KR100679644B1 - Method for improvement of hydrogen storage and hydrogen storage medium according to said method - Google Patents
Method for improvement of hydrogen storage and hydrogen storage medium according to said method Download PDFInfo
- Publication number
- KR100679644B1 KR100679644B1 KR1020050124305A KR20050124305A KR100679644B1 KR 100679644 B1 KR100679644 B1 KR 100679644B1 KR 1020050124305 A KR1020050124305 A KR 1020050124305A KR 20050124305 A KR20050124305 A KR 20050124305A KR 100679644 B1 KR100679644 B1 KR 100679644B1
- Authority
- KR
- South Korea
- Prior art keywords
- hydrogen storage
- fluorine
- storage medium
- hydrogen
- doping
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C11/00—Use of gas-solvents or gas-sorbents in vessels
- F17C11/005—Use of gas-solvents or gas-sorbents in vessels for hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
- B82B3/0009—Forming specific nanostructures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/012—Hydrogen
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
본 발명은 수소저장능력을 향상시키는 방법 및 그에 따른 수소저장매체에 관한 것으로, 보다 구체적으로는 수소저장매체에 불소를 이용한 표면개질 및 금속 도핑을 이용한 표면개질을 통하여 수소저장능력을 향상시키는 방법 및 상기의 방법에 의하여 수소저장능력이 향상된 수소저장매체 관한 것이다.The present invention relates to a method for improving hydrogen storage capacity and a hydrogen storage medium, and more particularly, to a method for improving hydrogen storage capacity through surface modification using fluorine and surface modification using metal doping. The present invention relates to a hydrogen storage medium having improved hydrogen storage capability.
산업혁명 이후, 화석연료의 사용은 지속적으로 증가하여 왔고, 이로 인한 환경오염, 지구 온난화 등의 문제가 크게 대두 되고 있다. 현재에는 화석연료를 대체할 수 있는 에너지원에 관한 연구가 다 방면에서 진행되고 있고, 태양열, 지열, 풍력, 해양에너지 등의 자연에너지와 물을 원료로 하는 수소에너지가 화석연료의 대체 에너지원으로 부각되고 있다. 그 중에서도 수소에너지는 지구상에 풍부하게 존재하는 물을 원료로 하고, 어떤 연소과정에서도 용이하게 원래의 수소로 되돌아가기 때문에 이상적인 청정에너지로 부각되고 있다. 수소는 그 상태로 연소시키면 열에너지로, 내연기관을 이용하면 기계에너지로, 또 산소와 반응시켜 전기를 발생 하는 연료전지에도 이용할 수 있다. 그러나 수소는 고밀도로 안전하게 저장하기가 어렵기 때문에 에너지원으로서의 수소의 활용은 크게 제한받고 있는 실정이다. 따라서, 에너지원으로 수소를 활용하기 위해서는 수소저장량을 획기적으로 증대시킬수 있는 저장재료 및 저장방법에 관한 연구가 선행되어야 할 것이다. Since the Industrial Revolution, the use of fossil fuels has been steadily increasing, resulting in environmental pollution and global warming. Currently, researches on energy sources that can replace fossil fuels are being conducted in various fields, and natural energy such as solar, geothermal, wind, and marine energy and hydrogen energy based on water are alternative energy sources for fossil fuels. It is emerging. Among them, hydrogen energy is emerging as an ideal clean energy because water is abundantly present on the earth as a raw material and easily returns to the original hydrogen in any combustion process. Hydrogen can be used as a thermal energy when it is burned as it is, as a mechanical energy when an internal combustion engine is used, and as a fuel cell that generates electricity by reacting with oxygen. However, since hydrogen is difficult to store safely at a high density, the use of hydrogen as an energy source is greatly limited. Therefore, in order to utilize hydrogen as an energy source, studies on storage materials and storage methods that can drastically increase the storage capacity of hydrogen should be preceded.
현재까지 개발된 수소저장 방법으로는 액체수소저장법, 기체수소저장법, 그리고 수소저장합금의 형태로 저장하는 방법이 있다. 기체수소저장법이나 액체수소저장법은 상온에서 폭발 위험성이 있으며 저장비용이 높다는 단점이 있다. 수소저장합금의 형태로 저장하는 방법은 상온에서 20~40 atm 이하의 압력으로 수소를 안전하게 저장할 수 있지만, 무게가 무겁고 가격이 비싸며 수소저장능력에서도 가솔린이나 디젤보다 떨어진다는 문제점이 있다. Hydrogen storage methods developed to date include liquid hydrogen storage, gas hydrogen storage, and hydrogen storage alloys. Gas hydrogen storage and liquid hydrogen storage have the disadvantages of explosion risk at room temperature and high storage costs. The storage method in the form of a hydrogen storage alloy can safely store hydrogen at a pressure of 20-40 atm or less at room temperature, but has a problem in that it is heavy, expensive, and inferior to gasoline or diesel in hydrogen storage capacity.
상기와 같은 문제점으로 인해 탄소재료를 이용한 수소저장 방법이 시도되기 시작하였다. 탄소재료는 단일의 원소로 구성되어 있음에도 불구하고, 결합의 형태가 다양하며, 화학적 안정성, 우수한 전기 및 열전도성, 고강도, 고탄성율, 생체친화성 등의 특성을 가진 우수한 재료이다. 또한 탄소재료는 경량이며 자원량이 풍부하다는 장점도 지니고 있다. 탄소재료 중에서도 탄소나노튜브(Carbon Nanotube; CNT)는 우수한 기계적 특성, 전기적 선택성, 뛰어난 전계방출 특성, 고효율의 수소저장매체로서의 특성을 지니는 것으로 알려지고 있다. 탄소나노튜브의 합성방법으로는 전기방전법, 열분해법, 레이저증착법, 플라즈마 화학 기상 증착법, 열화학기상증착법, 전기분해방법, Flame합성방법 등이 있다. 현재의 탄소나노튜브에 관한 연구는 합성방법과 소재로서의 응용에 관한 부분에 집중되고 있다. 탄소나노튜브 가 우수한 수소저장매체로서의 특성을 지니고는 있으나, 현재의 수준으로는 미흡한 실정이며, 탄소나노튜브를 수소저장매체로 활용하기 위해서는 현재 알려진 것보다 향상된 수소저장능력이 필수적으로 요구된다. Due to the above problems, a hydrogen storage method using a carbon material has been attempted. Although the carbon material is composed of a single element, it is a good material having various forms of bonding and having properties such as chemical stability, excellent electrical and thermal conductivity, high strength, high elastic modulus, and biocompatibility. Carbon materials also have the advantage of being lightweight and resource-rich. Among carbon materials, carbon nanotubes (CNTs) are known to have excellent mechanical properties, electrical selectivity, excellent field emission characteristics, and high efficiency hydrogen storage media. Examples of carbon nanotube synthesis include electro discharge, pyrolysis, laser deposition, plasma chemical vapor deposition, thermochemical vapor deposition, electrolysis, and flame synthesis. Current research on carbon nanotubes is focused on the synthesis method and application as a material. Although carbon nanotubes have characteristics as excellent hydrogen storage media, they are inadequate at the present level, and in order to utilize carbon nanotubes as a hydrogen storage media, improved hydrogen storage capacity is required.
본 발명은 상기의 문제점을 해결하기 위한 것으로, 수소저장매체에 불소를 이용한 표면개질 및 금속 도핑을 이용한 표면개질을 통하여 수소저장능력을 향상 시킬 수 있게 됨을 목적으로 한다. The present invention is to solve the above problems, an object of the present invention is to improve the hydrogen storage capacity through surface modification using fluorine and metal doping in the hydrogen storage medium.
상기의 목적을 달성하기 위하여 본 발명은 밀폐된 반응기 내에 불소를 주입하여 소정의 조건하에서 수소저장매체와 불소를 직접 반응시키는 단계; 수소저장매체에 금속을 도핑 하는 단계를 순차적 또는 역순으로 수행함으로써 수소저장능력을 향상시키는 방법을 제공한다. In order to achieve the above object, the present invention comprises the steps of injecting fluorine in a sealed reactor to directly react the hydrogen storage medium and fluorine under a predetermined condition; It provides a method of improving the hydrogen storage capacity by performing a step of doping the metal to the hydrogen storage medium in a sequential or reverse order.
상기의 수소저장매체와 불소의 반응은 상온, 총 반응압력 1기압의 조건에서 수행될 수 있으며, 상기 총 반응압력 중에서 불소의 부분압이 0.01 내지 0.5기압인 것이 바람직하다. The reaction between the hydrogen storage medium and fluorine may be performed at room temperature and under a total reaction pressure of 1 atm. The partial pressure of fluorine is preferably 0.01 to 0.5 atm.
본 발명에 있어서, 상기의 금속은 니켈(Ni), 칼륨(K),백금(Pt), 팔라듐(Pd), 이리듐(Ir), 코발트(Co), 아연(Zn), 텅스텐(W), 크롬(Cr), 몰리브덴(Mo) 중의 하나 또는 이들로부터 선택되는 둘 이상의 성분임을 특징으로 한다. In the present invention, the metal is nickel (Ni), potassium (K), platinum (Pt), palladium (Pd), iridium (Ir), cobalt (Co), zinc (Zn), tungsten (W), chromium (Cr), molybdenum (Mo), or two or more components selected from them.
본 발명에 있어서, 상기의 수소저장매체는 탄소재료인 것을 특징으로 하며, 보다 바람직하게는 탄소나노튜브, 활성탄, 활성탄소섬유, 피치계 나노섬유, 흑연 중의 어느 하나이다. In the present invention, the hydrogen storage medium is characterized in that the carbon material, more preferably any one of carbon nanotubes, activated carbon, activated carbon fibers, pitch-based nanofibers, graphite.
또한 본 발명은 상기의 방법에 의하여 수소저장능력이 향상된 수소저장매체를 제공한다. In another aspect, the present invention provides a hydrogen storage medium with improved hydrogen storage capacity by the above method.
이하에서 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
우선 본 발명에서의 수소저장매체는 탄소재료를 이용한다. 보다 구체적으로는 탄소나노튜브, 활성탄, 활성탄소섬유, 피치(pitch)계 나노섬유, 흑연 등이 이용된다. First, the hydrogen storage medium in the present invention uses a carbon material. More specifically, carbon nanotubes, activated carbon, activated carbon fibers, pitch-based nanofibers, graphite, and the like are used.
본 발명은 수소저장매체에 소정의 조건하에서 불소(Fluorine)를 이용하여 표면개질을 하는 단계를 거친다. 불소는 반응성이 강하며, 전기음성도(electronegativity)가 4.0으로 모든 원소 중에서 가장 크다는 특성을 지니고 있다. 탄소재료의 표면특성은 bulk 특성과 같은 구성 원소 간에 작용되는 모든 요소뿐만 아니라 추가로 free surface라는 독특한 환경에서 나타나는 상호작용의 종합적인 결과에 의해 결정된다. 따라서 이러한 상호 작용력이 발현되도록 하는 기능성들을 표면에 도입함으로써 소재의 표면특성을 조절할 수 있다. The present invention undergoes a step of surface modification using fluorine in a hydrogen storage medium under predetermined conditions. Fluorine is highly reactive and has the highest electronegativity of 4.0, the largest of all elements. The surface properties of the carbon material are determined by the overall result of the interactions that occur in the unique environment of the free surface, as well as all the elements that act between the constituent elements, such as the bulk properties. Therefore, it is possible to control the surface properties of the material by introducing the functionalities that allow such interaction force to be expressed on the surface.
본 발명에서의 불소를 이용한 표면개질은 Direct Fluorination법에 의한다. Direct Fluorination법은 불소가스에 의해 표면을 개질하는 화학적 처리방법으로, 개질하고자하는 매체에 불소가스를 직접적으로 접촉시키는 방법이다. Direct Fluorination법은 표면개질을 위한 장치가 간단하고, 상온, 저진공 하에서 장치를 운전하므로 경제적이며, 표면개질 반응의 개시를 위한 개시제나 촉매 또는 에너지가 필요 없고, 처리조건에 따라 친수·발수성, 접착성, WBL(weak boundary layer)의 제거 및 기능성기의 도입 등과 같은 다양한 기능성을 소재의 표면에 부여할 수 있다. Surface modification using fluorine in the present invention is by the direct fluorination method. Direct fluorination is a chemical treatment that modifies the surface by fluorine gas. It is a method in which fluorine gas is brought into direct contact with a medium to be reformed. Direct Fluorination method is simple because the device for surface modification is economical because it operates at room temperature and low vacuum, and it does not need initiator, catalyst or energy for initiating the surface modification reaction. Various functionalities may be imparted to the surface of the material, such as, for example, removal of a weak boundary layer (WBL) and introduction of functional groups.
본 발명은 수소저장매체에 금속을 도핑하는 단계를 거친다. 본 발명에서 수소저장매체에 도핑되는 금속은 니켈(Ni), 칼륨(K), 백금(Pt), 팔라듐(Pd), 이리듐(Ir), 코발트(Co), 아연(Zn), 텅스텐(W), 크롬(Cr), 몰리브덴(Mo) 중의 하나 또는 이들로부터 선택되는 둘 이상의 성분이다. 수소저장매체에 금속을 도핑하는 방법은 다양하다. 본 발명의 실시예에서는 금속의 도핑 방법으로 함침법을 이용하였다. 즉, 각 금속의 특성에 적합한 유기용매에 금속을 용융시킨 용액에 수소저장매체를 일정시간 담지시킨 후, 환원시키는 방법에 의하였다. The present invention undergoes a step of doping a metal in the hydrogen storage medium. The metal doped in the hydrogen storage medium in the present invention is nickel (Ni), potassium (K), platinum (Pt), palladium (Pd), iridium (Ir), cobalt (Co), zinc (Zn), tungsten (W) , Chromium (Cr), molybdenum (Mo), or two or more components selected from them. There are various methods of doping metal to the hydrogen storage medium. In the embodiment of the present invention, the impregnation method was used as a doping method of the metal. That is, the hydrogen storage medium was supported for a predetermined time in a solution in which a metal was melted in an organic solvent suitable for the characteristics of each metal, and then reduced.
이하에서 본 발명을 실시예에 의하여 더욱 구체적으로 설명한다. Hereinafter, the present invention will be described in more detail with reference to Examples.
실시예Example 1 One
다중벽 탄소나노튜브(Multiwalled Carbon Nanotube; MWCNT)에 불소를 이용한 표면개질 및 니켈(Ni) 도핑을 통한 표면개질을 하고 수소저장량을 측정하였다. 본 실시예에 사용된 다중벽 탄소나노튜브는 NanoKarbon社 로부터 입수하였다. Multiwalled Carbon Nanotube (MWCNT) was subjected to surface modification using fluorine and surface modification through nickel (Ni) doping and hydrogen storage. The multi-walled carbon nanotubes used in this example were obtained from NanoKarbon.
먼저 밀폐된 반응기에 다중벽 탄소나노튜브(MWCNT)를 넣고 상온, 총 반응압 력 1기압, 불소 대 질소비를 0.2 : 0.8로 하여 10분간 표면개질을 하였다. First, multi-walled carbon nanotubes (MWCNT) were placed in a sealed reactor and subjected to surface modification for 10 minutes at room temperature, total reaction pressure of 1 atm, and fluorine to nitrogen ratio of 0.2: 0.8.
다음으로 아세톤에 Ni(NO3)2·H2O을 10mM이 될 때까지 넣어 용융시키고, 상기의 용액에 불소처리 과정을 거친 다중벽 탄소나노튜브를 넣어 도핑을 시킨 후, 60℃의 오븐에서 4시간을 건조하였다. 다음으로 도핑 된 니켈 이온의 환원을 위하여 100℃, 수소분위기에서 1시간 처리하였다. Next, Ni (NO 3 ) 2 · H 2 O was added to acetone until it became 10 mM, and the solution was doped with fluorine-treated multi-walled carbon nanotubes and then doped in an oven at 60 ° C. 4 hours were dried. Next, to reduce the doped nickel ions were treated for 1 hour at 100 ℃, hydrogen atmosphere.
수소저장매체의 기공구조(비표면적, 미세공부피, 세공부피, 세공지름)는 Micromeritics社의 장치(ASAP 2010)를 이용하여 -196℃에서의 상대압력(P/P0)에 따른 질소기체의 흡착량을 측정하고, BET(Brunauer-Emmett-Tellertlr) 흡착등온선, T-Plot, H-K(Horvath-Dawazoe) 모델을 이용하여 결정하였다. The pore structure of the hydrogen storage medium (specific surface area, micropore volume, pore volume, pore diameter) is determined by the nitrogen gas according to the relative pressure (P / P 0 ) at -196 ° C using Micromeritics Co. Adsorption amount was measured and determined using Bruneter-Emmett-Tellertlr (BET) adsorption isotherm, T-Plot, and Horvath-Dawazoe (HK) model.
수소저장량은 PCT(Pressure-Concentration-Temperature)장치를 이용하여 30℃에서 0~100기압에 걸쳐 측정하고, Readlch-Kwang식을 이용하여 계산하였다. Hydrogen storage was measured over 0 ~ 100 at 30 ℃ using a Pressure-Concentration-Temperature (PCT) device, was calculated using the Readlch-Kwang equation.
하기의 표는 상기와 같은 처리 및 측정과정을 거친 다중벽 탄소나노튜브의 결과치이다. The table below shows the results of the multi-walled carbon nanotubes that have undergone the treatment and measurement as described above.
〔표 1〕다중벽 탄소나노튜브에서의 결과치(불소처리 → 금속도핑)Table 1 Results from multi-walled carbon nanotubes (fluorine treatment → metal doping)
탄소재료에서의 수소저장능력은 물리흡착으로 간주되므로, 비표면적(specific surface area)이 크고, 미세공부피(micro-pore volume)가 크면 수소저장능력이 우수하다고 알려져 있다. Hydrogen storage capacity in carbon materials is regarded as physical adsorption, so it is known that hydrogen storage capacity is excellent when the specific surface area is large and the micro-pore volume is large.
본 실시예에서 처리 전과 불소처리 후의 비표면적과 미세공부피를 살펴보면, 비표면적은 증가하였고, 미세공부피는 감소하였다. 따라서 비표면적과 미세공부피의 변화만으로는 수소저장량의 변화를 예측하기가 쉽지 않다. 그러나 측정된 수소저장량은 약 36%(1.18 → 1.61)가 증가하였다. 상기의 결과로부터 불소 처리가 수소저장능력을 향상시킨다는 것을 알 수 있다. In the present example, the specific surface area and the micropore volume before and after the fluorine treatment were increased, and the specific surface area was increased and the micropore volume was decreased. Therefore, it is not easy to predict the change of hydrogen storage only by the change of specific surface area and micropore volume. However, the measured hydrogen storage increased by about 36% (1.18 → 1.61). From the above results, it can be seen that the fluorine treatment improves the hydrogen storage capacity.
또한 니켈도핑 전·후의 결과를 살펴보면 비표면적과 미세공부피 모두가 증가하였음을 알 수 있다. 따라서 수소저장량의 증가를 예측할 수 있으며, 이러한 예측과 같이 실제 측정량도 약 34%(1.61 → 2.16)가 증가하였다. In addition, the results before and after nickel doping showed that both the specific surface area and the micropore volume were increased. Therefore, the increase in hydrogen storage can be predicted, and the actual measured amount increased by about 34% (1.61 → 2.16).
처리 전과 불소 처리 및 니켈 도핑 후의 결과를 살펴보면 수소저장량이 약 83%(1.18 → 2.16)가 증가하였다. The results of pretreatment and after fluorine treatment and nickel doping showed an increase of about 83% (1.18 → 2.16) of hydrogen storage.
실시예Example 2 2
활성탄소섬유(Activated Carbon Fiber; ACF)에 불소를 이용한 표면개질 및 니켈(Ni) 도핑을 통한 표면개질을 하고 수소저장량을 측정하였다. 본 실시예에 사용된 활성탄소섬유는 (주)오사카가스(상품명 adol 15)로부터 입수하였다. 본 실시예에 있어 처리 및 측정 절차는 상기 실시예 1과 동일하며, 그 결과를 하기의 표에 나타내었다. Activated Carbon Fiber (ACF) was surface modified by fluorine and surface modified by nickel (Ni) doping and hydrogen storage was measured. The activated carbon fibers used in this example were obtained from Osaka Gas Co., Ltd. (trade name adol 15). The treatment and measurement procedures in this Example are the same as in Example 1 above, and the results are shown in the following table.
〔표 2〕활성탄소섬유에서의 결과치(불소처리 → 금속도핑)Table 2 Result of Activated Carbon Fiber (Fluorine Treatment → Metal Doping)
본 실시예에서 처리 전과 불소처리 후의 비표면적과 미세공부피를 살펴보면, 비표면적은 증가하였고, 미세공부피는 감소하였다. 따라서 비표면적과 미세공부피의 변화만으로는 수소저장량의 변화를 예측하기가 쉽지 않다. 그러나 측정된 수소저장량은 약 41%(1.31 → 1.85)가 증가하였다. 상기의 결과로부터 불소 처리가 수소저장능력을 향상시킨다는 것을 알 수 있다. In the present example, the specific surface area and the micropore volume before and after the fluorine treatment were increased, and the specific surface area was increased and the micropore volume was decreased. Therefore, it is not easy to predict the change of hydrogen storage only by the change of specific surface area and micropore volume. However, the measured hydrogen storage increased by about 41% (1.31 → 1.85). From the above results, it can be seen that the fluorine treatment improves the hydrogen storage capacity.
또한 니켈도핑 전·후의 결과를 살펴보면 비표면적과 미세공부피 모두가 증가하였음을 알 수 있다. 따라서 수소저장량의 증가를 예측할 수 있으며, 이러한 예측과 같이 실제 측정량도 약 36%(1.85 → 2.47)가 증가하였다. In addition, the results before and after nickel doping showed that both the specific surface area and the micropore volume were increased. Therefore, the increase in hydrogen storage can be predicted, and the actual measured amount increased by about 36% (1.85 → 2.47).
처리 전과 불소 처리 및 니켈 도핑 후의 결과를 살펴보면 수소저장량이 약 89%(1.31 → 2.47)가 증가하였다. The results of pretreatment and after fluorine treatment and nickel doping showed an increase of about 89% (1.31 → 2.47) of hydrogen storage.
실시예Example 3 3
실시예 1과 동일한 조건 및 동일한 방법에 의하되, 니켈(Ni) 도핑을 먼저 하고, 불소를 이용한 처리를 나중에 하여 수소저장량을 측정하였다. 본 실시예의 목적은 처리 순서가 수소저장량에 영향을 주는가를 검증하기 위함이다. 결과를 하기의 표에 나타내었다. Under the same conditions and the same method as in Example 1, nickel (Ni) doping was performed first, followed by treatment with fluorine, and the hydrogen storage amount was measured. The purpose of this example is to verify whether the treatment sequence affects the hydrogen storage. The results are shown in the table below.
〔표 3〕다중벽 탄소나노튜브에서의 결과치(금속도핑 → 불소처리)Table 3 Results from multi-walled carbon nanotubes (metal doping → fluorine treatment)
본 실시예에서 처리 전과 니켈도핑 및 불소처리 후의 결과를 살펴보면 수소저장량이 약 80%(1.18 → 2.12)가 증가하였다. 불소처리 후에 니켈도핑을 한 실시예 1의 결과와 비교해보면 약 3%가 떨어지나, 이러한 차이는 전체적인 증가량과 비교해볼 때 무시할 만한 수준이다. In the present example, the results of pretreatment and after nickel doping and fluorine treatment increased the hydrogen storage by about 80% (1.18 → 2.12). Compared to the result of Example 1, which was doped with nickel after fluorination, the drop was about 3%, but this difference was negligible compared to the overall increase.
본 발명은 상기한 바람직한 실시예와 첨부한 도면을 참조하여 설명되었지만, 본 발명의 개념 및 범위 내에서 상이한 실시예를 구성할 수도 있다. 따라서 본 발명의 범위는 첨부된 청구범위에 의해 정해지며, 본 명세서에 기재된 특정 실시예에 의해 한정되지 않는 것으로 해석되어야 한다.Although the present invention has been described with reference to the above-described preferred embodiments and the accompanying drawings, different embodiments may be constructed within the spirit and scope of the invention. Therefore, the scope of the present invention is defined by the appended claims, and should be construed as not limited to the specific embodiments described herein.
상기한 바와 같은 본 발명에 의할 경우, 수소저장매체의 수소저장능력을 대폭 향상시킬 수 있게 된다. According to the present invention as described above, it is possible to significantly improve the hydrogen storage capacity of the hydrogen storage medium.
향후 에너지원으로서의 수소의 중요도를 감안하여 볼 때, 본 발명은 수소저장매체의 수소저장능력을 향상시키는 기술로서 매우 유용하게 될 것이다. In view of the importance of hydrogen as an energy source in the future, the present invention will be very useful as a technique for improving the hydrogen storage capacity of the hydrogen storage medium.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050124305A KR100679644B1 (en) | 2005-12-16 | 2005-12-16 | Method for improvement of hydrogen storage and hydrogen storage medium according to said method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050124305A KR100679644B1 (en) | 2005-12-16 | 2005-12-16 | Method for improvement of hydrogen storage and hydrogen storage medium according to said method |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100679644B1 true KR100679644B1 (en) | 2007-02-06 |
Family
ID=38105598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020050124305A KR100679644B1 (en) | 2005-12-16 | 2005-12-16 | Method for improvement of hydrogen storage and hydrogen storage medium according to said method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100679644B1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020042673A (en) * | 1999-09-09 | 2002-06-05 | 이데이 노부유끼 | Carbonaceous material for hydrogen storage and method for preparing the same, and cell and fuel cell |
-
2005
- 2005-12-16 KR KR1020050124305A patent/KR100679644B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020042673A (en) * | 1999-09-09 | 2002-06-05 | 이데이 노부유끼 | Carbonaceous material for hydrogen storage and method for preparing the same, and cell and fuel cell |
Non-Patent Citations (1)
Title |
---|
1020020042673 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ren et al. | One-pot synthesis of carbon nanofibers from CO2 | |
Salehabadi et al. | Carbon‐based nanocomposites in solid‐state hydrogen storage technology: an overview | |
David | An overview of advanced materials for hydrogen storage | |
US8192897B2 (en) | Method for preparation of transition metal electroplated porous carbon nanofiber composite for hydrogen storage | |
Oriňáková et al. | Recent applications of carbon nanotubes in hydrogen production and storage | |
Shah et al. | Heteroatom-doped carbonaceous electrode materials for high performance energy storage devices | |
Candelaria et al. | Nanostructured carbon for energy storage and conversion | |
US20050196336A1 (en) | Activated graphitic carbon and metal hybrids thereof | |
Rimza et al. | Carbon‐based sorbents for hydrogen storage: challenges and sustainability at operating conditions for renewable energy | |
Thirumal et al. | Cleaner production of tamarind fruit shell into bio-mass derived porous 3D-activated carbon nanosheets by CVD technique for supercapacitor applications | |
WO2001017900A1 (en) | Carbonaceous material for hydrogen storage and method for preparing the same, and cell and fuel cell | |
Dwivedi | Graphene based electrodes for hydrogen fuel cells: A comprehensive review | |
Meduri et al. | Materials for hydrogen storage at room temperature–An overview | |
JP2005219950A (en) | Carbon material, method of manufacturing carbon material, gas adsorption apparatus and composite material | |
KR100745567B1 (en) | Nano-sized Ni doped Carbon Nanotubes for hydrogen storage and its preparation method | |
Li et al. | Carbon nanofibers synthesized by catalytic decomposition of methane and their electrochemical performance in a direct carbon fuel cell | |
KR101250518B1 (en) | Surface modification method of graphite-powder treated with phosphoric acid impregnation and manufacturing method of high efficient adsorbents for hydrogen storage | |
Sdanghi et al. | Hydrogen adsorption on nanotextured carbon materials | |
Thirumal et al. | Morphology investigation on direct growth ultra-long CNTs by chemical vapour deposition method for high performance HER applications | |
Niaz et al. | Utilizing rubber plant leaf petioles derived activated carbon for high-performance supercapacitor electrodes | |
Xia et al. | Density-induced Joule-heating characteristics of nanocarbon aerogels: implications for tunable electrothermal behaviors | |
KR100679644B1 (en) | Method for improvement of hydrogen storage and hydrogen storage medium according to said method | |
Dhanya et al. | Hydrogen storage studies of Co, Fe, Fe3C nanoparticles encapsulated nitrogen doped carbon nanotubes | |
Mukherjee | Carbon nanofiber for hydrogen storage | |
Demirbas | Storage and transportation opportunities of hydrogen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
N231 | Notification of change of applicant | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130102 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20140102 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20150102 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20151229 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20161227 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20191231 Year of fee payment: 14 |