서 성장하는 벼 식물체를 온실 (30℃, 14 hr 광/10 hr 암)로 옮기고 2일동안 적응시켰다. 그런 다음, 식물체를 14 hr 광주기 (ca. 300 μmol m-2 sec-1)로 12℃에서 4일 동안 처리하였다. 모든 조직 시료를 액체질소로 즉시 동결시키고 -70℃에서 보관하였다. E. coli 균주, XL-1 Blue MRF' {Δ(mcrA)183Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac [F' proAB, lacIqZΔM15 Tn10 (Tetr)]} (Stratagene, USA)를 클로닝을 위한 숙주로 이용하였다.Dongjin, a cultivar of Oryza sativa , was used to construct a seed-coat cDNA library and to prepare transgenic plants. Other cultivars or wild species used in the cold resistance test are listed in Table 1. Seeds were surface-sterilized and germinated in water or MS agar medium (Murashige and Skoog, 1962). Alternatively, they were germinated in Yoshida solution (Yoshida et al., 1976), and these were grown in hydroponic cultures including 29 ° C./21° C. night temperature, 16-hour-light / 8-hour-cancer cycle, and 83% relative humidity conditions. Incubated under controlled conditions. The seedlings were transferred to the soil and placed in a growth chamber under 30 ° C. continuous light (intensity 60 to 70 μmol m −2 sec −1 ). For low temperature treatment, 14-day-old seedlings were harvested exposed to 4 ° C. or 12 ° C. under dark conditions. For ABA treatment studies, 5 day old seedlings were harvested transferred to 10 μM ABA-containing MS liquid medium. For salt or ABA treatment, the seedlings were transferred to a Yoshida solution containing 250 mM NaCl or 100 μM ABA and then harvested periodically. For the drying treatment, the seedlings were dried in air and then harvested periodically. To study the effects of cold stress on the reproductive stage, rice plants growing on the 4th day before heading were transferred to a greenhouse (30 ° C., 14 hr light / 10 hr cancer) and acclimated for 2 days. The plants were then treated for 4 days at 12 ° C. with a 14 hr photoperiod (ca. 300 μmol m −2 sec −1 ). All tissue samples were immediately frozen with liquid nitrogen and stored at -70 ° C. E. coli strain, XL-1 Blue MRF '{Δ (mcrA) 183Δ (mcrCB-hsdSMR-mrr) 173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac [F' proAB, lacIqZΔM15 Tn10 (Tetr)]} (Stratagene, USA) It was used as a host for cloning.

cDNA 라이브러리 구축 및 EST 분석cDNA library construction and EST analysis

4일 또는 8일령 종자의 코트를 현미경 항에서 손으로 분해하였다. 이어, 종자 코트로부터 얻은 poly-A RNA를 이용하여 cDNA 라이브러리를 구축하였다. 라이브러리로부터 cDNA 클론을 무작위로 선택하고, 이들의 5'-말단을 시퀀싱하였다. DNA 준비, 시퀀싱 및 컴퓨터 분석은 Hong et al. (1998)이 개시한 방법에 따라 실시하였다. 우선, 주형 DNAs를 알칼린 분해방법에 의해 준비하고, 삽입서열을 ABI PRISMTM BigDyeTM 터미네이터 사이클 시퀀싱 키트 (Amersham)를 이용하여 시퀀싱하였다. DNAsis, Prosis (Hitachi), ClustalX, ClustalW 및 GeneDoc (Thompson et al., 1994; Nicholas and Nicholas, 1997)과 같은 컴퓨터 소프트웨어를 이용하여 서열분석을 하였다. Genbank, EMBL 및 Swiss-Prot 데이터베이스는 BLASTX 알고리즘을 이용한 아미노산 서열 상동성 조사시 검색되었다 (Altschul et al., 1997).Coats of 4 or 8 day old seeds were digested by hand in the microscope section. The cDNA library was then constructed using poly-A RNA from seed coat. CDNA clones were randomly selected from the library and their 5′-ends were sequenced. DNA preparation, sequencing and computer analysis are described in Hong et al. (1998), according to the method disclosed. First, template DNAs were prepared by alkaline digestion, and insertion sequences were sequenced using the ABI PRISM BigDye Terminator Cycle Sequencing Kit (Amersham). Sequencing was performed using computer software such as DNAsis, Prosis (Hitachi), ClustalX, ClustalW and GeneDoc (Thompson et al., 1994; Nicholas and Nicholas, 1997). Genbank, EMBL and Swiss-Prot databases were retrieved upon amino acid sequence homology investigation using the BLASTX algorithm (Altschul et al., 1997).

DNA 및 RNA 젤-블롯 분석DNA and RNA Gel-Blot Analysis

3가지 자포니카 재배종, 남양 (Namyang) 21, 동진 및 오대 (Odae)에 대하여 DNA 젤-블롯 분석을 실시하였다. 남양 21은 저온-민감성 (저온 내성도, CTI = 7), 오대는 저온-내성 (CTI = 3), 그리고 동진은 중간 (CTI = 5)이다 (Lim, 1998). 0 내지 9 사이의 CTI 값에서, 0은 가장 내성이 큰 것이고, 9는 가장 민감한 것이다. 세틸트리메틸암모늄 브라마이드 방법 (Roger and Bendich, 1988)에 따라 지 놈 DNA를 유식물체로부터 분리하였다. 제한효소로 37℃에서 6시간 동안 절단한 DNA 10 ㎍을 0.8% 아가로스 젤에서 분리하고, 진공 전이 시스템 (Hefer)을 이용하여 Hybond-N 막 (Amersham)으로 옮겼다. RNA 젤-블롯 분석을 위하여, 총 RNA 10 ㎍을 1.3% 포름알데히드 아가로스 젤에서 분리하고 나일론막으로 블롯팅 하였다. DNA 및 RNA 블롯 분석을 방사능표지 OsAsr1 프로브를 이용하여 실시하였다. 상기 프로브를 제조하기 위하여, 무작위 프라이밍 방법에 따라, OsAsr1 cDNA 단편을 〔α-32P〕dCTP (3000 ci mmol-1)로 방사능 표지 하였다. G-50 Sephadex 컬럼 크로마토그래피를 통하여, 삽입되지 않은 뉴클레오타이드를 제거하였다. 혼성화 이후, 막을 2 x SSC, 0.1% SDS에서 실온에서 15분; 1 x SSC, 0.1% SDS에서 실온에서 15분; 및 0.1 x SSC, 0.1% SDS에서 실온에서 15분의 조건으로 세척하였다. 혼성화 시그널은 상 분석기 (BAS-1500, Fuji)로 검출하고, HyperfilmTM MP 필름 (Amersham)에 노출시켰다.DNA gel-blot analysis was performed on three Japonica cultivars, Namyang 21, Dongjin and Odae. Namyang 21 is cold-sensitive (low temperature tolerance, CTI = 7), the fifth is cold-resistant (CTI = 3), and the east is medium (CTI = 5) (Lim, 1998). For CTI values between 0 and 9, 0 is the most resistant and 9 is the most sensitive. The genome DNA was isolated from the seedlings according to the cetyltrimethylammonium bramide method (Roger and Bendich, 1988). 10 μg of DNA digested for 6 hours at 37 ° C. with restriction enzymes was isolated on a 0.8% agarose gel and transferred to a Hybond-N membrane (Amersham) using a vacuum transfer system (Hefer). For RNA gel-blot analysis, 10 μg of total RNA was isolated on 1.3% formaldehyde agarose gel and blotted with nylon membrane. DNA and RNA blot analyzes were performed using radiolabeled OsAsr1 probes. To prepare the probes, according to a random priming method, OsAsr1 cDNA fragments were radiolabeled with [α- 32 P] dCTP (3000 ci mmol- 1 ). Uninserted nucleotides were removed via G-50 Sephadex column chromatography. After hybridization, the membranes were placed for 15 minutes at room temperature in 2 × SSC, 0.1% SDS; 15 min at RT in 1 x SSC, 0.1% SDS; And washed at conditions of 15 minutes at room temperature in 0.1 x SSC, 0.1% SDS. Hybridization signals were detected with a phase analyzer (BAS-1500, Fuji) and exposed to Hyperfilm MP film (Amersham).

RNA RNA 인 시투In Situ 혼성화 Hybridization

벼 꽃 및 잎을 50 mM PIPES 완충액 (pH 7.2) 내의 2% (w/v) 파라포름알데히드와 2.5% (v/v) 글루타르알데히드로 하룻밤 동안 4℃에서 고정화하였다. 에탄올의 등급 농도로 고정된 조직을 탈수하고, 파라플라스트 미디움 (Oxford labware, USA)에서 임베딩하였다. 임베딩된 조직을 회전 마이크로톰 (Leica, Germany)으로 7 ㎛ 절편으로 절단하고, 절편을 실란화 유리 슬라이드 (Matsunami, Japan)에 부착 시켰다. 에탄올의 등급 농도를 이용하여 파라핀을 제거한 다음, 시료를 1시간 동안 건조시켰다. T3 or T7 RNA 중합효소 (Roche, USA)를 이용하여, OsAsr1 cDNA가 있는 선형화된 pBluscript으로부터 디곡시게닌-표지 센스 또는 안티센스 RNA 프로브를 제조하였다. 상기 절편을 혼성화 용액내에서 상기 제조된 프로브로 48℃에서 16 hr 동안 처리하여 혼성화 하고, 2x SSC, 1x SSC 및 0.1x SSC를 포함하는 용액에서 15분 동안 50℃에서 세척하였다. 혼성화된 프로브는 항-DIG 접합 알칼린 포스파타아제 (Boheringer Mannheim, Germany)를 이용하여 발색으로 검출하였다. 사진은 bright-field 현미경 (Nikon Eclipse 600, Japan)을 이용하여 얻었다.Rice flowers and leaves were immobilized with 2% (w / v) paraformaldehyde and 2.5% (v / v) glutaraldehyde overnight at 4 ° C. in 50 mM PIPES buffer, pH 7.2. Tissues fixed at a graded concentration of ethanol were dehydrated and embedded in paraplast medium (Oxford labware, USA). Embedded tissue was cut into 7 μm sections with a rotating microtome (Leica, Germany) and the sections were attached to silanized glass slides (Matsunami, Japan). Paraffin was removed using a graded concentration of ethanol and then the sample was dried for 1 hour. T3 or T7 RNA polymerase using the (Roche, USA), digoxigenin from the linearized pBluscript with OsAsr1 cDNA - to prepare a labeled sense or antisense RNA probe. The sections were hybridized by treatment at 48 ° C. for 16 hr with the prepared probes in the hybridization solution and washed at 50 ° C. for 15 minutes in a solution containing 2 × SSC, 1 × SSC and 0.1 × SSC. Hybridized probes were detected by color development using anti-DIG conjugated alkaline phosphatase (Boheringer Mannheim, Germany). The photograph was obtained using a bright-field microscope (Nikon Eclipse 600, Japan).

형질전환 식물체의 제조 및 분석Preparation and Analysis of Transgenic Plants

전장 OsAsr1 cDNA를 바이너리 벡터 pGA1611 (포항공대 안진흥 교수) (An et al. 1988; Kim et al., 2003)의 옥수수 유비퀴틴 프로모터 (Christensen, Sharrock & Quail 1992)의 다운스트림쪽에 센스 및 안티센스 방향으로 삽입시켰다. 벼 형질전환은 Jeon et al.,1999; Lee et al.,1999에 개시된 방법에 따라, 아그로박테리움-중재 공동배양 방법을 통하여 실시하였다. 외영과 내영을 제거한 벼종자를 2 mg L-1 2,4-D가 포함된 2N6배지에 치상해 한 달간 캘러스를 유도하고, 30 mg L-1 하이그로마이신 B와 3 mg L-1 테트라사이클린이 첨가된 AB배지에서 3일간 성장시킨 아그로박테리움과 3일간 20℃에서 암상태에서 2N6-ASB배지에서 3일간 공동배양 후에, 40 mg L-1 하이그로마이신 B와 250 mg L-1 세포탁심이 첨가된 2N6-CH40 배지에 3주간 둔 후 잘 자라는 캘러스를 골라 2-3주간 0.1 mgL-1 NAA, 2 mg L-1 키네틴, 2% 소비톨, 1.6% 피트아가, 50 mg L-1 하이드로마이신 B와 250 mg L-1 세포탁심이 혼합된 MS 배지에서 연속광 상태로 재분화 시키며, 재분화된 개체는 흙에 옮겨 온실에서 성장시켰다. 모든 형질전환 벼 식물체들은 40-mg L-1 하이그로마이신 B-함유 배지에서 제조되었고, 재생 후 온실로 옮겼다. 형질전환 식물체를 규명하기 위한 PCR 분석을 전방향 프라이머 (5-CAC CCT GTT GTT TGG TG-3) 및 역방향 프라이머 (5-GCG GGA CTC TAA TCA TAA AAA CC-3)를 이용하여 실시하였다. PCR 조건은 94℃ 1분, 54℃ 1분 및 72℃ 1분의 사이클로 30 사이클로 하였다.The full-length OsAsr1 cDNA was inserted in the sense and antisense direction downstream of the corn ubiquitin promoter (Christensen, Sharrock & Quail 1992) of binary vector pGA1611 (Professor Jin-heung Ahn) (An et al . 1988; Kim et al., 2003). . Rice transformation is described in Jeon et al., 1999; According to the method disclosed in Lee et al., 1999, it was carried out via the Agrobacterium-mediated coculture method. Rice seeds removed from external and internal bodies were injured in 2N6 medium containing 2 mg L -1 2,4-D to induce callus for one month, and 30 mg L -1 hygromycin B and 3 mg L -1 tetracycline Agrobacterium grown for 3 days in this added AB medium and 3 days coculture in 2N6-ASB medium in the dark at 20 ° C. for 3 days, followed by 40 mg L- 1 hygromycin B and 250 mg L- 1 cell suspension After 3 weeks in shim added 2N6-CH40 medium, select well-grown callus for 2-3 weeks for 0.1 mgL -1 NAA, 2 mg L -1 kinetin, 2% sorbitol, 1.6% petagar, 50 mg L -1 hydro In the MS medium mixed with the mycin B and 250 mg L -1 cell Taxim, it was re-differentiated in the continuous light state, the re-differentiated individuals were transferred to the soil and grown in the greenhouse. All transgenic rice plants were 40-mg L -1 hygromycin Prepared in B-containing medium and transferred to the greenhouse after regeneration. PCR analysis to identify transgenic plants was carried out using forward primers (5-CAC CCT GTT GTT TGG TG-3) and reverse primers (5-GCG GGA CTC TAA TCA TAA AAA CC-3). PCR conditions were 30 cycles by the cycle of 94 degreeC 1 minute, 54 degreeC 1 minute, and 72 degreeC 1 minute.

클로로필 형광의 측정Measurement of Chlorophyll Fluorescence

성숙 식물체로부터 얻은 연장된 잎의 약 5-cm-길이의 단편을 백형광 (260 mol m-2 sec-1) 하에서 4℃에서 MS 액체 배지에 0, 6, 12 또는 24시간 동안 부유시켰다. 30분 동안의 암-적응 후, 클로로필 시그널을 Plant Efficiency Analyzer (Hansatech, UK)를 이용하여 측정하였다. 모든 실험은 4회 반복 실시하였다.About 5-cm-length fragments of the elongated leaves obtained from mature plants were suspended in MS liquid medium at 4 ° C. under white fluorescence (260 mol m −2 sec −1 ) for 0, 6, 12 or 24 hours. After 30 minutes of cancer-adaptation, the chlorophyll signal was measured using the Plant Efficiency Analyzer (Hansatech, UK). All experiments were repeated four times.

저온 스트레스 결정Cold stress determination

위조 (wilting) (Saijo et al., 2000)의 정도 또는 재성장양 (Lee et al., 1993)을 평가하여 저온 스트레스에 노출된 식물체의 생존율을 계산하였다. 성장 챔버 (16-h 광/8-h 암; 광세기 60 μmol m-2 sec-1; 30℃)에서 성장시킨 10일령 유식물체 (3엽 단계)를 연속광 (60 μmol m-2 sec-1) 하에서 3, 4, 5, 6, 7, 10 또는 12일 동안 4℃에 노출시켰다. 이어, 식물체를 표준 성장-챔버 조건으로 10일 동안 회귀시켜 회복되도록 하였다. 위조비율은 명백한 퇴록 정도 및 잎의 퇴록 데이터에 기초하였다. 재성장을 분석하기 위하여, 4일 동안 4℃에 노출시킨 유식물체를 성장 챔버에 되돌려 13일 동안 회복시켰다. 재성장은 유식물체상의 신규 4엽의 생성으로 정의내렸다.The extent of wilting (Saijo et al., 2000) or the amount of regrowth (Lee et al., 1993) was evaluated to calculate the survival rate of plants exposed to cold stress. 10 day-old seedlings grown in a growth chamber (16-h light / 8-h arm; light intensity 60 μmol m −2 sec −1 ; 30 ° C.) (3 lobe stages) were subjected to continuous light (60 μmol m −2 sec − 1 ) was exposed to 4 ° C. for 3, 4, 5, 6, 7, 10 or 12 days. The plants were then returned to standard growth-chamber conditions for 10 days to recover. The counterfeiting rate was based on the apparent degree of receding and leaf regression data. To analyze the regrowth, the seedlings exposed to 4 ° C. for 4 days were returned to the growth chamber and recovered for 13 days. Regrowth was defined as the production of new four lobes on seedlings.

건조 및 염 스트레스 결정 Determination of Dry and Salt Stress

식물체를 성장 챔버 (30℃, 16/8 시간의 명/암 주기)에서 약 2 주간 배양하고 스트레스 처리 후 생존율을 측정하였다. 건조-생존 시험을 위하여, 4일 동안 물을 공급하지 않았다. 정상 성장 조건에서 다시 7일 간 배양하고 위조 식물체 (wilted) 및 건강한 식물체의 수를 측정하였다 (Lee, S.C., Huh, K.W., An. K., An. G., and Kim, S. R. 2004b Ectopic expression of a cold-inducible transcription factor. CBF1/DREB1b, in transgenic rice (Oryza sativa L.) Mol. Cells 18: 107-114). 염 스트레스 처리를 위하여, 10일령 유식물체를 0.1% (w/v) Hyponex (Hyponex) 영양배지에서 2일간 배양하고 200mM NaCl 포함하는 신선한 영양배지로 옮긴 후, 1일 (센스 식물체에 대하여) 또는 12 시간 (안티센스 식물체에 대하여) 동안 30℃에서 16 시간 광주기 (50-60 μmol m-2 sec-1 light)로 배양하였다. 염 스트레스 처리 후에, 유식물체의 뿌리를 물로 세척하고 정상 조건하에서 NaCl없이 신선한 배지에서 배양하였다. 완전하게 위조된 식물체의 3 내지 4개의 잎이 명백한 퇴록을 나타낼 때, 스트레스 후 위조가 결정하였다.The plants were incubated for about two weeks in a growth chamber (30 ° C., light / dark cycle of 16/8 hours) and the survival rate after stress treatment was measured. For the dry-survival test, no water was supplied for 4 days. Incubate again for 7 days under normal growth conditions and determine the number of wilted and healthy plants (Lee, SC, Huh, KW, An. K., An. G., and Kim, SR 2004b Ectopic expression of a cold-inducible transcription factor.CBF1 / DREB1b, in transgenic rice ( Oryza sativa L.) Mol. Cells 18: 107-114). For salt stress treatment, 10-day-old seedlings were incubated for 2 days in 0.1% (w / v) Hyponex (Hyponex) nutrient medium and transferred to fresh nutrient medium containing 200 mM NaCl, either 1 day (with respect to sense plants) or 12 Incubated for 16 hours at 30 ° C. in a photoperiod (50-60 μmol m −2 sec −1 light) for time (for antisense plants). After salt stress treatment, the roots of the seedlings were washed with water and incubated in fresh medium without NaCl under normal conditions. When the three to four leaves of the fully forged plant showed obvious regression, forgery was determined after stress.

실험 결과Experiment result

벼 종자-코트 라이브러리로부터 From the Rice Seed-Coat Library OsAsr1OsAsr1 cDNA의 동정 Identification of cDNA

본 발명에 의해 개발된 종자 코트로부터 분리한 cDNA 클론은 Vaidyanathan et al. (1999)에 의해 발견된 OsAsr1과 상동성이 크다. 본 발명의 클론은 838 bp 길이로서, 66-bp, 5'-비해독 부위 (UTR), 417-bp 오픈 리딩 프레임, 325-bp 3'-UTR, 및 poly (A)-테일을 포함한다. 공지의 클론과 비교하여 5'-말단이 4 bp 정도 짧고, 3'-UTR에서 T가 C (정지 코돈의 다운스트림으로부터 304 bp 떨어져 있음)로 변화된 것을 제외하고는 OsAsr1과 완전히 일치한다. 공지된 cDNA는 포칼리 (Pokkali), 인디카벼로부터 분리된 것이고 본 발명에 의해 분리된 것은 자포니카 타입인 동진으로부터 분리된 것이기 때문에, 3'-UTR에서의 단일-뉴클레오타이드 변이는 재배종에서의 차이에 기인한 것으로 판단된다.The cDNA clones isolated from the seed coats developed by the present invention are described in Vaidyanathan et al. (1999) has a high homology with OsAsr1 . Clones of the present invention are 838 bp long and include 66-bp, 5'-nontranslated site (UTR), 417-bp open reading frame, 325-bp 3'-UTR, and poly (A) -tail. Compared with known clones, the 5'-end is about 4 bp short and is completely consistent with OsAsr1 except that T at 3'-UTR is changed to C (304 bp from downstream of stop codon). Since the known cDNA was isolated from Pokkali, Indica rice and from the Japonica type Dongjin isolated, the single-nucleotide variation in 3'-UTR is due to differences in cultivars. I think it was.

OsAsr1 지놈 서열을 인디카벼 WGS 지놈 데이터베이스 (Yu et al., 2002)로부터 회수하였다. 클론의 인-실리코 분석은 ABA 반응 엘리먼트 (ABRE)의 중심서열, ACGT가 -261 위치, 즉 최초 ATG 코돈에서부터 610 및 616 bp 떨어진 위치에 있음을 예측케 하였다. 중요한 저온-반응성 cis 엘리먼트, C-반복/건조 반응성 엘리먼트 (CRT/DRE) 서열, GCCGAC은 위치 714에서 발견되었고, 추정 Myb (143, -149, 및 698), Myc (71, 512, 및 694) 그리고 bZIP (202 및 711) 결합 위치도 발견되었다. 추정 Zn-결합 His-잔기 및 추정 NLS 도메인은, OsAsr1 단백질의 각각 N-말단 및 C-말단에 위치한다 (도 1). cDNA 및 지놈 서열 비교로부터, 119-bp-길이의 인트론이 OsAsr1 유전자에 있음을 알 수 있다. 질문어를 OsAsr1 protein sequence (accession no. AAB96681)로 한 TBLASTN 검색 (Altschul et al., 1997)을 통하여, 스캐폴드들 (002913, 037286, 026604, 023736, and 081294)에서 5개의 유사체를 확인할 수 있었다. 덴드로그램으로 제시된 계통유전학적 관계는 OsAsr1이 옥수수의 ZmAsr1과 가장 높은 상동성을 갖는다는 것을 보여준다 (도 2). ASR 단백질들은 4개의 주 그룹으로 분류되며 (Hong et al., 2002), OsAsr1은 ZmAsr1과 관련있는 그룹 I에 속한다. 100개 이상의 OsAsr1 cDNA 서열이 GenBank 데이터베이스에 등록되어 있고, 이와 같은 사실은 본 발명의 유전자가 풍부-발현 유전자 패밀리에 속한다는 것을 나타내는 것이다. 또한, OsAsr1 유사체들은 식물종에서만 발견되었다. OsAsr1 genome sequences were recovered from the Indica rice WGS genome database (Yu et al., 2002). In -silico analysis of the clones predicted that the central sequence of the ABA response element (ABRE), ACGT, was at the -261 position, ie 610 and 616 bp away from the original ATG codon. Important cold-reactive cis element, C-repeat / dry reactive element (CRT / DRE) sequence, GCCGAC, was found at position 714 and putative Myb (143, -149, and 698), Myc (71, 512, and 694) And bZIP (202 and 711) binding sites were also found. The putative Zn-binding His-residue and putative NLS domains are located at the N-terminus and C-terminus of OsAsr1 protein, respectively (FIG. 1). from cDNA and genomic sequence comparison, the intron of 119-bp- length we can be seen that the OsAsr1 gene. TBLASTN search (Altschul et al., 1997) using the questionnaire OsAsr1 protein sequence (accession no. AAB96681) identified five analogs in scaffolds (002913, 037286, 026604, 023736, and 081294). . Phylogenetic relationships presented in dendrograms show that OsAsr1 has the highest homology with ZmAsr1 in corn (FIG. 2). ASR proteins are classified into four main groups (Hong et al., 2002), and OsAsr1 belongs to group I related to ZmAsr1. More than 100 OsAsr1 cDNA sequences are registered in the GenBank database, indicating that the genes of the invention belong to the abundance-expressing gene family. In addition, OsAsr1 analogs were found only in plant species.

OsAsr1OsAsr1 의 DNA 젤-블롯 분석DNA gel-blot analysis

3가지 자포니카 재배종에 대한 DNA 젤-블롯 분석의 결과는 OsAsr1 유전자의 단일 카피만을 나타내었다 (도 3). 이러한 결과는 포카리 품종 실험 결과 (Vaidyanathan et al., 1999)와 일치하는 것이다. 상이한 저온 내성을 갖는 상기 3개지 재배종에 대한 제한효소처리-단편 길이로부터 명확한 다형성이 없음을 알 수 있었다.DNA gel-blot analysis of three Japonica cultivars showed only a single copy of the OsAsr1 gene (FIG. 3). These results are in agreement with the results of the Pokary variety test (Vaidyanathan et al., 1999). Restriction-enzyme-fragment lengths for these three cultivars with different low temperature resistance showed no clear polymorphism.

저온 스트레스에 의한 Due to cold stress OsAsr1OsAsr1 의 유도Induction of

본 발명자들은 다른 조직에서 그리고 다양한 비생물성 조건에서 발현되는 유전자를 조사하기 위하여 RNA 젤-블롯 분석을 이용하였다. OsAsr1 전사체를 캘러스를 제외한 모든 조직 및 기관에서 검출하였고 (도 4a), 그리고 OsAsr1 전사체를 저온, 건조, 염 그리고 ABA처리로 유도하였으며, 건조 및 염 스트레스 처리 3 시간 후에, 이들의 최대값에 도달하였다 (도 4d 및 4e). 상기 전사체의 크기는 약 0.9 kb이고, 이는 본 발명의 OsAsr1 cDNA 클론이 전장임을 나타내는 것이다. 상기 전사체는 유식물체의 신초와 뿌리, 플랙 잎의 잎집에서 높은 수준으로 존재하였고, 노드 I 및 Ⅱ 사이의 인터노드에서 가장 풍부하게 존재하였으며, 이는 OsAsr1 유전자가 기관-선호성 발현을 함을 보여준다.We used RNA gel-blot analysis to examine genes expressed in other tissues and under various abiotic conditions. OsAsr1 transcripts were detected in all tissues and organs except callus (FIG. 4A), and OsAsr1 transcripts were induced by low temperature, drying, salt and ABA treatment, and at 3 hours after drying and salt stress treatment, Reached (FIGS. 4D and 4E). The size of the transcript is about 0.9 kb, indicating that the OsAsr1 cDNA clone of the present invention is full length. The transcripts were present at high levels in shoots, roots and flap leaves of seedlings, most abundantly in the internodes between nodes I and II, indicating that the OsAsr1 gene exhibits organ-preferred expression.

OsAsr1은 성숙 식물체의 잎에서는 바탕 수준으로 발현되었으나, 성숙된 꽃에서는 더 풍부하게 발현되었다. 흥미롭게는, 저온은 상기 두 기관에서의 전체적 전사체양을 상승시켰다 (도 4b). 저온 처리는 유식물체 단계에서 전사체양을 증가시켰고, 4℃ 보다는 12℃에서 전사체의 양의 증가가 더욱 명확하였다 (도 4c). 저온-반응성 OsAsr1 축적은 신초에 제한적이고, 이와 같은 사실은 유전자 발현의 기관-특이성 스트레스 반응을 보여준다. OsAsr1 was expressed at ground level in the leaves of mature plants, but more abundantly in mature flowers. Interestingly, low temperatures raised the overall transcript levels in both organs (FIG. 4B). Cold treatment increased the amount of transcript in the seedling stage, and the increase in the amount of transcript was more apparent at 12 ° C. than at 4 ° C. (FIG. 4C). Cold-reactive OsAsr1 accumulation is limited to shoots, and this shows the organ-specific stress response of gene expression.

OsAsr1은 ABA-유도성이기 때문에 (Vaidyanathan et al., 1999), 본 발명자들은 저온 스트레스의 유도 키네틱스 대 ABA의 유도 키네틱스를 비교하였다. 전사체 수준은 3시간 동안의 저온 스트레스 후에 최대값을 나타낸 반면, ABA 처리는 보다 느린 속도로 증가를 시켰고, 6시간 이후에 최대값을 나타내었다 (도 4c). 성 장 온도 (12, 20, 및 30℃)의 생리학적 범위에서의 OsAsr1 발현을 저온-내성 재배종 오대 및 저온-민감성 재배종 남양 21 사이에 비교를 하였다. 그러나, 본 발명자들은 상기 재배종 사이의 유전자 발현의 명확한 차이를 관찰할 수 없었다. Since OsAsr1 is ABA-induced (Vaidyanathan et al., 1999), we compared induced kinetics of cold stress versus induced kinetics of ABA. Transcript levels peaked after 3 hours of cold stress, whereas ABA treatment increased at a slower rate and peaked after 6 hours (FIG. 4C). OsAsr1 expression in the physiological range of growth temperatures (12, 20, and 30 ° C.) was compared between cold-resistant cultivars and cold-sensitive cultivar Namyang 21. However, we could not observe any clear difference in gene expression between these cultivars.

조직 수준에서 OsAsr1 유전자의 저온-유도 발현 패턴을 규명하고자, RNA 인 시투 혼성화를 실시하였다. 잎에서, 유도는 엽육 조직에 한정되었고, 표피 또는 관 조직에서는 발견되지 않았다 (도 5의 E 및 G). 꽃은 저온 스트레스의 주요한 타깃 기관이기 때문에, 꽃에 대하여 혼성화를 실시하였다. 헤딩 전 4일째 미성숙 꽃을 12℃에서 4일 동안 저온처리하였다. 이어, 스트레스를 받은 꽃의 내영 및 외영의 엽육 세포로부터 OsAsr1 전사체를 검출할 수 있었다 (도 5의 A 및 C). 저온 스트레스를 받지 않은 대조군 꽃에서 OsAsr1 발현 패턴은 저온 스트레스를 받은 꽃과 유사하였으나, 발현양은 저온 스트레스를 받은 꽃 보다 훨씬 낮았다.To identify the cold-induced expression pattern of OsAsr1 gene at the tissue level, RNA in situ hybridization was performed. In leaves, induction was confined to lobules tissue and was not found in epidermal or tubular tissues (E and G in FIG. 5). Since flowers are the main target organs of low temperature stress, hybridization was performed on the flowers. Immature flowers were cold treated at 12 ° C. for 4 days before heading. Then, from the palea and oeyoung of flowers mesophyll stressed cells could be detected OsAsr1 transfer member (A and C in Fig. 5). OsAsr1 expression patterns in control flowers that were not cold stressed were similar to those that were cold stressed, but the expression was much lower than that of flowers that were cold stressed.

형질전환 식물체에서의 In transgenic plants OsAsr1 OsAsr1 cDNA의 발현expression of cDNA

OsAsr1의 기능을 연구하기 위하여, OsAsr1 cDNA를, 센스 또는 안티센스 방향으로, 옥수수 유비퀴틴 프로모터 (PUBI)에 의해 조절되도록 위치시켜, 최종적으로 벡터 pSK167 및 pSK168를 각각 얻었다 (도 6a). 아그로박테리움-중재 공동배양 방법을 통하여 20 개체의 형질전환 식물체를 생성시키고, 벼 지놈에 트랜스진이 삽입되었는 지 여부를 DNA 젤-블롯 분석으로 확인하였다. 카피수는 일작으로 하나 내지 둘이었으나, 셋 이상의 카피도 검출되었다 (도 6b). 형질전환 식물체는 T1 및 T2 세대에서 뚜렷한 형태학적 변화를 보이지 않았다.In order to study the function of OsAsr1, OsAsr1 a cDNA, a sense or antisense orientation, such that by positioning control by the maize ubiquitin promoter (P UBI), finally obtaining the vector pSK167 and pSK168, respectively (Fig. 6a). Agrobacterium-mediated co-culture method was used to generate 20 transgenic plants, and DNA gel-blot analysis confirmed whether the transgene was inserted in the rice genome. The copy number was one to two in one, but more than three copies were also detected (FIG. 6B). Transgenic plants showed no significant morphological changes in T1 and T2 generations.

OsAsr1의 변화된 발현이 형질전환 벼에서 저온 내성을 초래하는 지 여부를 검사하기 위하여, RNA 젤-블롯 분석을 실시하였다 (도 6c). 전체적으로, OsAsr1 전사체 양은 형질전환 식물체에서 야생형 보다 높게 나타났다. 형질전환 식물체에서 혼성화된 전사체의 크기는 야생형 보다 조금 컸다. 2가지 강한 과발현자, S2 및 S15는 추가적인 실험을 위해 선택하였다.To examine whether the altered expression of OsAsr1 results in cold resistance in transgenic rice, RNA gel-blot analysis was performed (FIG. 6C). Overall, OsAsr1 transcript amounts were higher than wild type in transgenic plants. The size of hybridized transcripts in transgenic plants was slightly larger than wild type. Two strong overexpressors, S2 and S15, were selected for further experiments.

저온 스트레스 하에서 형질전환 식물체의 클로로필 형광 측정Chlorophyll Fluorescence Measurement of Transgenic Plants Under Cold Stress

저온 처리 (4℃) 후의 저온 내성의 표지자로서의 클로로필 형광을 측정하였다. 광계 Ⅱ의 활성을 나타내는 Fv 대 Fm의 비율은 식물체에서 기능 손상을 평가하는 데 이용된다 (Genty et al., 1989). 본 발명자들의 야생형 분리자에서 대하여, 저온에 의해 Fv/Fm은 점차적으로 감소하였다. 이러한 감소는 저온 스트레스에 의해 야기된 광억제의 정도를 보여준다 (Krause, 1994). 스트레스를 유도하기 전 Fv/Fm 값은 0.84±0.01이었다. 6시간의 저온 처리 후, Fv/Fm은 조금 감소하였고, 값의 명확한 변화는 형질전환체 및 야생형에서 모두 관찰되지 않았다. 그러나, 24시간 처리 후, 야생형에 대한 Fv/Fm 값은 상당히 감소하여, 0.25±0.021에 도달하였다 (도 7). 반대로, 과발현 S2 및 S15의 Fv/Fm 값은 각각 0.53±0.049 및 0.60±0.067이었다. 상기 비율은 야생형보다 약 2배 정도의 값이고 (도 7), 이는 형질전환 식물체가 높은 저온 내성을 갖는다는 것을 나타내는 것이다.Chlorophyll fluorescence as a low temperature resistant marker after low temperature treatment (4 ° C) was measured. The ratio of Fv to Fm indicating activity of light system II is used to assess functional impairment in plants (Genty et al., 1989). In our wild type separator, Fv / Fm gradually decreased due to low temperature. This decrease shows the degree of light inhibition caused by cold stress (Krause, 1994). Before inducing stress, the Fv / Fm value was 0.84 ± 0.01. After 6 hours of cold treatment, Fv / Fm decreased slightly and no clear change in value was observed in both transformants and wild type. However, after 24 hours of treatment, the Fv / Fm values for wild type decreased significantly, reaching 0.25 ± 0.021 (FIG. 7). In contrast, the Fv / Fm values for overexpressing S2 and S15 were 0.53 ± 0.049 and 0.60 ± 0.067, respectively. This ratio is about twice the value of the wild type (FIG. 7), indicating that the transgenic plants have high low temperature resistance.

생존율Survival rate

유식물체 단계에서의 형질전환 식물체의 생존율을 위조 및 재성장 시험으로 측정하였다. 우선, 스트레스 후의 위조 (즉, 위조 유식물체의 수 대 저온 처리 유식물체의 총수의 비율)의 양을 평가하여 저온 처리의 임계적 길이를 결정하였다. 저온에 5일 동안 노출한 후, 저온-내성 재배종, 오대 및 스테자레 (Stejaree) 45는, 각각 10/18 (55.6%) 및 8/20 (40%)의 위조 비율을 나타내었다 (표 1). 이러한 위조 비율은 6일 동안의 스트레스 후에 약 75%로 증가하였다. 반대로, 본 발명의 OsAsr1 형질전환의 모주, 동진은 5일 동안의 스트레스 후 17 식물체 중 12 개체 (70.6%)가 위조 증상을 나타내었다. 상기 위조 비율은 6일 스트레스 후에 약 94%까지 증가하였다. 저온-민감성 인디카 x 자포니카 재배종, 밀양 23은 단지 4일 스트레스 후에 100%의 위조를 보였다. 따라서, 동진에 의한 저온 스트레스 내성에 대한 임계적 시간 길이는 약 5 내지 6일임을 알 수 있었다. 이러한 추정에 기초하여, 6일 동안 T2 형질전환 식물체를 저온 처리하였다. S2 식물체로부터 얻은 34 개체의 유식물체 중 23 개체 (68%)는 저온 처리 후 위조를 보였고, S15 식물체의 15 개체 유식물체 중 10 개체 (67%)도 이러한 증상을 보였다. 반대로, 야생형 식물체의 66 유식물체 중 63 개체 (96%)가 위조를 보였다. 안티센스 형질전환 식물체도 조사하였고, 위조 발생은 A3, A12 및 A14에서, 각각 9/9 (100%), 9/11 (82%), 및 10/11 (91%)이었다.Survival of the transformed plants at the seedling stage was measured by forgery and regrowth tests. First, the amount of forgery after stress (ie, the ratio of the number of counterfeit seedlings to the total number of cold treated seedlings) was evaluated to determine the critical length of cold treatment. After 5 days of exposure to cold, cold-resistant cultivars, larvae and Stejaree 45 exhibited counterfeit rates of 10/18 (55.6%) and 8/20 (40%), respectively (Table 1). . This forgery rate increased to about 75% after 6 days of stress. On the contrary, in the parent strain and oscillation of the OsAsr1 transformation of the present invention, 12 out of 17 plants (70.6%) exhibited fake symptoms after 5 days of stress. The forgery rate increased to about 94% after 6 days of stress. The cold-sensitive Indica x Japonica cultivar, Milyang 23, exhibited a 100% forgery after only 4 days of stress. Therefore, it can be seen that the critical time length for cold stress resistance by vibrating is about 5 to 6 days. Based on this presumption, the T2 transgenic plants were cold treated for 6 days. Twenty-three (68%) of the 34 seedlings obtained from the S2 plant showed forgery after cold treatment, and ten of the 15 seedlings of the S15 plant (67%) also exhibited this symptom. In contrast, 63 out of 66 seedlings of wild-type plants (96%) showed forgery. Antisense transgenic plants were also investigated, and counterfeit development was 9/9 (100%), 9/11 (82%), and 10/11 (91%) in A3, A12 and A14, respectively.

T3 세대에서 실시한 재성장 시험은 히그로마이신 선택 후, 형질전환 유전자에 대한 동형접합주를 분석하는 것을 포함하였다. S15 식물체의 35 개체 유식물 체 중 14 개체 (40%)는 4엽의 활발한 발달을 보였다. 반대로, 약한 OsAsr1-발현주로부터 유래된 S18 식물체는 단지 35 식물체 중 7 개체 (20%)의 재성장을 보였다. 그럼에도 불구하고, 야생형-분리 대조군 식물체는 훨씬 낮은 재성장율, 즉 105 식물체 중 9 개체 (9%)를 보였다. 유사한 결과가 A3 식물체에서도 관찰이 되었는 바, 70 식물체 중 단지 7 개체 (10%)만이 반응을 나타내었다. 종합하건데, 상기 실험결과는 OsAsr1 전사체를 과발현하는 형질전환 식물체는 저온 스트레스에 대하여 증가된 내성을 갖는다는 것을 확인할 수 있었다. 그러나, 안티센스 식물체에서와 같이 OsAsr1 발현이 억제된 경우 내성의 정도는 뚜렷하게 변화되지 않았다.Regrowth tests conducted in the T3 generation included analyzing homozygous strains for the transgene after the selection of hygromycin. Fourteen of the 35 seedlings (40%) of the S15 plant had active development of four lobes. In contrast, S18 plants derived from weak OsAsr1 -expressing strains showed regrowth of only 7 of 20 plants (20%). Nevertheless, wild-type control plants showed a much lower regrowth rate, i.e. 9 out of 105 plants (9%). Similar results were observed in A3 plants, with only seven out of 70 plants (10%) responding. Taken together, the experimental results confirmed that the transgenic plants overexpressing OsAsr1 transcript have increased resistance to cold stress. However, when OsAsr1 expression was suppressed as in antisense plants, the degree of resistance did not change significantly.

벼 재배종 및 형질전환 OsAsr 1 벼의 저온 스트레스 내성Cold Stress Tolerance of Rice Cultivars and Transgenic OsAsr 1 Rice 재배종 또는 라인Cultivars or lines 저온 처리 기간 (일)Cryogenic Treatment Period (Days) 00 33 44 55 66 77 1010 1212 오대(Odae)Odae 0/18* 0/18 * 2/202/20 5/205/20 10/1810/18 13/1713/17 17/1817/18 19/1919/19 19/1919/19 스테자레 (Stejaree) 45Stejaree 45 0/180/18 0/200/20 6/206/20 8/208/20 15/2015/20 18/1918/19 20/2020/20 19/1919/19 합천앵미 (Hapchunaengmi)Hapchunaengmi 0/180/18 0/200/20 4/204/20 8/208/20 10/2010/20 18/1918/19 20/2020/20 19/1919/19 추청 (Chuchung)Chuchung 0/180/18 0/190/19 5/205/20 9/209/20 18/1918/19 19/1919/19 20/2020/20 20/2020/20 동진 (Dongjin)Dongjin 0/200/20 6/206/20 6/206/20 12/1712/17 17/1817/18 17/1817/18 20/2020/20 19/1919/19 남양 (Namyang)21Namyang21 0/190/19 10/1610/16 12/2012/20 16/1816/18 18/1818/18 19/1919/19 19/1919/19 20/2020/20 밀양 (Milyang)23Milyang23 0/190/19 13/1813/18 17/1717/17 17/1717/17 17/1717/17 19/1919/19 19/1919/19 20/2020/20 형질전환 S2Transformation S2 -- -- -- -- 23/3423/34 -- -- -- 형질전환 S15Transformation S15 -- -- -- -- 10/1510/15 -- -- -- 야생형 Wild type -- -- -- -- 63/6663/66 -- -- -- * 위조된 유식물체의 수/저온처리 유식물체의 수* Number of forged seedlings / Number of cold-treated seedlings

아라비돕시드 Arabidobsid CBF1CBF1 을 발현하는 형질전환 식물체에서의 In transgenic plants expressing OsAsr1OsAsr1 cDNA의 발현 expression of cDNA

CRT/DRE 중심 서열은 OsAsr1의 추정 프로모터 부위에 위치하며, 상기 유전자는 CBF1에 의해 조절된다. 이에, 본 발명자들은 Arabidopsis CBF1 cDNA를 발현하는 형질전환 벼 식물체를 제조하였다. RNA 젤-블롯 실험을 통하여, CBF1 전사인자를 강하게 발현하는 형질전환 식물체 (18-2 및 18-3)에서 OsAsr1 유전자의 발현이 증가함을 알 수 있었다 (도 8). 형질전환 식물체에서 OsAsr1의 발현은 저온 스트레스에 의해 보다 더 증가되었다.CRT / DRE sequence center is located in the promoter region of the estimated OsAsr1, the gene is controlled by CBF1. Thus, the present inventors have prepared a transgenic rice plant expressing Arabidopsis CBF1 cDNA. RNA gel-blot through the experiment, it was found that increasing the expression of genes in transgenic plants OsAsr1 (18-2 and 18-3) that strongly expressed the CBF1 transcription factor (Figure 8). The expression of OsAsr1 in transgenic plants was further increased by cold stress.

형질전환 OsAsr1 식물체의 염 내성Salt Tolerance of Transgenic OsAsr1 Plants

유식물체 단계에서 형질전환 식물체의 생존율을 위조 (wilting) 시험으로 측정하였다. 정확한 실험을 위하여, 두 개의 자연형 벼 품종, 자포니카 품종인 '동진' 그리고 인디카 품종인 'Tachung Native' (TN1)을 사용하여 염 내성을 보여주었다. 10 일령 유식물체를 200 mM NaCl을 포함하는 0.1% (w/v) Hyponex 용액인 영양배지에 옮겼다. 센스 형질전환 식물체를 1 일 그리고 안티센스 형질전환체를 12 시간 동안 30℃에서 처리하고, 다시 NaCl이 없는 신선한 영양배지로 옮기고 정상 조건에서 2 일 배양하였다. 완전하게 위조된 식물체의 3 내지 4개의 잎이 명백한 퇴록을 나타낼 때, 스트레스 후 위조가 결정되었다.The survival rate of the transformed plants at the seedling stage was measured by a wilting test. For accurate experiments, two natural rice varieties, Japonica varieties 'Dongjin' and Indica varieties 'Tachung Native' (TN1) were used to show salt tolerance. The 10 day old seedlings were transferred to a nutrient medium, 0.1% (w / v) Hyponex solution containing 200 mM NaCl. Sense transformed plants were treated for 1 day and antisense transformants at 30 ° C. for 12 hours, then transferred to fresh nutrient medium without NaCl and incubated for 2 days under normal conditions. When the three to four leaves of the fully forged plant showed obvious regression, forgery was determined after stress.

염-내성 품종인 TN1은 회복 후 위조 비율 (wilting ratio)이 36.1±8.4 %이었다 (도 9, 도 10, 표 2). 대조적으로, 발명의 OsAsr1 형질전환체의 모라인 (parental line)인 '동진'은 회복 2일 후에 86 식물체 중 66 식물체에서 위조 증상이 나타났다 (77±22.5 %).   자연형 분리성 식물체로부터 유도된 58 유식물체 중 39 유식물체(67±4.1%)는 회복 2일 후 위조되었다.   2 개의 강력한 과발현체인 S2 및 S15를 스트레스 내성 시험에 사용하였다.   각각의 T3 라인식물체는 동질접합성 식물체였다.   동질접합성 T3 형질전환 식물체를 염 스트레스 처리하였으며, 센스 식물체에 대해서는 1일 그리고 안티센스 식물체에 대해서는 12 시간 처리하였다.   이러한 염-처리 시간은 참고 문헌에서 참조하였다 (Kim S.H., PhD thesis, Sogang University, 2004).   S2-1 식물체로부터 수득한 94 유식물체 중 26 유식물체(27±11%)는 위조를 나타내었다.   또한, S2-2 식물체로부터 수득한 88 유식물체 중 27 유식물체(31±8%)는 위조를 나타내었다.   하지만, S15-1 식물체로부터의 73 유식물체 중 33 유식물체(45±22%)는 그러한 증상을 나타내었으며, S15-2 식물체로부터의 88 유식물체 중 34 유식물체(39±5%)는 위조를 나타내었다.   대조적으로, 안티센스 형질전환 식물체를 스트레스 처리 12 시간 후에 조사한 결과, A3-1 및 A2-1에서 위조 발생 정도가 각각 38/53 (72±3%) 및 30/67 (45±23%)이었다.   회복 5 일 후에서, 위조 비율은 64/73 (73±4%) TN1 식물체, 86/86 (100±0%) 동진 식물체, 58/58 (100±0%) NT-S2 식물체, 87/94 (93±3%) S2-1 식물체, 75/88 (85±2%) S2-2 식물체, 71/73 (97±4%) S15-1 식물체 및 87/88 (99±2%) S15-2 식물체로 증가하였다.   모든 실험은 3회 반복되었다.   이 결과에 기초하여, OsAsr1의 과발현은 벼에 염 내성을 부여하며, OsAsr1안티센스 라인은 자연형에 비하여 증가된 염 민감도를 보여준다는 것을 알 수 있다. Salt-resistant varieties, TN1, had a wilting ratio of 36.1 ± 8.4% after recovery (Figure 9, Figure 10, Table 2). In contrast, the parental line of the OsAsr1 transformant of the invention, 'dongjin', showed fake symptoms in 66 out of 86 plants (77 ± 22.5%) two days after recovery. Of the 58 seedlings derived from spontaneous isolates, 39 seedlings (67 ± 4.1%) were forged two days after recovery. Two powerful overexpressors, S2 and S15, were used for the stress tolerance test. Each T3 line plant was a homozygous plant. Homozygous T3 transgenic plants were treated with salt stress, 1 day for sense plants and 12 hours for antisense plants. This salt-treatment time is referenced in the literature (Kim SH, PhD thesis, Sogang University, 2004). Of the 94 seedlings obtained from S2-1 plants, 26 seedlings (27 ± 11%) showed forgery. In addition, 27 of the 88 seedlings obtained from S2-2 plants (31 ± 8%) showed forgery. However, 33 seedlings (45 ± 22%) of the 73 seedlings from the S15-1 plant had such symptoms, and 34 seedlings (39 ± 5%) of the 88 seedlings from the S15-2 plant had forgery. Indicated. In contrast, the antisense transgenic plants were examined 12 hours after stress treatment, and the degree of forgery in A3-1 and A2-1 was 38/53 (72 ± 3%) and 30/67 (45 ± 23%), respectively. After 5 days of recovery, the counterfeit rate was 64/73 (73 ± 4%) TN1 plant, 86/86 (100 ± 0%) sinus plant, 58/58 (100 ± 0%) NT-S2 plant, 87/94 (93 ± 3%) S2-1 plant, 75/88 (85 ± 2%) S2-2 plant, 71/73 (97 ± 4%) S15-1 plant and 87/88 (99 ± 2%) S15- Increased to 2 plants. All experiments were repeated three times. Based on these results, it can be seen that overexpression of OsAsr1 confers salt resistance to rice, while the OsAsr1 antisense line shows increased salt sensitivity compared to natural form.

벼 품종 및 형질전환 OsAsr1벼의 염 스트레스 내성Salt Stress Tolerance of Rice Varieties and Transgenic OsAsr1 Rice 라인line 위조된 수Forged number 총수count 위조forgery a a (%) (%) TN1TN1 3232 8888 36±836 ± 8 동진easting 6666 8686 77±3 77 ± 3 NT-S2NT-S2 3939 5858 67±467 ± 4 S2 -1S2 -1 2626 9494 27±1127 ± 11 S2 -2S2 -2 2727 8888 31±831 ± 8 S15-1S15-1 3333 7373 45±2245 ± 22 S15-2S15-2 3434 8888 39±539 ± 5 A3 -1A3 -1 3838 5353 75±375 ± 3 A3 -2A3 -2 3030 6767 45±2345 ± 23 NT-S2NT-S2 1717 5050 34±434 ± 4

a 위조 식물체 수/ 총 식물체 수 (위조 식물체 수의 백분율). 위조 식물체의 수는 식물체의 3 내지 4개의 잎이 염 스트레스 처리 후 2일 회복 시에 위조된 것을 나타낸다. a Number of counterfeit plants / total number of plants (percentage of counterfeit plants). The number of counterfeit plants indicates that three to four leaves of the plant were forged upon 2 days recovery after salt stress treatment.

형질전환 Transformation OsAsr1OsAsr1 식물체의 건조 내성Drying resistance of plants

형질전환 OsAsr1식물체의 건조 내성을 평가하였다.   정확한 실험을 위하여, 건조 내성을 두 개의 자연형 벼 품종, Sangnambatbyeo 및 동진을 사용하여 나타내었다 (표 3, 도 11 및 12).   14 일령 유식물체를 성장 챔버에서 배양하고 (30℃, 명/암 주기 16/8 시간), 그 다음 4 일 동안 물을 공급하지 않았다.   본 발명의 T3 형질전환 식물체를 4 일 동안 건조 처리하였다.   완전하게 위조된 식물체의 3 내지 4개의 잎이 명백한 퇴록을 나타낼 때, 스트레스 후 위조가 결정되었다(Lee, S.C., Huh, K.W., An. K., An. G., and Kim, S. R. 2004b Ectopic expression of a cold-inducible transcription factor. CBF1/DREB1b, in transgenic rice (Oryza sativa L.) Mol. Cells 18: 107-114).Dry resistance of the transgenic OsAsr1 plants was evaluated. For accurate experiments, dry tolerance was shown using two native rice varieties, Sangnambatbyeo and Dongjin (Table 3, Figures 11 and 12). The 14-day-old seedlings were incubated in the growth chamber (30 ° C., light / dark cycle 16/8 hours) and no water was supplied for the next 4 days. T3 transgenic plants of the invention were dried for 4 days. When three to four leaves of completely forged plants exhibited apparent regression, forgery was determined after stress (Lee, SC, Huh, KW, An.K., An.G., and Kim, SR 2004b Ectopic expression of a cold-inducible transcription factor.CBF1 / DREB1b, in transgenic rice ( Oryza sativa L.) Mol. Cells 18: 107-114).

60 S2-1 유식물체 중 11 유식물체(18±12%)가 위조를 보였다.   또한, 61 S2-2 유식물체 중 15 유식물체(25±10%)가 위조를 보였다.   하지만, 4 일 스트레스 후에 S15-1 식물체로부터의 51 유식물체 중 14 유식물체(27±13%)가 그러한 증상을 나타내었으며, S15-2 식물체로부터의 58 유식물체 중 17 유식물체(29±4%)가 위조를 보였다.    또한, 건조 내성에 대하여 안티센스 형질전환 식물체를 조사하였다.   안티센스 식물체 인 A3-1 및 A3-2는 41/45 (91±12%) 및 38/51 (75±3%)의 민감도를 각각 나타내었다.   모든 실험은 3회 반복 하였다.   이러한 데이터는 OsAsr1의 과발현은 벼에게 건조 내성을 부여하며, OsAsr1안티센스 라인은 자연형에 비하여 높은 건조 민감도를 보인다는 것을 시사한다. Of the 60 S2-1 seedlings, 11 seedlings (18 ± 12%) were forged. Of the 61 S2-2 seedlings, 15 seedlings (25 ± 10%) showed forgery. However, after 4 days of stress, 14 out of 51 plants (27 ± 13%) from 51 plants from S15-1 plants had such symptoms, and 17 out of 58 plants from 29 plants (29 ± 4%) from S15-2 plants. ) Forged. In addition, antisense transgenic plants were examined for dry resistance. Antisense plants A3-1 and A3-2 exhibited sensitivity of 41/45 (91 ± 12%) and 38/51 (75 ± 3%), respectively. All experiments were repeated three times. These data suggest that overexpression of OsAsr1 confers drying resistance to rice, while the OsAsr1 antisense line shows higher drying sensitivity compared to natural form.

벼 품종 및 형질전환 OsAsr1벼의 염 스트레스 내성Salt Stress Tolerance of Rice Varieties and Transgenic OsAsr1 Rice 라인line 위조된 수Forged number a a 총수count 위조 (%)Counterfeit (%) SNBSNB 25 25 5757 44±644 ± 6 동진easting 6464 100100 64±664 ± 6 NT-S2NT-S2 3535 5959 59±359 ± 3 S2 -1S2 -1 1111 6060 18±1218 ± 12 S2 -2S2 -2 1515 6161 25±1025 ± 10 S15-1S15-1 1414 5050 28±1328 ± 13 S15-2S15-2 1717 5858 29±429 ± 4 A3 -1A3 -1 3838 5353 90±1290 ± 12 A3 -2A3 -2 3030 6767 79±379 ± 3

a WT 및 T3 식물체의 3 내지 4개의 잎이 건조 스트레스 처리 후 7일 회복 시에 완전하게 위조된 WT 및 T3 식물체의 수 The number of WT and T3 plants that were completely forged when 3 to 4 leaves of WT and T3 plants recovered 7 days after dry stress treatment.

상술한 바와 같이, 본 발명은 저온, 염 또는 건조 스트레스에 대한 내성을 증진시키는 비생물성 스트레스-유도성 OsAsr1 단백질을 제공한다. 또한, 본 발명은 비생물성 스트레스-유도성 OsAsr1 단백질을 코딩하는 뉴클레오타이드 서열을 포함하는 핵산분자을 제공한다. 본 발명은 벡터, 형질전환체를 제공한다. 한편, 본 발명은 저온, 염 또는 건조 스트레스 내성이 증진된 형질전환 식물체 및 그 제조방법을 제공한다. 본 발명의 OsAsr1 유전자 및 단백질은 식물체에 저온, 염 또는 건조 스트레스에 대한 내성을 증진하는 데 매우 유효하다.As mentioned above, the present invention provides abiotic stress-induced OsAsr1 protein that enhances resistance to cold, salt or dry stress. The present invention also provides a nucleic acid molecule comprising a nucleotide sequence encoding a non-biotic stress-induced OsAsr1 protein. The present invention provides a vector, a transformant. On the other hand, the present invention provides a transgenic plant with improved low temperature, salt or dry stress resistance and a method for producing the same. OsAsr1 genes and proteins of the present invention are very effective in enhancing resistance to low temperature, salt or dry stress in plants.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.Having described the specific part of the present invention in detail, it is apparent to those skilled in the art that the specific technology is merely a preferred embodiment, and the scope of the present invention is not limited thereto. Thus, the substantial scope of the present invention will be defined by the appended claims and equivalents thereof.

참조 문헌Reference

Altschul, S.F., Madden, T.L., Schafler, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402.Altschul, SF, Madden, TL, Schafler, AA, Zhang, J., Zhang, Z., Miller, W., and Lipman, DJ 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res . 25: 3389-3402.

An, G., Ebert, P.R., Mitra, A., and Ha, S.B. 1988. Binary vectors. In Plant Molecular Biology Manual. Edited by Gelvin, S.B., Schilperoort, R.A. The Netherlands. pp. A3 1-19. Kluwer Academic Publishers, Dordrecht, The Netherlands.An, G., Ebert, PR, Mitra, A., and Ha, SB 1988. Binary vectors. In Plant Molecular Biology Manual. Edited by Gelvin, SB, Schilperoort, RA The Netherlands. pp. A3 1-19. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Boothe, J.G., Sonnichsen, F.D., de Beus, M.D., and Johnson-Flanagan, A.M. 1997. Purification, characterization, and structural analysis of a plant low-temperature-induced protein. Plant Physiol. 113: 367-376.Boothe, J.G., Sonnichsen, F.D., de Beus, M.D., and Johnson-Flanagan, A.M. 1997. Purification, characterization, and structural analysis of a plant low-temperature-induced protein. Plant Physiol. 113: 367-376.

Cakir, B., Agasse, A., Gaillard, C., Saumonneau, A., Delrot, S., and Atanassova, R. 2003. A grape ASR protein involved in sugar and abscisic acid signaling. Plant Cell 15: 2165-2180.Cakir, B., Agasse, A., Gaillard, C., Saumonneau, A., Delrot, S., and Atanassova, R. 2003. A grape ASR protein involved in sugar and abscisic acid signaling. Plant cell 15: 2165-2180.

Canel, C., Bailey-Serres, J.N., and Roose, M.L. 1995. Pummelo fruit transcript homologous to ripening-induced genes. Plant Physiol. 108: 1323-1325.Canel, C., Bailey-Serres, JN, and Roose, ML 1995. Pummelo fruit transcript homologous to ripening-induced genes. Plant Physiol . 108: 1323-1325.

Chandler, P.M., and Robertson, M. 1994. Gene expression regulated by abscisic acid and its relation to stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 113-141.Chandler, P.M., and Robertson, M. 1994. Gene expression regulated by abscisic acid and its relation to stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 113-141.

Chang, S., Puryear, J.D., Dias, M.A.D.L., Funkhouser, E.A., Newton, R.J., and Cairney, J. 1996. Gene expression under water deficit in loblolly pine (Pinus taeda L.): isolation and characterization of cDNA clones. Physiol. Plant 97: 139-148.Chang, S., Puryear, JD, Dias, MADL, Funkhouser, EA, Newton, RJ, and Cairney, J. 1996. Gene expression under water deficit in loblolly pine ( Pinus taeda L.): isolation and characterization of cDNA clones. Physiol. Plant 97: 139-148.

Christensen, A.H., Sharrock, R.A., and Quail, P.H. 1992. Maize polyubiquitin gene: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. Biol. 18: 675-689.Christensen, AH, Sharrock, RA, and Quail, PH 1992. Maize polyubiquitin gene: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. Biol . 18: 675-689.

De Datta, S.K. 1981. The climatic environment and its effects on rice production. In Principles and Practices of Rice Production, Editied by De Datta, S.K., pp. 9-40. John Wiley & Sons, Chichester UK.De Datta, S.K. 1981.The climatic environment and its effects on rice production. In Principles and Practices of Rice Production, Editied by De Datta, S.K., pp. 9-40. John Wiley & Sons, Chichester UK.

Dure, L. 3rd. 1993. A repeating 11-mer amino acid motif and plant desiccation. Plant J. 3: 363-369.Dure, L. 3rd. 1993. A repeating 11-mer amino acid motif and plant desiccation. Plant J. 3: 363-369.

Furumoto, T., Hata, S., and Izui, K. 2000. Isolation and characterization of cDNAs for differentially accumulated transcripts between mesophyll cells and bundle sheath strands of maize leaves. Plant Cell Physiol. 41: 1200-1209.Furumoto, T., Hata, S., and Izui, K. 2000. Isolation and characterization of cDNAs for differentially accumulated transcripts between mesophyll cells and bundle sheath strands of maize leaves. Plant Cell Physiol. 41: 1200-1209.

Gale, M.D., and Devos, K.M. 1997. Comparative genetics in the grasses. Plant Mol. Biol. 35: 3-15.Gale, MD, and Devos, KM 1997. Comparative genetics in the grasses. Plant Mol. Biol . 35: 3-15.

Genty, B., Briantais, J.M., and Baker, N.R. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990: 87-92.Genty, B., Briantais, JM, and Baker, NR 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990: 87-92.

Gibson, S., Arondel, V., Iba, K., and Somerville, C. 1994. Cloning of a temperature-regulated gene encoding a chloroplast omega-3-desaturase from Arabidopsis thaliana. Plant Physiol. 106: 1615-1621.Gibson, S., Arondel, V., Iba, K., and Somerville, C. 1994. Cloning of a temperature-regulated gene encoding a chloroplast omega-3-desaturase from Arabidopsis thaliana . Plant Physiol . 106: 1615-1621.

Gilmour, S.J., Artus, N.N., and Thomashow, M.F. 1992. cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana. Plant Mol. Biol. 18: 13-21.Gilmour, SJ, Artus, NN, and Thomashow, MF 1992. cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana . Plant Mol. Biol. 18: 13-21.

Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D., and Thomashow, M.F. 2000. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol. 124:1854-1865.Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D., and Thomashow, M.F. 2000. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol. 124: 1854-1865.

Guy, C. 1999. Molecular responses of plants to cold shock and cold acclimation. J. Mol. Microbiol. Biotechnol. 1: 231-242.Guy, C. 1999. Molecular responses of plants to cold shock and cold acclimation. J. Mol. Microbiol. Biotechnol . 1: 231-242.

Hagit, A.Z., Pablo, A.S., and Dudy, B.Z. 1995. Tomato Asr1 mRNA and protein are transiently expressed following salt stress, osmotic stress and treatment with abscisic acid. Plant Sci. 110: 205-213.Hagit, AZ, Pablo, AS, and Dudy, BZ 1995. Tomato Asr1 mRNA and protein are transiently expressed following salt stress, osmotic stress and treatment with abscisic acid. Plant Sci . 110: 205-213.

Hiilovaara-Teijo, M., Hannukkala, A., Griffith, M., Yu, X.M., and Pihakaski-Maunsbach, K. 1999. Snow-mold-induced apoplastic proteins in winter rye leaves lack antifreeze activity. Plant Physiol. 121: 665-74.Hiilovaara-Teijo, M., Hannukkala, A., Griffith, M., Yu, XM, and Pihakaski-Maunsbach, K. 1999. Snow-mold-induced apoplastic proteins in winter rye leaves lack antifreeze activity. Plant Physiol . 121: 665-74.

Hong, S.T., Chung, J.E., An, G., and Kim, S.R. 1998. Analysis of 176 expressed sequence tags generated from cDNA clones of hot pepper by single-pass sequencing. J. Plant Biol. 41: 116-124.Hong, ST, Chung, JE, An, G., and Kim, SR 1998. Analysis of 176 expressed sequence tags generated from cDNA clones of hot pepper by single-pass sequencing. J. Plant Biol . 41: 116-124.

Hong, S.H., Kim, I.J., Yang, D.C. and Chung, W.I. 2002. Characterization of an abscisic acid responsive gene homologue from Cucumis melo. J. Exp. Bot. 53: 2271-2272.Hong, SH, Kim, IJ, Yang, DC and Chung, WI 2002. Characterization of an abscisic acid responsive gene homologue from Cucumis melo . J. Exp. Bot. 53: 2271-2272.

Houde, M., Dhindsa, R.S., and Sarhan, F. 1992. A molecular marker to select for freezing tolerance in Gramineae. Mol. Gen. Genet. 234: 43-48.Houde, M., Dhindsa, RS, and Sarhan, F. 1992. A molecular marker to select for freezing tolerance in Gramineae. Mol. Gen. Genet . 234: 43-48.

Igarashi, Y., Yoshiba, Y., Sanada, Y., Yamaguchi-Shinozaki, K., Wada, K., and Shinozaki, K. 1997. Characterization of the gene for delta1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. Plant Mol. Biol. 33: 857-865.Igarashi, Y., Yoshiba, Y., Sanada, Y., Yamaguchi-Shinozaki, K., Wada, K., and Shinozaki, K. 1997.Characterization of the gene for delta1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. Plant Mol. Biol. 33: 857-865.

Iusem, N.D., Bartholomew, D.M., Hitz, W.D., and Scolnik, P.A. 1993. Tomato (Lycopersicon esculentum) transcript induced by water deficit and ripening. Plant Physiol. 102: 1353-1354.Iusem, ND, Bartholomew, DM, Hitz, WD, and Scolnik, PA 1993. Tomato ( Lycopersicon esculentum ) transcript induced by water deficit and ripening. Plant Physiol. 102: 1353-1354.

Jeanneau, M., Gerentes, D., Foueillassar, X., Aivy, M., Vidal, J., Toppan, A., and Perez, P. 2002. Improvement of drought tolerance in maize: towards the functional valication of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4-PEPC. Biochimie 84: 1127-1135.Jeanneau, M., Gerentes, D., Foueillassar, X., Aivy, M., Vidal, J., Toppan, A., and Perez, P. 2002. Improvement of drought tolerance in maize: towards the functional valication of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4-PEPC. Biochimie 84: 1127-1135.

Jeon, J.S., Chung, Y.Y., Lee, S., Yi, G.H., Oh, B.G., and An, G. 1999. Isolation and characterization of an anther-specific gene, RA8, from rice (Oryza sativa L.). Plant Mol. Biol. 39: 35-44.Jeon, JS, Chung, YY, Lee, S., Yi, GH, Oh, BG, and An, G. 1999. Isolation and characterization of an anther-specific gene, RA8, from rice (Oryza sativa L.). Plant Mol. Biol. 39: 35-44.

Joachim, V.B., Francesco, S., and Christiane, G. 1994. Transcripts accumulating during cold storage of potato (Solanum tuberosum L.) tubers are sequence related to stress-responsive genes. Plant Physiol. 104: 445-452.Joachim, VB, Francesco, S., and Christiane, G. 1994. Transcripts accumulating during cold storage of potato ( Solanum tuberosum L.) tubers are sequence related to stress-responsive genes. Plant Physiol. 104: 445-452.

Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnol. 17: 287-291.Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnol. 17: 287-291.

Kim, S.-R., Lee, S., Kang, H.-G., Jeon, J.-S., Kim, K.-M. and An, G. 2003. A complete sequence of the pGA1611 binary vector. J. Plant Biol. 46: 211-214.Kim, S.-R., Lee, S., Kang, H.-G., Jeon, J.-S., Kim, K.-M. and An, G. 2003. A complete sequence of the pGA1611 binary vector. J. Plant Biol. 46: 211-214.

Kirsten, R., Jaglo-Ottosen, S.J., Gilmour, D.G., Zarka, O.S., Michael, F., and Thomashow, M.F. 1998. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280: 104-106.Kirsten, R., Jaglo-Ottosen, SJ, Gilmour, DG, Zarka, OS, Michael, F., and Thomashow, MF 1998. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280: 104-106.

Kishor, P.B.K., Hong, Z., Miao, G.H., Hu, C.A.A., and Verma, D.P.S. 1995. Overexpression of delta-pyrolline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108: 1387-1394.Kishor, P.B.K., Hong, Z., Miao, G.H., Hu, C.A.A., and Verma, D.P.S. 1995. Overexpression of delta-pyrolline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108: 1387-1394.

Krause, G.H. 1994. Photoinhibition of photosynthesis: an evaluation of damaging and protective mechanism. Physiol. Plantarum 74: 566-574.Krause, G.H. 1994. Photoinhibition of photosynthesis: an evaluation of damaging and protective mechanism. Physiol. Plantarum 74: 566-574.

Kurkela, S., and Borg-Franck, M. 1992. Structure and expression of kin2, one of two cold- and ABA-induced genes of Arabidopsis thaliana. Plant Mol. Biol. 19: 689-692.Kurkela, S., and Borg-Franck, M. 1992. Structure and expression of kin2 , one of two cold- and ABA-induced genes of Arabidopsis thaliana . Plant Mol. Biol. 19: 689-692.

Lee, S., Jeon, J.S., Jung, K.H., and An, G. 1999. Binary vectors for efficient transformation of rice. J. Plant Biol. 42: 310-316.Lee, S., Jeon, J. S., Jung, K. H., and An, G. 1999. Binary vectors for efficient transformation of rice. J. Plant Biol. 42: 310-316.

Lee, T.M., Lur, H.S., and Chu, C. 1993. Role of abscisic acid in chilling tolerance of rice (Oryza sativa L.) seedlings. I. Endogenous abscisic acid levels. Plant Cell Environ. 16: 481-490.Lee, TM, Lur, HS, and Chu, C. 1993. Role of abscisic acid in chilling tolerance of rice ( Oryza sativa L.) seedlings. I. Endogenous abscisic acid levels. Plant Cell Environ. 16: 481-490.

Lin, C., and Thomashow, M.F. 1992. DNA sequence analysis of a complementary DNA for cold-regulated Arabidopsis gene cor15 and characterization of the COR15 polypeptide. Plant Physiol. 99: 519-525.Lin, C., and Thomashow, MF 1992. DNA sequence analysis of a complementary DNA for cold-regulated Arabidopsis gene cor15 and characterization of the COR15 polypeptide. Plant Physiol . 99: 519-525.

Lim, J.N. 1998. Report of a research on new crop cultivar development. Rural development administration, Korea. pp. 191-193.Lim, J.N. 1998. Report of a research on new crop cultivar development. Rural development administration, Korea. pp. 191-193.

Maskin, L., Gubesblat, G. E., Moreno, J.E., Carrari, F. O., Frankel, N., Sambade, A., Rossi, M., and Iusem, N.D. 2001. Differential expression of the members of the Asr gene family in tomato (Lycopersicon esculentum). Palnt Sci. 161: 739-746.Maskin, L., Gubesblat, G. E., Moreno, J.E., Carrari, F. O., Frankel, N., Sambade, A., Rossi, M., and Iusem, N.D. 2001.Differential expression of the members of the Asr gene family in tomato (Lycopersicon esculentum). Palnt Sci. 161: 739-746.

Mbeguie-A-Mbeguie, D., Gomez, R.M., and Fils-Lucaon, B. 1997. Molecular cloning and nucleotide sequence of an abscisic acid-stress-ripening induced (ASR)-like protein from apricot fruit (acc. No. U93164). Gene expression during fruit ripening. (PGR97-166). Plant Physiol. 115: 1288.Mbeguie-A-Mbeguie, D., Gomez, RM, and Fils-Lucaon, B. 1997. Molecular cloning and nucleotide sequence of an abscisic acid-stress-ripening induced (ASR) -like protein from apricot fruit (acc. U93164). Gene expression during fruit ripening. (PGR97-166). Plant Physiol . 115: 1288.

Mizoguchi, T., Hayashida, N., Yamaguchi-Shinozaki, K., Kamada, H., and Shinozaki, K. 1993. ATMPKs: a gene family of plant MAP kinases in Arabidopsis thaliana. FEBS Lett. 336: 440-444.Mizoguchi, T., Hayashida, N., Yamaguchi-Shinozaki, K., Kamada, H., and Shinozaki, K. 1993. ATMPKs: a gene family of plant MAP kinases in Arabidopsis thaliana . FEBS Lett. 336: 440-444.

Monroy, A.F., Castonguay, Y., Laberge, S., Sarhan, F., Verzina, L.P., and Dhindsa, R.S. 1993. A new cold-induced alfalfa gene is associated with enhanced hardening at subzero temperature. Plant Physiol. 102: 873-879.Monroy, A.F., Castonguay, Y., Laberge, S., Sarhan, F., Verzina, L.P., and Dhindsa, R.S. 1993. A new cold-induced alfalfa gene is associated with enhanced hardening at subzero temperature. Plant Physiol. 102: 873-879.

Murashige, T., and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plantarum 15: 473-495.Murashige, T., and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plantarum 15: 473-495.

Nicholas, K.B., and Nicholas, H.B. 1997. GeneDoc: analysis and visualization of genetic variation. Http://www.cris.com/~Ketchup/genedoc.html.Nicholas, KB, and Nicholas, HB 1997. GeneDoc: analysis and visualization of genetic variation. Http://www.cris.com/~Ketchup/genedoc.html .

Nishiyama, I. 1984. Climatic influence of pollen formation and fertilization. In S Edited by Tsunoda N. T. pp. 153-171. Biology of Rice, Japan Sci.Soc. Press, Tokyo.Nishiyama, I. 1984. Climatic influence of pollen formation and fertilization. In S Edited by Tsunoda NT pp. 153-171. Biology of Rice, Japan Sci. Soc. Press, Tokyo.

Nylander, M., Svensson, J., Palva, E.T., and Welin, B.V. 2001. Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol. Biol. 45: 263-279.Nylander, M., Svensson, J., Palva, ET, and Welin, BV 2001. Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana . Plant Mol. Biol . 45: 263-279.

Roger, S.O., and Bendich, A.J. 1988. Extraction of DNA from plant tissues. In Plant Molecular Biology Manual, Edited by Gelvin, S.B., and Schilperoort, R.A. pp. A6 1-10 Kluwer Academic Publishers, Dordrecht, The Netherlands.Roger, SO, and Bendich, AJ 1988. Extraction of DNA from plant tissues. In Plant Molecular Biology Manual, Edited by Gelvin, SB, and Schilperoort, RA pp. A6 1-10 Kluwer Academic Publishers, Dordrecht, The Netherlands.

Rossi, M., and Iusem, N.D. 1994. Tomato (Lycopersicon esculentum) genomic clone homologous to a gene encoding an abscisic acid-induced protein. Plant Physiol. 104: 1073-1074.Rossi, M., and Iusem, ND 1994. Tomato ( Lycopersicon esculentum ) genomic clone homologous to a gene encoding an abscisic acid-induced protein. Plant Physiol. 104: 1073-1074.

Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K., and Izui, K. 2000. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J. 23: 319-327.Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K., and Izui, K. 2000. Over-expression of a single Ca2 + -dependent protein kinase confers both cold and salt / drought tolerance on rice plants. Plant J. 23: 319-327.

Schneider, A., Salamini, F., and Gebhardt, C. 1997. Expression patterns and promoter activity of the cold-regulated gene ci21A of Potato. Plant Physiol. 113: 335-345.Schneider, A., Salamini, F., and Gebhardt, C. 1997. Expression patterns and promoter activity of the cold-regulated gene ci21A of Potato. Plant Physiol . 113: 335-345.

Schreiber, U., Bilger, W., and Neubauer, C. 1994. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In Ecological Studies, Vol. 110: Ecop. Schreiber, U., Bilger, W., and Neubauer, C. 1994. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In Ecological Studies, Vol. 110: Ecop.

Scott, D.M., Michael, L.N., and Andrew, D.H. 1999. Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol. 120: 945-949. multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673-4680.Scott, DM, Michael, LN, and Andrew, DH 1999. Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol . 120: 945-949. multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673-4680.

Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninci, P., Hayashizaki, Y., and Shinozaki, K. 2001. Monitoring the expression pattern of 1300 arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant cell 13: 61-72.Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninci, P., Hayashizaki, Y., and Shinozaki, K. 2001.Monitoring the expression pattern of 1300 arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant cell 13: 61-72.

Silhavy, D., Hutvagnet, G., Barta, E., and Banfalvi, Z. 1995. Isolation and characterization of a water stress-inducible cDNA clone from Solanum chacoence. Plant Mol. Biol. 27: 587-595.Silhavy, D., Hutvagnet, G., Barta, E., and Banfalvi, Z. 1995. Isolation and characterization of a water stress-inducible cDNA clone from Solanum chacoence . Plant Mol. Biol . 27: 587-595.

Steponkus, P.L. 1984. Role of the plasma membrane in freezing injury and cold acclimation. Annu. Rev. Plant Physiol. 35: 543-584.Steponkus, PL 1984. Role of the plasma membrane in freezing injury and cold acclimation. Annu. Rev. Plant Physiol . 35: 543-584.

Stockinger, E.J., Gilmour, S.J., and Thomashow, M.F. 1997. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA 94: 1035-1040.Stockinger, EJ, Gilmour, SJ, and Thomashow, MF 1997. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat / DRE, a cis -acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA 94: 1035-1040.

Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M., Yamaguchi-Shinozaki, K., and Shinozaki, K. 2002. Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J. 29: 417-426.Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M., Yamaguchi-Shinozaki, K., and Shinozaki, K. 2002. Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana . Plant J. 29: 417-426.

Thomashow, M.F. 1999. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 571-599.Thomashow, M.F. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 571-599.

Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive hysiology of Photosynthesis, Edited by Schulze, E.D. and Caldwell, M.M. pp. 49-70. Springer Verlag, Berlin.Thompson, J. D., Higgins, D. G., and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive hysiology of Photosynthesis, Edited by Schulze, E.D. and Caldwell, M.M. pp. 49-70. Springer Verlag, Berlin.

Yu, J. et al., 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296: 79-92.Yu, J. et al., 2002. A draft sequence of the rice genome ( Oryza sativa L. ssp. Indica). Science 296: 79-92.

Vaidyanathan, R., Kuruvilla, S., and Thomas, G. 1999. Characterization and expression pattern of an abscisic acid and osmotic stress responsive gene from rice. Plant Sci. 140: 25-36.Vaidyanathan, R., Kuruvilla, S., and Thomas, G. 1999. Characterization and expression pattern of an abscisic acid and osmotic stress responsive gene from rice. Plant Sci. 140: 25-36.

Wang, C.S., Liau, Y.E., Huang, J.C., Wu, T.D., Su, C.C. and Lin, C.H. 1998. Characterization of a desiccation related protein in lily pollen during development and stress. Plant Cell Physiol. 39: 1307-1314.Wang, CS, Liau, YE, Huang, JC, Wu, TD, Su, CC and Lin, CH 1998. Characterization of a desiccation related protein in lily pollen during development and stress. Plant Cell Physiol . 39: 1307-1314.

서열목록 전자파일 첨부 Attach sequence list electronic file  

Claims (8)

삭제delete 삭제delete 삭제delete 서열목록 제 1 서열의 뉴클레오타이드 서열 중 서열번호 67-480의 뉴클레오타이드 서열로 표시되는 OsAsr1 핵산 분자를 포함하는 벡터.A vector comprising an OsAsr1 nucleic acid molecule represented by the nucleotide sequence of SEQ ID NOs: 67-480 in the nucleotide sequence of SEQ ID NO: 1. 상기 제 4 항의 벡터에 의해 형질전환된 형질전환체.A transformant transformed by the vector of claim 4. 다음의 단계를 포함하는 염 또는 건조 스트레스 내성이 증진된 형질전환 식물체의 제조방법:A method for preparing a transgenic plant having enhanced salt or dry stress resistance comprising the following steps: (a) 식물 세포 또는 식물 조직을 상기 제 4 항의 벡터로 형질전환하는 단계; (a) transforming a plant cell or plant tissue with the vector of claim 4; (b) 형질전환된 식물세포 또는 식물조직을 선별하는 단계; 및 (b) selecting the transformed plant cells or plant tissues; And (c) 상기 형질전환된 식물세포 또는 식물조직으로부터 식물체를 재분화시켜 형질전환 식물체를 수득하는 단계.(c) regenerating the plant from the transformed plant cell or plant tissue to obtain a transformed plant. 제 6 항에서 있어서, 상기 식물체는 벼, 보리, 밀 또는 옥수수인 것을 특징으로 하는 제조방법.7. The method of claim 6, wherein the plant is rice, barley, wheat or corn. 상기 제 6 항 또는 제 7 항의 제조방법에 의해 제조된 염 또는 건조 스트레스에 대한 내성이 증진된 형질전환 식물체.A transgenic plant having enhanced resistance to salt or dry stress prepared by the method of claim 6 or 7.
KR1020050019847A 2004-03-09 2005-03-09 - 1 Stress-Inducible 1 Gene and Protein Enhancing Tolerance to Abitoic Stress KR100695072B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020040015804 2004-03-09
KR1020040015804A KR20050117630A (en) 2004-03-09 2004-03-09 Cold -inducible osasr1 gene and protein enhancing cold tolerance

Publications (2)

Publication Number Publication Date
KR20060043798A KR20060043798A (en) 2006-05-15
KR100695072B1 true KR100695072B1 (en) 2007-03-14

Family

ID=34918730

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020040015804A KR20050117630A (en) 2004-03-09 2004-03-09 Cold -inducible osasr1 gene and protein enhancing cold tolerance
KR1020050019847A KR100695072B1 (en) 2004-03-09 2005-03-09 - 1 Stress-Inducible 1 Gene and Protein Enhancing Tolerance to Abitoic Stress

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020040015804A KR20050117630A (en) 2004-03-09 2004-03-09 Cold -inducible osasr1 gene and protein enhancing cold tolerance

Country Status (2)

Country Link
KR (2) KR20050117630A (en)
WO (1) WO2005085279A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014025137A1 (en) * 2012-08-06 2014-02-13 명지대학교 산학협력단 Uip1 gene for increasing resistance of plants to drought stress and use thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114292318B (en) * 2021-12-31 2023-05-05 江西农业大学 Protein for enhancing abiotic stress resistance of plants, coding gene, primer pair, expression vector and application of protein
CN116891521B (en) * 2023-09-11 2023-11-28 中国科学院昆明植物研究所 SpDREB2B protein for regulating drought resistance and salt tolerance of plants and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5981842A (en) 1995-10-12 1999-11-09 Cornell Research Foundation, Inc. Production of water stress or salt stress tolerant transgenic cereal plants
JP2001231574A (en) 2000-02-25 2001-08-28 Iwate Prefecture Low-temperature-resistant oryza sativa transferred with glutathione-s-transferase gene
KR20050079085A (en) * 2004-02-04 2005-08-09 대한민국(관리부서:농촌진흥청) A novel protein kinase gene which may be involved in calcium signaling in stress responses of rice and its encoded protein

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5981842A (en) 1995-10-12 1999-11-09 Cornell Research Foundation, Inc. Production of water stress or salt stress tolerant transgenic cereal plants
JP2001231574A (en) 2000-02-25 2001-08-28 Iwate Prefecture Low-temperature-resistant oryza sativa transferred with glutathione-s-transferase gene
KR20050079085A (en) * 2004-02-04 2005-08-09 대한민국(관리부서:농촌진흥청) A novel protein kinase gene which may be involved in calcium signaling in stress responses of rice and its encoded protein

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
서열검색

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014025137A1 (en) * 2012-08-06 2014-02-13 명지대학교 산학협력단 Uip1 gene for increasing resistance of plants to drought stress and use thereof

Also Published As

Publication number Publication date
KR20050117630A (en) 2005-12-15
KR20060043798A (en) 2006-05-15
WO2005085279A1 (en) 2005-09-15

Similar Documents

Publication Publication Date Title
Kim et al. Ectopic expression of a cold-responsive OsAsr1 cDNA gives enhanced cold tolerance in transgenic rice plants
JP4365021B2 (en) Plant stress tolerance and aging delay
US8957282B2 (en) Yield and stress tolerance in transgenic plants IV
EP2912938B1 (en) Improved yield and stress tolerance in transgenic plants
US20050155105A1 (en) Increasing salt tolerance in plants by overexpression of vacuolar Na+/H+ transporters
EP1620539A2 (en) Transgenic plants with increased glycine-betaine
AU2019261797A1 (en) Plants having enhanced abiotic stress resistance
CA2323756C (en) Genetic engineering salt tolerance in crop plants
BRPI1011495B1 (en) METHOD FOR PRODUCTION OF A TRANSGENIC PLANT HAVING INCREASED TOLERANCE TO HEAT STRESS IN RELATION TO WILD TYPE CONTROL
US7968768B2 (en) Generation of plants with improved drought tolerance
KR100695072B1 (en) - 1 Stress-Inducible 1 Gene and Protein Enhancing Tolerance to Abitoic Stress
CN102449154B (en) Methods and compositions for stress tolerance in plants
KR100671225B1 (en) - - Method for generating Cold or Freezing Tolerance in Plants by Using Nucleotide Sequence encoding glycine-rich RNA-binding proteins
WO2004106528A1 (en) Transgenic monocotyledonous plants overexpressing a nhx protein and having improved growth charcteristics and a method for making the same
EP1237403A1 (en) Method of usinf mapk4 and orthologues thereof to control plant disease and plantgrowth
KR20140052625A (en) COLD -INDUCIBLE OsDhn1 GENE AND PROTEIN ENHANCING COLD TOLERANCE
KR100599211B1 (en) Stress-Inducible ?????32 Gene and Protein Enhancing Tolerance to Abiotic Stress
KR101905267B1 (en) Abiotic Stress-Inducible OsSta2 Gene, Protein and Transformant Enhancing Tolerance to Salt Stress
Kim Study on the abiotic stress responsive OsAsr1 gene in rice
WO2004016775A2 (en) Plants having modified growth and a method for making the same
KR101373104B1 (en) Stress Inducible Transgenic plants
KR20140052626A (en) Compositions for enhancing drought stress tolerance and transgenic plants using the same

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120306

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130311

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee