KR100693409B1 - Nonvolatile Memory Device Based on Resistance Switching of Oxide ? Method Thereof - Google Patents

Nonvolatile Memory Device Based on Resistance Switching of Oxide ? Method Thereof Download PDF

Info

Publication number
KR100693409B1
KR100693409B1 KR1020050003886A KR20050003886A KR100693409B1 KR 100693409 B1 KR100693409 B1 KR 100693409B1 KR 1020050003886 A KR1020050003886 A KR 1020050003886A KR 20050003886 A KR20050003886 A KR 20050003886A KR 100693409 B1 KR100693409 B1 KR 100693409B1
Authority
KR
South Korea
Prior art keywords
oxide
layer
oxide film
oxygen
resistance
Prior art date
Application number
KR1020050003886A
Other languages
Korean (ko)
Other versions
KR20060083368A (en
Inventor
황현상
이동수
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Priority to KR1020050003886A priority Critical patent/KR100693409B1/en
Publication of KR20060083368A publication Critical patent/KR20060083368A/en
Application granted granted Critical
Publication of KR100693409B1 publication Critical patent/KR100693409B1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of the switching material, e.g. layer deposition
    • H10N70/026Formation of the switching material, e.g. layer deposition by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/25Multistable switching devices, e.g. memristors based on bulk electronic defects, e.g. trapping of electrons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx

Abstract

본 발명은 산화막의 저항변화를 이용한 비휘발성 기억소자 및 그 제조방법에 관한 것이다. 보다 상세하게는 저항변화를 이용한 ReRAM 소자를 구현하기 위하여, 산소가 많이 부족하여 조성비(stoichiometry)가 맞지 않고 이로 인해 전도성이 높은 제 1층(bottom oxide)과 조성비가 맞고 저항이 큰 제 2층(top oxide)으로 구성된 다층의 조성비가 서로 다른 산화막을 형성하는 것을 특징으로 하는 비휘발성 반도체 기억소자 및 제조방법에 관한 것이다.The present invention relates to a nonvolatile memory device using a resistance change of an oxide film and a method of manufacturing the same. More specifically, in order to implement a ReRAM device using a change in resistance, a large amount of oxygen does not match the composition ratio (stoichiometry), and therefore, the first layer (bottom oxide) having high conductivity and the second layer having high composition ratio and high resistance ( The present invention relates to a nonvolatile semiconductor memory device and a manufacturing method characterized in that an oxide film having a multi-layer composition ratio consisting of a top oxide) is formed.

본 발명은 ReRAM용 소자를 제작하기 위하여 실리콘 웨이퍼(Silicon wafer) 또는 전도성 전극위에 여러 가지 금속산화물과 증착방법을 이용하여 약 50∼100nm 두께의 금속산화물의 박막을 증착시킨다. 증착시 고온에서 산소의 양을 최소화함으로써, 금속산화물 보다 산소의 조성이 현저히 낮은 금속산화물을 형성시켜 전도성이 높은 산화막을 형성하게 된다. 이 산화막을 산소분위기에서 저온으로 저온산화시켜 표면에 약 10∼30nm 두께의 저항이 높은 산화막층을 형성하여 구성됨을 특징으로 한다.In order to fabricate a ReRAM device, a thin film of metal oxide having a thickness of about 50 to 100 nm is deposited on a silicon wafer or a conductive electrode by using various metal oxides and deposition methods. By minimizing the amount of oxygen at high temperatures during deposition, it forms metal oxides with significantly lower oxygen composition than metal oxides. An oxide film having high conductivity is formed. The oxide film is oxidized at a low temperature in an oxygen atmosphere at low temperature to form an oxide film layer having a high resistance of about 10 to 30 nm on the surface.

본 발명의 ReRAM 소자는 비휘발성 메모리로 필수적인 10년 동안의 데이터 유지(data retention) 특성을 가지고 있을 뿐만 아니라, 소자의 전기적 특성은 저항변화로 인해 현저한 MOSFET의 드레인 전류의 변화를 나타냄으로써 양질의 메모리 소자로 제공될 수 있다. The ReRAM device of the present invention not only has a 10-year data retention characteristic, which is essential as a nonvolatile memory, but also the electrical characteristics of the device exhibit a significant change in the drain current of the MOSFET due to a change in resistance, thereby providing a good quality memory. It may be provided as an element.

Description

산화막의 저항변화를 이용한 비휘발성 기억소자 및 그 제조방법{Nonvolatile Memory Device Based on Resistance Switching of Oxide & Method Thereof} Nonvolatile Memory Device and its Manufacturing Method Using Resistance Change of Oxide Film {Nonvolatile Memory Device Based on Resistance Switching of Oxide & Method Thereof}             

도 1은 본 발명의 ZrOx 산화막의 단면 SEM 사진으로 두층의 oxide를 가진 단면구조를 나타낸 것이다. Figure 1 is a cross-sectional SEM photograph of the ZrO x oxide film of the present invention showing a cross-sectional structure having two layers of oxide.

도 2는 XPS를 이용한 ZrOx의 조성 분석으로 (a) 표면 oxide 층, (b) bulk oxide층을 나타낸 것이다. Figure 2 shows the composition of ZrO x using XPS (a) surface oxide layer, (b) shows a bulk oxide layer.

도 3은 대표적인 ReRAM소자의 switching cycle에 따른 전류와 저항 변화특성을 나타낸 것이다. Figure 3 shows the current and resistance change characteristics according to the switching cycle of a typical ReRAM device.

도 4는 대표적인 ReRAM소자의 data retention 특성을 나타낸 것이다. 4 shows data retention characteristics of a typical ReRAM device.

도 5의 (a)는 1T-1R ReRAM 소자의 단면 구조이고, (b)는 1T-1R 소자의 On/Off 특성을 나타낸 것이다.FIG. 5A illustrates a cross-sectional structure of a 1T-1R ReRAM device, and FIG. 5B illustrates On / Off characteristics of a 1T-1R device.

본 발명은 산화막의 저항변화를 이용한 비휘발성 기억소자 및 그 제조방법에 관한 것이다. 보다 상세하게는 산소가 많이 부족하여 조성비(stoichiometry)가 맞지 않고 이로 인해 전도성이 높은 제 1층(bottom oxide)과 조성비가 맞고 저항이 큰 제 2층(top oxide)으로 구성된 다층의 조성비가 서로 다른 산화막을 형성하는 것을 특징으로 하는 비휘발성 반도체 기억소자 및 제조방법에 관한 것이다.The present invention relates to a nonvolatile memory device using a resistance change of an oxide film and a method of manufacturing the same. More specifically, the composition ratio (stoichiometry) does not match due to the lack of oxygen, and thus the composition ratio of the multilayer composed of the first conductive layer having high conductivity and the second layer having high resistance and high resistance is different. A nonvolatile semiconductor memory device and a manufacturing method characterized by forming an oxide film.

지금까지 비휘발성 메모리로 상용화된 플래쉬(FLASH) 메모리의 경우, 플로우팅 폴리실리콘(floating polysilicon)이나 질화실리콘(silicon nitride)에 전자를 저장하거나 제거하여 문턱전압(Vth)을 변화시켜 기억소자로 이용한다. 이에 반하여 최근 연구 되고 있는 PRAM(phase change memory), MRAM(magnetic memory)등은 외부에서 인가한 열/자기장을 이용하여 저항변화를 발생시켜 기억소자로 사용한다.Flash memory, which has been commercially available as a non-volatile memory, has been used to store or remove electrons in floating polysilicon or silicon nitride to change the threshold voltage (V th ) to the storage device. I use it. On the contrary, recently studied PRAM (phase change memory) and MRAM (magnetic memory) generate resistance change by using externally applied heat / magnetic field and use them as memory devices.

본 발명은 저항변화를 이용하는 측면에서는 위 2개의 차세대 기억 소자와 유사하지만, 전압 펄스(pulse)를 이용하여 절연막의 저항변화를 일으키는 것이 특징으로, 상대적으로 PRAM/MRAM 보다 간단한 구조와 제조공정을 구현할 수 있다. The present invention is similar to the above two next-generation memory devices in terms of the use of resistance change, but it is characterized by causing the resistance change of the insulating film using a voltage pulse, so that a simpler structure and a manufacturing process than a PRAM / MRAM can be realized. Can be.

본 발명의 산화물(Oxide)의 저항변화를 이용한 ReRAM 소자는 1960-1970년대 연구되었다가 최근 다시 활발히 연구가 시작되고 있는 분야이다. 지금까지 발표된 연구결과를 종합해 보면, 기본적인 스위칭(switching) 특성을 다양한 산화물 재료에 대해 ReRAM 특성을 연구하였으나, 구체적인 스위칭기작(switching mechanism)에 대해서는 원인 규명이 미흡하고, 제작된 소자의 전기적 특성이 불균일하여, 스위칭 횟수와 셋/리셋(set/reset) 전압, 리셋커런트(reset current)등이 차세대 Giga/Tera-bit급 메모리로 상용화하기에는 많은 문제점을 가지고 있었다.The ReRAM device using the resistance change of the oxide of the present invention has been studied in the 1960s and 1970s, and has recently been actively studied. Based on the research results published so far, the basic switching characteristics have been studied for various oxide materials, but the specific characteristics of the switching mechanism are insufficient. Due to this nonuniformity, the number of switching, set / reset voltage, and reset current have many problems to commercialize the next generation Giga / Tera-bit memory.

본 발명은 ReRAM 산화물(oxide)의 스위칭 메카니즘(switching mechanism)의 물리적인 이해를 바탕으로, 이상적인 ReRAM 소자의 구조와 공정을 게시한다. ReRAM 소자의 최적 동작조건을 위하여 2층의 oxide 형성이 필수적이다. 즉 산소가 많이 부족하여 조성비(stoichiometry)가 맞지 않고 이로 인해 전도성이 높은 제 1층(bottom oxide)과 조성비가 맞고 저항이 큰 제 2층(top oxide)으로 구성된 다층의 조성비가 서로 다른 산화막을 형성시킨다.The present invention discloses the structure and process of an ideal ReRAM device based on a physical understanding of the switching mechanism of ReRAM oxide. Formation of two layers of oxide is essential for optimal operating conditions of ReRAM devices. That is, due to the lack of oxygen, the composition ratio (stoichiometry) does not match, which results in the formation of an oxide film having a different composition ratio of a multilayer composed of a highly conductive first oxide and a second oxide having a high resistance and a high resistance. Let's do it.

본 발명은 기억소자에 고전압 펄스를 인가하여 저항이 큰 산화물 절연체 박막에 국부적으로 적정 수준의 전류가 흐를 수 있도록 전도성 필라멘트(filament)를 형성한 후, 기억소자에 적정수준의 전압 펄스를 인가하여, 전도성 산화막내에 전자가 트랩 (trap)되어 전류가 낮게 흐르게 하거나, 트랩된 전자가 소멸되어 전류가 크게 흐르게 조절한다. 이러한 저항 변화 특성을 이용하여 비휘발성 기억 소자로 사용한다.According to the present invention, a conductive filament is formed to locally flow an appropriate level of current through a high-resistance oxide insulator thin film by applying a high voltage pulse to a memory device, and then a voltage pulse of an appropriate level is applied to the memory device. The electrons are trapped in the conductive oxide film so that the current flows low, or the trapped electrons disappear and the current flows largely. This resistance change characteristic is used as a nonvolatile memory device.

즉, ReRAM을 상용화하기 위해서는, 산화물을 이용하여 안정적이고 높은 스위칭 횟수, 저전력 동작 특성을 가지는 새로운 oxide 제조공정에 대한 필요성과 소자의 스위칭 및 전도기작(conduction mechanism)에 대한 체계적인 연구와 이해가 필요하다. In other words, the commercialization of ReRAM requires the need for a new oxide manufacturing process with stable, high switching frequency and low power operation characteristics using oxide, and systematic research and understanding of device switching and conduction mechanism. .

본 발명과 관련된 종래기술로는 미국특허 3,336,514(Bistable metal-niobium oxide-Bismuth thin film device)는 Nb-metal 전극위에 Nb2O5 단일 산화막을 이용하여 ReRAM 특성을 확인한 것이고, 로셀(C. Rossel et al., Electrical current distribution across a metal-insulator-metal structure during bistable switching, JOURNAL OF APPLIED PHYSICS VOLUME 90, NUMBER 6, 15 SEPTEMBER 2001, p.2892, IBM)등은 에피택시(epitaxy)로 성장된 cr-doped SrZrO3 산화물(Oxide)을 이용한 ReRAM 동작 특성을 확인하고, 스위칭 메카니즘으로 산화물 내에 존재하는 크롬(Cr) 이온이 전자를 trap/detrap 한다고 이해하고 있으나, 이는 단일 박막공정이라는 점에서 본 발명의 이론에 따를 경우, 단일 박막공정은 스위칭 특성이 상대적으로 불안정할 것으로 판단되어 본 발명과는 기술적 구성이 다른 것들이다.In the related art related to the present invention, U.S. Patent No. 3,336,514 (Bistable metal-niobium oxide-Bismuth thin film device) is to confirm the ReRAM characteristics using a Nb 2 O 5 single oxide film on the Nb-metal electrode, C. Rossel et al. al., Electrical current distribution across a metal-insulator-metal structure during bistable switching, JOURNAL OF APPLIED PHYSICS VOLUME 90, NUMBER 6, 15 SEPTEMBER 2001, p.2892, IBM). The characteristics of the ReRAM using doped SrZrO 3 oxide (Oxide) are confirmed, and it is understood that chromium (Cr) ions present in the oxide trap / detrap electrons as a switching mechanism. In this case, the single thin film process is considered to be relatively unstable switching characteristics, the technical configuration is different from the present invention.

본 발명은 ReRAM 소자의 전도/스위칭 기작에 대한 체계적인 이해를 바탕으로 최적의 소자 구조 및 공정을 구현함에 있어서, 산소가 많이 부족하여 조성비(stoichiometry)가 맞지 않고 이로 인해 전도성이 높은 제1층(bottom oxide)과 조성비가 맞고 저항이 큰 제2층(top oxide)으로 구성된 다층의 조성비가 서로 다른 산화막을 형성하는 것을 특징으로 하는 비휘발성 반도체 기억소자 및 제조방법에 관한 기술이다. The present invention implements an optimal device structure and process based on a systematic understanding of the conduction / switching mechanism of a ReRAM device. As a result, oxygen is insufficient in the composition of the stoichiometry and thus the first layer (bottom) has high conductivity. and a method of manufacturing a nonvolatile semiconductor memory device characterized in that an oxide film having a different composition ratio of a multilayer composed of a second layer (top oxide) having a high composition ratio and a high resistance is formed.

즉 다층의 조성비가 다르고 이로 인해 저항이 다른 산화물 층을 형성함으로써, NDR(negative differential resistance)효과를 유발하여, 저항변화 메모리로 사용할 수 있다. 기억소자에 고전압 펄스를 인가하여, 저항이 큰 산화물 박막에 국부적으로 적정 수준의 전류가 흐를 수 있도록 전도성 필라멘트를 형성한 후, 소자에 적정수준의 전압 펄스를 인가하여, 전도성 산화막내에 전자가 트랩(trap)되어 전류가 낮게 흐르게 하거나, 트랩된 전자가 소멸되어 전류가 크게 흐르게 조절한다. 이러한 저항 변화 특성을 이용하여 비휘발성 기억소자로 사용하는 데 있다.
In other words, by forming an oxide layer having a different composition ratio and having different resistances, a NDR (negative differential resistance) effect is induced, and thus it can be used as a resistance change memory. After applying a high voltage pulse to the memory device to form a conductive filament so that an appropriate level of current flows in the oxide thin film having a high resistance, an appropriate level of voltage pulse is applied to the device to trap electrons in the conductive oxide film. trapped to make the current flow low, or the trapped electrons disappear to control the current to flow large. This resistance change characteristic is used as a nonvolatile memory device.

본 발명은 기억소자에 고전압 펄스를 인가하여, 저항이 큰 산화물 절연체 박막에 국부적으로 적정 수준의 전류가 흐를 수 있도록 전도성 필라멘트를 형성한 후, 기억소자에 적정수준의 전압 펄스를 인가하여, 전도성 산화막내에 전자가 트랩 (trap)되어 전류가 낮게 흐르게 하거나, 트랩된 전자가 소멸되어 전류가 크게 흐르게 조절한다. 이러한 저항변화 특성을 이용하여 아래와 같은 단계별 공정을 이용하여 ReRAM용 소자를 제작한다. According to the present invention, a conductive filament is formed to apply a high voltage pulse to a memory device, so that an appropriate level of current flows in an oxide insulator thin film having a high resistance, and then a voltage pulse of an appropriate level is applied to the memory device. The electrons are trapped in the current so that the current flows low, or the trapped electrons disappear so that the current flows largely. Using the resistance change characteristics, a device for ReRAM is manufactured by using the following steps.

본 발명은 산소가 많이 부족하여 조성비(stoichiometry)가 맞지 않고 이로 인해 전도성이 높은 제 1층(bottom oxide)과 조성비가 맞고 저항이 큰 제 2층(top oxide)으로 구성된 다층의 조성비가 서로 다른 산화막을 형성하는 것을 특징으로 하는 비휘발성 반도체 기억소자 및 제조방법에 관한 기술이다.According to the present invention, there is a lack of oxygen, so that the composition ratio (stoichiometry) does not match, and thus the oxide layer having a different composition ratio of a multilayer composed of a first oxide having a high conductivity and a second oxide having a high resistance and a high resistance. A nonvolatile semiconductor memory device and a method for manufacturing the same are formed.

* 제 1층(Bottom Oxide) 증착공정* 1st layer (Bottom Oxide) deposition process

실리콘 웨이퍼(Silicon wafer) 또는 전도성 전극위에 여러 가지 증착공정중에서 반응성 스퍼터링(reactive sputtering)을 이용하여 박막을 약 50∼100nm 두께 의 ZrOx로 증착시켰다. 상기에서 반응 스퍼터링 이외에도 증착방법은 PLD(pulsed-laser deposition), ALD(atomic layer deposition), CVD(chemical vapor deposition), MBE(molecular beam epitaxy), e-beam evaporation 중에서 선택하여 사용할 수도 있다. Thin films were deposited with ZrO x with a thickness of about 50-100 nm using reactive sputtering during various deposition processes on silicon wafers or conductive electrodes. In addition to the reaction sputtering, the deposition method may be selected from among pulsed-laser deposition (PLD), atomic layer deposition (ALD), chemical vapor deposition (CVD), molecular beam epitaxy (MBE), and e-beam evaporation.

스퍼터링시 공정조건은 증착온도 400∼500℃, 아르곤과 산소의 혼합비율은 30:1 정도로 산소의 양을 최소화함으로써, ZrO2 보다 산소의 조성이 현저히 낮은 ZrOx를 형성함으로써, 전도성이 높은 제 1층(Bottom Oxide)의 산화막을 형성한다. In sputtering, the process conditions are as follows: the deposition temperature is 400 to 500 ° C., and the mixing ratio of argon and oxygen is 30: 1 to minimize the amount of oxygen, thereby forming ZrO x having a significantly lower composition of oxygen than ZrO 2 . An oxide film of a high conductivity first layer (Bottom Oxide) is formed.

산화물 박막재료로 여러 금속산화물을 사용할 수 있다. 본 발명에서 이러한 금속산화물의 일예로서 ZrOx, NiOx, HfOx, TiOx, Ta2 Ox, Al2Ox, La2Ox, Nb2O x, SrTiOx, Cr-doped SrTiOx, Cr-doped SrZrOx 중에서 선택된 어느 하나를 사용할 수 있다. Various metal oxides can be used as the oxide thin film material. Examples of such metal oxides in the present invention include ZrO x , NiO x , HfO x , TiO x , Ta 2 O x , Al 2 O x , La 2 O x , Nb 2 O x , SrTiO x , Cr-doped SrTiO x , Any one selected from Cr-doped SrZrO x may be used.

상기 산화물 박막재료의 금속산화물에 있어서, 적정 조성비 x는 1.5∼1.9이다. 즉 화학양론적인 산소의 조성인 2보다 약 5∼25% 작은 경우를 이용할 수 있다.In the metal oxide of the oxide thin film material, an appropriate composition ratio x is 1.5 to 1.9. That is, the case where it is about 5 to 25% smaller than 2 which is a stoichiometric composition of oxygen can be used.

* 제 2층(Top Oxide) 증착공정* 2nd layer (Top Oxide) deposition process

상기와 같이 형성된 전도성이 높은 산화막을 산소분위기에서 200∼300℃의 온도로 저온산화시켜, 표면에 약 10∼30nm 두께의 저항이 높은 제 2층(Top Oxide)의 산화막을 형성한다. 일예로 제1층의 산화막으로 ZrOx을 증착하는 경우 제 2층의 산화막은 ZrO2층을 형성한다. The highly conductive oxide film formed as described above is oxidized at a temperature of 200 to 300 ° C. in an oxygen atmosphere to form a second oxide (Top Oxide) oxide film having a high resistance of about 10 to 30 nm on the surface. For example, when ZrO x is deposited as the oxide film of the first layer, the oxide film of the second layer forms a ZrO 2 layer.

이하 본 발명을 다음의 실시예에 의하여 설명하고자 한다. 그러나 이들은 본 발명의 일실시예로써 본 발명의 설명을 보다 용이하게 설명하기 위할 것일 뿐 본 발명의 권리범위가 이들 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described by the following examples. However, these are only one embodiment of the present invention to explain the description of the present invention more easily, and the scope of the present invention is not limited to these embodiments.

<실시예 1><Example 1>

실리콘 웨이퍼 위에 금속산화물로 ZrO2을 반응성 스퍼터링으로 박막을 증착함에 있어서 스퍼터링시 공정조건은 증착온도 400℃, 아르곤과 산소의 혼합비율은 30 : 1로 산소의 양을 최소화함으로써, 약 50∼100nm 두께의 ZrOx 박막을 증착시켰다. ZrO2 보다 산소의 조성이 현저히 낮은 제 1층(Bottom Oxide)의 산화막인 ZrOx를 형성시켜 전도성이 높은 산화막을 얻었다. 이때 적정 조성비 x는 1.5∼1.9이다. 즉 화학양론적인 산소의 조성인 2보다 약 5∼25% 작은 경우이다.In the deposition of ZrO 2 thin films with metal oxides on the silicon wafer by reactive sputtering, the process conditions during sputtering are deposition temperature of 400 ° C., and the mixing ratio of argon and oxygen is 30: 1, minimizing the amount of oxygen, so that the thickness is about 50-100 nm. ZrO x thin films were deposited. ZrO x , which is an oxide film of the first layer (Bottom Oxide), is significantly lower than that of ZrO 2. An oxide film with high conductivity was obtained. At this time, the appropriate composition ratio x is 1.5 to 1.9. That is, it is about 5 to 25% smaller than 2 which is a stoichiometric composition of oxygen.

상기의 제 1층의 산화막을 산소분위기에서 300℃의 저온에서 산화시켜, 표면에 약 10∼30nm 두께의 저항이 높은 제 2층(Top Oxide)의 산화막인 ZrO2층을 형성시켰다. The oxide film of the first layer was oxidized at a low temperature of 300 ° C. in an oxygen atmosphere to form a ZrO 2 layer, which is an oxide film of a second layer (Top Oxide) having a high resistance of about 10 to 30 nm on the surface.

<실시예 2><Example 2>

실시예 1과 동일하게 reactive sputtering으로 증착하고 제 1층의 산화막인 ZrOx를 형성시켜 전도성이 높은 산화막을 얻었다. 상기의 제 1층의 산화막위에 아르곤과 산소의 혼합비율은 4 : 1로 산소의 분압을 현저히 증가시켜 약 10∼30nm 두께의 저항이 높은 제 2층의 산화막인 ZrO2층을 표면에 형성시켰다. In the same manner as in Example 1, reactive sputtering was carried out to form ZrO x , which is an oxide film of the first layer. An oxide film with high conductivity was obtained. On the oxide film of the first layer, the mixing ratio of argon and oxygen was 4: 1, which significantly increased the partial pressure of oxygen to form a ZrO 2 layer, which is an oxide film of the second layer having a high resistance of about 10 to 30 nm, on the surface.

<실시예 3><Example 3>

실시예 1과 동일하게 reactive sputtering으로 증착하고 제 1층의 산화막인 TiOx를 형성시켜 전도성이 높은 산화막을 얻었다. 상기의 제 1층의 산화막을 산소분위기에서 300℃로 저온에서 산화시켜, 표면에 약 10∼30nm 두께의 저항이 높은 제 2층의 산화막인 TiO2층을 형성시켰다. In the same manner as in Example 1, reactive sputtering was carried out to form TiO x , an oxide film of the first layer. An oxide film with high conductivity was obtained. The oxide film of the first layer was oxidized at a low temperature at 300 ° C. in an oxygen atmosphere to form a TiO 2 layer, which is an oxide film of a second layer having a high resistance of about 10 to 30 nm in thickness on the surface.

<실시예 4><Example 4>

실시예 1과 동일하게 reactive sputtering으로 증착하고 제 1층의 산화막인 NiOx를 형성시켜 전도성이 높은 산화막을 얻었다. 상기의 제 1층의 산화막을 산소분위기에서 300℃로 저온에서 산화시켜, 표면에 약 10∼30nm 두께의 저항이 높은 제 2층의 산화막인 NiO2층을 형성시켰다. In the same manner as in Example 1, reactive sputtering was carried out to form NiO x , which is an oxide film of the first layer. An oxide film with high conductivity was obtained. The oxide film of the first layer was oxidized at a low temperature of 300 ° C. in an oxygen atmosphere to form a NiO 2 layer, which was an oxide film of a second layer having a high resistance of about 10 to 30 nm in thickness on the surface.

<실시예 5><Example 5>

실시예 1과 동일하게 PLD로 증착하고 제 1층의 산화막인 SrTiOx를 형성시켜 전도성이 높은 산화막을 얻었다. 상기의 제 1층의 산화막을 산소분위기에서 300℃로 저온에서 산화시켜, 표면에 약 10∼30nm 두께의 저항이 높은 제2층의 산화막인 SrTiO3층을 형성시켰다. In the same manner as in Example 1, deposition was carried out using PLD to form SrTiO x , which is an oxide film of the first layer. An oxide film with high conductivity was obtained. The oxide film of the first layer was oxidized at a low temperature of 300 ° C. in an oxygen atmosphere to form an SrTiO 3 layer, which is an oxide film of a second layer having a high resistance of about 10 to 30 nm in thickness, on the surface.

본 발명의 실시예 1의 공정을 통해 형성한 산화막의 단면 전자현미경(SEM) 사진이 도 1로서 두층의 산화막으로 구성되어 있음을 알 수 있다. It can be seen that the cross-sectional electron microscope (SEM) photograph of the oxide film formed through the process of Example 1 of the present invention is composed of two layers of oxide films as shown in FIG. 1.

도 2a 및 2b는 XPS(x-ray photoelectron spectroscopy) 결과로서 표면에서 관찰한 도 2a의 경우, 조성비가 맞는 ZrO2를 형성하는데 반해 bulk에서 관찰한 도 2b의 경우, 조성비가 맞지 않고, 금속 Zr에서 주로 관찰되는 XPS peak이 보인다. 즉, 표면과 bulk가 조성이 다른 산화막으로 형성됨을 알 수 있다. Figures 2a and 2b is the result of x-ray photoelectron spectroscopy (XPS) on the surface of Figure 2a, while forming a ZrO 2 of the composition ratio, while in the case of Figure 2b observed in bulk, the composition ratio does not fit, in the metal Zr The XPS peak usually observed is seen. That is, it can be seen that the surface and the bulk are formed of oxide films having different compositions.

본 발명에서 구현한 다층 산화물 박막의 증착공정을 이용하여 제작한 비휘발성 기억소자의 전기적 특성을 도 3에 나타내었다. 인가한 전압의 크기에 따라 저항이 다른 두개의 state를 형성함을 알 수 있었다. The electrical characteristics of the nonvolatile memory device fabricated using the deposition process of the multilayer oxide thin film implemented in the present invention are shown in FIG. 3. It can be seen that the resistance forms two different states according to the applied voltage.

다층의 저항이 다른 산화물 박막을 형성한 후, 고전압 펄스를 인가할 경우, 대부분의 전압이 고저항 박막에 인가되고, 이로 인해, 고저항 산화막에 국부적인 전도성 필라멘트(filament)가 형성된다. 이때, 적정수준의 커렌트 컴플라이언스(current compliance)를 인가함으로써 필라멘트의 물리적인 크기와 이를 통해 흐를 수 있는 전류의 최대치가 결정된다. After the formation of the oxide thin films having different resistances in the multilayer, when a high voltage pulse is applied, most of the voltages are applied to the high resistance thin films, whereby local conductive filaments are formed in the high resistance oxide films. At this time, by applying a current level of compliance (current compliance) of the appropriate level is determined the physical size of the filament and the maximum value of the current that can flow through it.

조성비가 맞지 않는 산화물 박막에는 다량의 트랩 스테이트(state)가 존재한 다. 특히 존재하는 산소 공공은 아래와 같이 양(+)의 전하를 띤 산소공공과 전자로 유기될 수 있다. A large amount of trap states exist in the oxide thin film having a poor composition ratio. In particular, the existing oxygen vacancies can be induced into positively charged oxygen pores and electrons as follows.

ZrO2-X Vo ↔Vo+2 + 2e- ZrO 2-X Vo ↔Vo +2 + 2e -

즉, 외부에서 인가한 전기장은 산화막내에 존재하는 전자를 이동시켜, 산화막내에 양의 전하가 남게 되고, 이는 산화막 내의 유효 전기장의 증가를 유발시켜, 외부에서 인가된 낮은 전기장에서도, 많은 전류가 흐르게 되고 이로 인해 저항이 낮은 상태를 유지할 수 있다.That is, the electric field applied from the outside moves electrons present in the oxide film, so that a positive charge remains in the oxide film, which causes an increase in the effective electric field in the oxide film, and a large amount of current flows even at a low electric field applied from the outside. This allows the resistance to remain low.

그러나 전류의 임계치 이상으로 전압을 인가하면, 상부에 존재하는, 필라멘트를 가진 고저항 산화막에 의해 더 이상의 전류 증가를 막게 되고, 전자가 전도성 절연막에 모이게 되어, 전자와 양의 전하를 띤 산소공공이 결합하여 중성의 산소공공을 형성한다. 즉 산화막 내에 존재하는 양의 전하가 없어짐으로서, 유효전기장이 감소하게 되어, 외부에서 걸어준 낮은 전압하에서는 절연막의 저항이 상대적으로 증가하게 된다.However, if a voltage is applied above the threshold of current, further increase of current is prevented by the high-resistance oxide film having a filament on top, and electrons are collected in the conductive insulating film, so that oxygen and positively charged oxygen pores To form neutral oxygen vacancies. In other words, the amount of the electric charge present in the oxide film is eliminated, so that the effective electric field is reduced, and the resistance of the insulating film is relatively increased under the low voltage applied from the outside.

본 발명을 통해 제작한 ReRAM 소자의 데이터 리텐션(data retention) 특성이 도 4에 나타나 있다. 비휘발성 메모리로 필수적인 10년 동안의 테이타 리텐션 특성을 가지고 있음을 확인하였다. Data retention characteristics of the ReRAM device fabricated through the present invention are shown in FIG. 4. It has been confirmed that it has 10 years of data retention characteristics that are essential for nonvolatile memory.

또한 본 발명을 이용하여 제작한 1Tr-1R 단위소자의 개략도와 소자의 전기적 특성은 도 5에 나타나 있다. 도 5의 (a)는 1T-1R ReRAM 소자의 단면 구조이고, (b)는 1T-1R 소자의 On/Off 특성을 나타낸 것이다. 저항변화로 인해 현저한 MOSFET의 드레인 전류의 변화를 보여줌으로, 메모리 소자로 사용될 수 있다.In addition, the schematic and the electrical characteristics of the 1Tr-1R unit device fabricated using the present invention is shown in FIG. FIG. 5A illustrates a cross-sectional structure of a 1T-1R ReRAM device, and FIG. 5B illustrates On / Off characteristics of a 1T-1R device. It can be used as a memory device by showing a significant change in the drain current of the MOSFET due to the change in resistance.

본 발명에서 구현한 다층 산화물 박막으로 제작한 ReRAM 소자는 NDR(negative differential resistance)효과를 유발시켜 비휘발성 메모리의 필수적인 10년 동안의 data retention특성을 가지고 있을 뿐만 아니라, 소자의 전기적 특성은 저항변화로 인해 현저한 MOSFET의 드레인 전류의 변화를 나타냄으로써 양질의 메모리 소자로 제공될 수 있다.The ReRAM device fabricated from the multilayer oxide thin film implemented in the present invention not only has the essential ten-year data retention characteristic of the nonvolatile memory by inducing a negative differential resistance (NDR) effect, but also the electrical characteristics of the device are changed by resistance change. Due to the significant change in the drain current of the MOSFET can be provided to a good memory device.

Claims (12)

삭제delete 삭제delete 삭제delete 삭제delete 반응물로서 산소의 공급량을 줄여 화학양론적으로 산소가 부족한 조성을 가지는 금속산화물로 구성되는 제1층을 형성하는 단계; 및 상기 제1층의 금속산화물을 산소분위기에서 산화시켜 화학양론을 만족하는 금속산화물로 구성되는 제2층을 형성하는 단계를 포함하는 산화막의 저항변화를 이용한 비휘발성 기억소자의 제조방법Reducing a supply amount of oxygen as a reactant to form a first layer composed of a metal oxide having a composition which lacks oxygen stoichiometrically; And oxidizing the metal oxide of the first layer in an oxygen atmosphere to form a second layer comprising a metal oxide satisfying the stoichiometry. 삭제delete 제 5항에 있어서, 제 1층의 산화물 박막을 형성시킴에 있어 산소의 양은 400∼500℃에서 아르곤과 산소의 혼합비율을 30 : 1로 하여 50∼100nm 두께로 증착시키는 것을 특징으로 하는 산화막의 저항변화를 이용한 비휘발성 기억소자의 제조방법6. The oxide film according to claim 5, wherein in forming the oxide thin film of the first layer, the amount of oxygen is deposited at a thickness of 50 to 100 nm at a mixture ratio of argon and oxygen of 30: 1 at 400 to 500 占 폚. Manufacturing method of nonvolatile memory device using resistance change 제 5항에 있어서, 제 2층의 산화물 박막을 형성시킴에 있어 산소분위기에서 200∼300℃로 저온에서 산화시켜, 표면에 10∼30nm 두께로 증착시키는 것을 특징으로 하는 산화막의 저항변화를 이용한 비휘발성 기억소자의 제조방법The method of claim 5, wherein in forming the oxide thin film of the second layer, the oxide film is oxidized at a low temperature of 200 to 300 DEG C in an oxygen atmosphere and deposited on the surface at a thickness of 10 to 30 nm. Manufacturing method of volatile memory device 제 5항에 있어서, 제 2층의 산화물 박막을 형성시킴에 있어 증착공정중의 아르곤과 산소의 혼합비율을 4 : 1 조절하여 조성비가 맞는 저항이 높은 약 10∼30nm의 박막을 증착시키는 것을 특징으로 하는 산화막의 저항변화를 이용한 비휘발성 기억소자의 제조방법The method of claim 5, wherein in forming the oxide thin film of the second layer, a mixture of argon and oxygen in the deposition process is adjusted to 4: 1 to deposit a thin film of about 10 to 30 nm having a high resistance to match the composition ratio. Method for manufacturing nonvolatile memory device using change in resistance of oxide film 제 5항에 있어서, 산화물 박막 재료는 ZrOx, NiOx, HfOx, TiOx , Ta2Ox, Al2Ox, La2Ox, Nb2Ox, SrTiOx, Cr-doped SrTiOx , 또는 Cr-doped SrZrOx 중에서 선택된 어느 하나인 것을 특징으로 하는 산화막의 저항변화를 이용한 비휘발성 기억소자의 제조방법The oxide thin film material of claim 5, wherein the oxide thin film material is ZrO x , NiO x , HfO x , TiO x , Ta 2 O x , Al 2 O x , La 2 O x , Nb 2 O x , SrTiO x , Cr-doped SrTiO x , Or Cr-doped SrZrO x is a method of manufacturing a nonvolatile memory device using a change in resistance of the oxide film, characterized in that 상기의 박막재료에서 x는 1.5∼1.9이다.In the above thin film material, x is 1.5 to 1.9. 삭제delete 삭제delete
KR1020050003886A 2005-01-14 2005-01-14 Nonvolatile Memory Device Based on Resistance Switching of Oxide ? Method Thereof KR100693409B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050003886A KR100693409B1 (en) 2005-01-14 2005-01-14 Nonvolatile Memory Device Based on Resistance Switching of Oxide ? Method Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050003886A KR100693409B1 (en) 2005-01-14 2005-01-14 Nonvolatile Memory Device Based on Resistance Switching of Oxide ? Method Thereof

Publications (2)

Publication Number Publication Date
KR20060083368A KR20060083368A (en) 2006-07-20
KR100693409B1 true KR100693409B1 (en) 2007-03-12

Family

ID=37173748

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050003886A KR100693409B1 (en) 2005-01-14 2005-01-14 Nonvolatile Memory Device Based on Resistance Switching of Oxide ? Method Thereof

Country Status (1)

Country Link
KR (1) KR100693409B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8445882B2 (en) 2010-07-23 2013-05-21 Samsung Electronics Co., Ltd. Non-volatile memory element and memory device including the same

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7960774B2 (en) 2005-12-05 2011-06-14 Electronics And Telecommunications Research Institute Memory devices including dielectric thin film and method of manufacturing the same
KR100818271B1 (en) * 2006-06-27 2008-03-31 삼성전자주식회사 Threshold switching operation method of nonvolitile memory device induced by pulse voltage
EP2077580B1 (en) * 2006-11-17 2011-11-30 Panasonic Corporation Nonvolatile memory element, nonvolatile memory device, nonvolatile semiconductor device, and method for manufacturing nonvolatile memory element
KR100795350B1 (en) 2006-11-24 2008-01-17 삼성전자주식회사 Non-volatile memory device, method for manufacturing the same and method for operating the same
KR100982424B1 (en) 2006-11-28 2010-09-15 삼성전자주식회사 Manufacturing Method for the Resistive random access memory device
KR100847309B1 (en) 2007-02-27 2008-07-21 삼성전자주식회사 Method for manufacturing non-volatile memory device
KR101432344B1 (en) * 2007-03-05 2014-08-20 인터몰레큘러 인코퍼레이티드 Methods for forming nonvolatile memory elements with resistive-switching metal oxides
WO2008126366A1 (en) 2007-04-09 2008-10-23 Panasonic Corporation Variable resistance element, nonvolatile switching element, and variable resistance memory device
JP4253038B2 (en) 2007-06-05 2009-04-08 パナソニック株式会社 Nonvolatile memory element, manufacturing method thereof, and nonvolatile semiconductor device using the nonvolatile memory element
US8445885B2 (en) * 2008-12-04 2013-05-21 Panasonic Corporation Nonvolatile memory element having a thin platinum containing electrode
KR101105981B1 (en) 2009-04-28 2012-01-18 한양대학교 산학협력단 Resistive RAM and Method of Fabricating the same
KR101034838B1 (en) * 2009-12-08 2011-05-17 서울대학교산학협력단 High-speed switching resistance switching element and method of switching resistance switching element
KR20110132125A (en) 2010-06-01 2011-12-07 삼성전자주식회사 Nonvolatile memory device and the method of fabricating the same
WO2012042897A1 (en) * 2010-10-01 2012-04-05 パナソニック株式会社 Method for manufacturing non-volatile memory element and nonvolatile memory element
KR20120139082A (en) 2011-06-16 2012-12-27 삼성전자주식회사 Multi-bit memory element, memory device including the same and manufacturing methods thereof
US8546275B2 (en) * 2011-09-19 2013-10-01 Intermolecular, Inc. Atomic layer deposition of hafnium and zirconium oxides for memory applications
US9231204B2 (en) * 2012-09-28 2016-01-05 Intel Corporation Low voltage embedded memory having conductive oxide and electrode stacks
KR101402085B1 (en) * 2012-10-15 2014-06-02 연세대학교 산학협력단 Manufacturing method of resistance switching random access memory using reduction reaction
KR101487626B1 (en) * 2013-11-28 2015-01-29 포항공과대학교 산학협력단 Nonvolatile memory and manufacturing method thereof
US10355205B2 (en) 2014-12-18 2019-07-16 Intel Corporation Resistive memory cells including localized filamentary channels, devices including the same, and methods of making the same
KR102527408B1 (en) * 2016-06-03 2023-05-02 에스케이하이닉스 주식회사 method of fabricating switching device and resistive random access memory

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241396A (en) 2002-02-07 2004-08-26 Sharp Corp Method for manufacturing resistance varying element, method for manufacturing nonvolatile resistance varying memory device, and nonvolatile resistance varying memory device
KR20040101069A (en) * 2003-05-21 2004-12-02 샤프 가부시키가이샤 Oxygen content system and method for controlling memory resistance properties
KR20040104967A (en) * 2003-06-03 2004-12-14 삼성전자주식회사 Nonvolatile memory device composing one switching device and one resistant material and method of manufacturing the same
KR20050105297A (en) * 2004-04-28 2005-11-04 삼성전자주식회사 Memory device using multi-layers with graded resistance change

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241396A (en) 2002-02-07 2004-08-26 Sharp Corp Method for manufacturing resistance varying element, method for manufacturing nonvolatile resistance varying memory device, and nonvolatile resistance varying memory device
KR20040101069A (en) * 2003-05-21 2004-12-02 샤프 가부시키가이샤 Oxygen content system and method for controlling memory resistance properties
KR20040104967A (en) * 2003-06-03 2004-12-14 삼성전자주식회사 Nonvolatile memory device composing one switching device and one resistant material and method of manufacturing the same
KR20050105297A (en) * 2004-04-28 2005-11-04 삼성전자주식회사 Memory device using multi-layers with graded resistance change

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8445882B2 (en) 2010-07-23 2013-05-21 Samsung Electronics Co., Ltd. Non-volatile memory element and memory device including the same

Also Published As

Publication number Publication date
KR20060083368A (en) 2006-07-20

Similar Documents

Publication Publication Date Title
KR100693409B1 (en) Nonvolatile Memory Device Based on Resistance Switching of Oxide ? Method Thereof
US9722179B2 (en) Transition metal oxide resistive switching device with doped buffer region
JP5339716B2 (en) Resistive memory device and manufacturing method thereof
EP3381066B1 (en) A memristor device and a method of fabrication thereof
US8891284B2 (en) Memristors based on mixed-metal-valence compounds
US9818939B2 (en) Resistive switching devices having a switching layer and an intermediate electrode layer and methods of formation thereof
KR100913395B1 (en) Memory devices and method for fabricating the same
US8487289B2 (en) Electrically actuated device
JP2018538701A5 (en)
WO2012169195A1 (en) Variable resistance element, and method for producing same
KR101136886B1 (en) Nonvolatile resistance random access memory device
RU2706207C1 (en) Method for production of memristor with nanoconcenters of electric field
KR101176422B1 (en) Nonvolatile resistance random access memory device
Han et al. Al2O3 interfacial layer derived hybrid conductive filament for the reliability enhancement of Ta2O5-based resistive random access memory
KR100986018B1 (en) Resistance RAM Device and Method for forming of Resistance RAM Device
KR20100133761A (en) Resistive random access memory device and method for fabricating the same
KR102081020B1 (en) Selector and method of fabricating the same
KR100727650B1 (en) Nonvolatile memory device with epitaxy buffer layer and manufacturing method thereof
TWI443820B (en) Diode memory
KR100644869B1 (en) Nonvolatile memory device based on resistance switching of crystalline oxide
Cao et al. Resistive switching characteristics in TiO 2/LaAlO 3 heterostructures sandwiched in Pt electrodes
KR101039191B1 (en) Nonvolatile memory device and method of manufacturing the same
Akazawa Observation of both potential barrier-type and filament-type resistance switching with sputtered LiNbO3 thin films
WO2023048649A2 (en) Non-volatile memory with oxygen scavenger regions and methods of making the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121211

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131211

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141218

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161205

Year of fee payment: 10

R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20170224

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee