KR100678469B1 - Wafer Stage for Exposure Apparatus and Wafer Parallel Control Method - Google Patents

Wafer Stage for Exposure Apparatus and Wafer Parallel Control Method Download PDF

Info

Publication number
KR100678469B1
KR100678469B1 KR1020050004311A KR20050004311A KR100678469B1 KR 100678469 B1 KR100678469 B1 KR 100678469B1 KR 1020050004311 A KR1020050004311 A KR 1020050004311A KR 20050004311 A KR20050004311 A KR 20050004311A KR 100678469 B1 KR100678469 B1 KR 100678469B1
Authority
KR
South Korea
Prior art keywords
wafer
driving
seating portion
displacement
lifting means
Prior art date
Application number
KR1020050004311A
Other languages
Korean (ko)
Other versions
KR20060084050A (en
Inventor
김명철
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020050004311A priority Critical patent/KR100678469B1/en
Publication of KR20060084050A publication Critical patent/KR20060084050A/en
Application granted granted Critical
Publication of KR100678469B1 publication Critical patent/KR100678469B1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7034Leveling
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Abstract

본 발명은 본 발명은 노광장치용 웨이퍼 스테이지에 관한 것으로서, X, Y방향으로 이동되는 안착부를 가지며, 안착부 상의 복수 위치에 장착되어 웨이퍼를 승하강시키는 복수개의 승하강수단 및 웨이퍼가 평행이되도록 승하강수단의 구동을 제어하는 평행조절수단을 구비함으로써 노광공정을 통해 웨이퍼 상에 회로패턴을 노광할 경우, 웨이퍼의 평행도를 실시간으로 조절하도록 하여 쇼트영역에서의 디포커스 현상을 줄일 수 있는 효과가 있다.The present invention relates to a wafer stage for an exposure apparatus, and has a seating portion that is moved in the X and Y directions, and is mounted at a plurality of positions on the seating portion so that the plurality of lifting means and the wafer for raising and lowering the wafer are parallel to each other. When the circuit pattern is exposed on the wafer through the exposure process by providing parallel adjusting means for controlling the driving of the elevating means, it is possible to reduce the defocus phenomenon in the short region by adjusting the parallelism of the wafer in real time. have.

Description

노광장치용 웨이퍼 스테이지 및 이를 이용한 웨이퍼 평행조절방법{Wafer Stage for Exposure Apparatus and Wafer Parallel Control Method}Wafer stage for exposure apparatus and wafer parallel control method using same {Wafer Stage for Exposure Apparatus and Wafer Parallel Control Method}

도 1은 본 발명의 웨이퍼 스테이지가 장착된 노광장치를 개략적으로 보여주는 도면이다.1 is a view schematically showing an exposure apparatus equipped with a wafer stage of the present invention.

도 2는 본 발명에 따른 웨이퍼 스테이지를 보여주는 사시도이다.2 is a perspective view showing a wafer stage according to the present invention.

도 3은 도 2에 도시된 승하강수단을 보여주는 도면이다.3 is a view showing the lifting means shown in FIG.

도 4a는 도 2에 도시된 승하강수단의 다른 장착위치를 보여주는 평면도이다.Figure 4a is a plan view showing another mounting position of the lifting means shown in FIG.

도 4b는 도 2에 도시된 승하강수단의 또 다른 장착위치를 보여주는 평면도이다.Figure 4b is a plan view showing another mounting position of the lifting means shown in FIG.

도 5는 본 발명의 노광장치용 웨이퍼 스테이지를 이용한 웨이퍼 평행조절수단을 보여주는 흐름도이다.5 is a flowchart showing a wafer parallel adjusting means using the wafer stage for exposure apparatus of the present invention.

** 도면의 주요부분에 대한 부호설명 **** Explanation of Signs of Major Parts of Drawings **

300 : 변위센서300: displacement sensor

400 : 제어부400: control unit

500 : 구동부500 drive unit

700 : 안착부700: seating part

600 : 승하강수단 600: descent means                 

610 : 리프트핀610: lift pin

620 : 구동수단몸체620: drive means body

본 발명은 노광장치용 웨이퍼 스테이지 및 이를 이용한 웨이퍼 평행조절방법에 관한 것으로서, 보다 상세하게는 웨이퍼 스테이지 상에 안착되는 웨이퍼의 평행을 유지하기 위하여 상하로 조절되는 평행조절수단을 구비한 노광장치용 웨이퍼 스테이지 및 이를 이용한 웨이퍼 평행조절방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wafer stage for exposure apparatus and a wafer parallel adjustment method using the same, and more particularly, to an exposure apparatus wafer provided with parallel adjustment means which is adjusted up and down to maintain parallelism of the wafer seated on the wafer stage. It relates to a stage and a wafer parallel adjustment method using the same.

일반적으로 반도체 소자를 노광기술을 이용하여 제조할 경우, 포토 마스크 또는 레티클(Reticle)에 형성된 회로패턴을 투영광학계를 매개로 하여 포토래지tm트 (Photo-Resist)등의 감광체가 도포된 반도체 웨이퍼 상의 각 쇼트영역(Shot Area)에 투영 노광하는 노광장치가 사용되고 있다. In general, when a semiconductor device is manufactured using an exposure technique, a circuit pattern formed on a photomask or a reticle is formed on a semiconductor wafer coated with a photosensitive member such as a photo-resist through a projection optical system. An exposure apparatus for projecting exposure to each shot area is used.

이와 같은 노광장치는 광원과, 소정 형상의 회로 패턴이 형성된 래티클이 안착된 래티클 스테이지와, 회로패턴이 전사될 웨이퍼가 진공흡착되어 안착되는 웨이퍼 스테이지와, 광원으로부터 광이 전달되어 래티클의 회로패턴을 웨이퍼 상에 노광시키는 투영광학계를 구비한다.Such an exposure apparatus includes a light source, a reticle stage on which a reticle having a circuit pattern of a predetermined shape is seated, a wafer stage on which a wafer on which a circuit pattern is to be transferred is vacuum-sucked and seated, and light is transmitted from a light source to And a projection optical system for exposing the circuit pattern on the wafer.

일반적으로 투영광학7계 하부에 장착되는 웨이퍼 스테이지는 웨이퍼 상에 형성되는 쇼트영역을 투영광학계의 결상면에 그 중심을 맞추기 위해 XY방향으로 이동가능한 플레이트다. 물론, 래티클 스테이지도 XY방향으로 이동가능한 플레이트이 다.In general, the wafer stage mounted below the projection optical system 7 is a plate movable in the XY direction to center the shot region formed on the wafer at the image forming surface of the projection optical system. Of course, the reticle stage is also a plate movable in the XY direction.

따라서, 상기 쇼트영역에 투영위치를 맞추기 위해 웨이퍼 스테이지와 래티클 스테이지를 XY방향으로 가변 조정한 후, 상기와 같이 노광공정을 수행한다.Therefore, the wafer stage and the reticle stage are variably adjusted in the XY direction to fit the projection position in the shot region, and then the exposure process is performed as described above.

그러나, 웨이퍼가 안착되는 웨이퍼 스테이지상에 미세한 파티클등이 끼임에 따라서 웨이퍼가 경사지게되어 웨이퍼 상의 쇼트영역에서의 초점편차가 발생함으로 인해 CD(Critical Dimension) 불량을 유발하는 문제점이 발생한다.However, as fine particles or the like are caught on the wafer stage on which the wafer is seated, the wafer is inclined, causing a problem of CD (Critical Dimension) defects due to a focal deviation in the short region on the wafer.

따라서, 본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 노광공정을 통해 웨이퍼 상에 회로패턴을 노광할 경우, 웨이퍼의 평행도를 실시간으로 조절할 수 있도록 하여 디포커스현상을 방지함과 아울러 이에 따라 제품 수율을 향상시킬 수 있는 평행조절수단을 구비한 노광장치용 웨이퍼 스테이지 및 웨이퍼 평행조절방법을 제공함에 있다.Accordingly, the present invention has been made to solve the above problems, the object of the present invention is to expose the circuit pattern on the wafer through the exposure process, it is possible to adjust the parallelism of the wafer in real time to reduce the defocus phenomenon The present invention provides a wafer stage for exposure apparatus and a wafer parallel adjusting method including a parallel adjusting means capable of preventing and improving product yield.

전술한 바와 같은 문제점을 해결하기 위하여 본 발명은 노광장치용 웨이퍼 스테이지를 제공한다.
상기 웨이퍼 스테이지는 일정의 직경을 갖는 경계라인이 형성되며, 웨이퍼가 안착되어 X, Y방향으로 이동되는 안착부와; 상기 경계라인의 내부에 배치되되, 동심원상으로 복수의 직경이 형성되도록 상기 안착부 상에 균등간격으로 설치됨과 아울러 상기 안착부의 중심으로부터 방사형상이 되도록 다수의 배치축상에 다수개로 설치되어, 상기 웨이퍼의 저면을 지지함과 아울러 승하강시키는 복수개의 승하강수단; 및 상기 안착부의 상면과 상기 웨이퍼가 평행이되도록 상기 승하강수단의 구동을 제어하는 평행조절수단을 포함한다.
여기서, 상기 평행조절수단은 상기 승하강수단들에 장착되어 상기 웨이퍼 저면과의 Z축 변위값을 계측하는 변위센서와, 상기 변위센서로부터 계측된 상기 Z축 변위값들과 상기 Z축 변위값들의 평균값을 비교하여 상기 승하강수단들의 구동량을 계산하는 제어부와, 상기 제어부로부터 계산된 구동량에 따라서 상기 승하강수단을 구동시키는 구동부를 구비한다.
In order to solve the above problems, the present invention provides a wafer stage for an exposure apparatus.
The wafer stage has a boundary line having a predetermined diameter is formed, the seating portion is seated to move in the X, Y direction is seated; The wafer is disposed inside the boundary line, and is installed on the seating portion at equal intervals so that a plurality of diameters are formed concentrically, and is installed on a plurality of arrangement shafts so as to be radial from the center of the seating portion. A plurality of lifting means for supporting and lowering the bottom; And parallel adjusting means for controlling the driving of the elevating means such that the upper surface of the seating portion and the wafer are parallel to each other.
Here, the parallel adjusting means is mounted on the lifting means for measuring the displacement of the Z-axis with respect to the bottom surface of the wafer, and the Z-axis displacement values and the Z-axis displacement values measured from the displacement sensor And a control unit for calculating the driving amount of the lifting means by comparing an average value, and a driving unit for driving the lifting means in accordance with the driving amount calculated by the control unit.

삭제delete

삭제delete

삭제delete

그리고, 상기 변위센서는 광센서와 초음파센서 중 어느 하나인 것이 바람직하다.The displacement sensor is preferably any one of an optical sensor and an ultrasonic sensor.

한편, 본 발명의 노광장치용 웨이퍼 스테이지의 웨이퍼 평행조절방법은 동심원상으로 복수의 직경이 형성되도록 안착부 상에 균등간격으로 설치됨과 아울러 상기 안착부의 중심으로부터 다수의 배치축상에 다수개로 설치되어, 상기 웨이퍼의 저면을 지지함과 아울러 승하강시키는 복수개의 승하강수단으로 부터 상기 웨이퍼의 저면에 대한 Z변위값을 계측하는 단계와; 상기 Z변위값들과, 상기 Z변위값들의 평균값을 비교하여 보정값을 산출하는 단계와; 상기 보정값에 따른 상기 승하강수단들의 구동량을 산출하는 단계; 및 상기 구동량에 따라서 상기 승하강수단들을 독립적으로 구동시켜 상기 웨이퍼를 수평으로 하는 단계를 포함한다.On the other hand, the wafer parallel adjustment method of the wafer stage for exposure apparatus of the present invention is installed at equal intervals on the seating portion so that a plurality of diameters are formed concentrically, and a plurality of wafers are installed on a plurality of arrangement axes from the center of the seating portion, Measuring a Z displacement value with respect to the bottom of the wafer from a plurality of lifting means for supporting the bottom of the wafer and lifting the bottom; Calculating a correction value by comparing the Z displacement values with an average value of the Z displacement values; Calculating a driving amount of the lifting means according to the correction value; And driving the lifting means independently in accordance with the driving amount to level the wafer.

이하, 첨부된 도면을 참조로 하여, 본 발명의 노광장치용 웨이퍼 스테이지와 이를 이용한 웨이퍼 평행조절방법에 대해 상세하게 설명하도록 한다.Hereinafter, with reference to the accompanying drawings, it will be described in detail with respect to the wafer stage for the exposure apparatus of the present invention and the wafer parallel adjustment method using the same.

먼저, 본 발명의 노광장치용 웨이퍼 스테이지의 바람직한 실시예의 구성에 대해서 설명하도록 한다.First, the configuration of a preferred embodiment of the wafer stage for an exposure apparatus of the present invention will be described.

도 1은 본 발명의 노광장치용 웨이퍼 스테이지를 개략적으로 보여주는 도면 이고, 도 2는 도 1에 도시된 웨이퍼 스테이지에서의 웨이퍼 평행조절 동작을 보여주기 위한 사시도이다.1 is a view schematically showing a wafer stage for an exposure apparatus of the present invention, Figure 2 is a perspective view for showing a wafer parallelism operation in the wafer stage shown in FIG.

도 1을 참조로 하면, 본 발명에 따르는 웨이퍼 스테이지(800)는 웨이퍼(W)상에 회로패턴을 전사하기 위한 노광장치(100)에 장착되는데, 이러한 노광장치(100)는 회로패턴이 형성된 래티클(110)과, 래티클(110)이 안착되는 래티클 스테이지(120)와, 래티클(110) 상부에 위치하여 래티클 스테이지(120) 하부에 설치된 투영광학계(130)로 광을 조사하는 광원(101)과, 투영광학계(130)를 통해 축소 투영된 회로패턴이 전사되는 웨이퍼(W)로 구성되며, 이러한 웨이퍼(W)는 본 발명에 따르는 웨이퍼 스테이지(800)상에 안착된 상태로 회로패턴이 전사되는 쇼트영역 및 평행을 맞추기 위해 X,Y 및 Z방향으로 가변된다.
도 2를 참조하면, 본 발명에 따르는 웨이퍼 스테이지(800)는 X,Y방향으로 이동되는 안착부(700)를 구비하고, 안착부(700) 상에 장착되어 웨이퍼(W)의 저면을 지지함과 아울러 Z방향으로 가변시키는 복수개의 승하강수단(600)을 구비하며, 승하강수단(600)에 의해 지지된 웨이퍼(W) 표면이 평행이 되도록 승하강수단(600)의 동작을 제어하는 평행조절수단을 구비한다.
Referring to FIG. 1, a wafer stage 800 according to the present invention is mounted to an exposure apparatus 100 for transferring a circuit pattern onto a wafer W. The exposure apparatus 100 is a circuit pattern formed thereon. The light is irradiated to the Tickle 110, the reticle stage 120 on which the reticle 110 is seated, and the projection optical system 130 positioned above the reticle 110 and installed below the reticle stage 120. It consists of a light source 101 and a wafer (W) to which the circuit pattern reduced by the projection optical system 130 is transferred, the wafer (W) is placed on the wafer stage 800 according to the present invention The circuit pattern is varied in the X, Y and Z directions to align the short region to be transferred and parallel.
Referring to FIG. 2, the wafer stage 800 according to the present invention includes a mounting portion 700 which is moved in the X and Y directions, and is mounted on the mounting portion 700 to support the bottom surface of the wafer W. Referring to FIG. And a plurality of lifting means 600 varying in the Z direction, and parallel to control the operation of the lifting means 600 such that the surface of the wafer W supported by the lifting means 600 is parallel to each other. And adjusting means.

삭제delete

안착부(700)는 웨이퍼(W) 표면상의 회로패턴이 전사되는 영역, 즉 쇼트영역을 도 1에 도시된 투영광학계(130)의 결상면에 맞추기 위해 X축으로 가변되는 X축 안착부(710)와, Y축으로 가변되는 Y축 안착부(720)로 구성된다.The seating part 700 is an X-axis seating part 710 which is variable in the X-axis so as to fit the area where the circuit pattern on the surface of the wafer W is transferred, that is, the short area to the image plane of the projection optical system 130 shown in FIG. 1. ) And a Y-axis seating portion 720 that is variable to the Y-axis.

도 4a를 참조하면, 상기 X축 안착부(710)의 상부에는 일정의 직경을 갖는 경계라인(550)이 형성된다.
그리고, 승하강수단(600)은 안착부(700) 상에 복수개로 장착되되, X축 안착부(710) 상에 장착되고, 장착위치는 웨이퍼(W) 저면을 포함하는 공간 내에 설치되는 것이 바람직하다.
즉, 도 4a에 도시된 바와 같이, 승하강수단(600)은 상기 경계라인(550)의 내부에 배치되되, 복수의 직경(D1,D2,D3)이 형성되도록 동심원상으로 상기 X축 안착부(710) 상에 설치되어, 상기 웨이퍼(W)의 저면을 지지함과 아울러 승하강시키한다.
또한, 상기 복수개의 승강수단(600)은 상기 경계라인(550)의 내부에 배치되되, 동심원상으로 복수의 직경(D1,D2,D3)이 형성되도록 상기 X축 안착부(710) 상에 균등간격으로 설치됨과 아울러 상기 X축 안착부(710)의 중심으로부터 다수의 배치축(S)상에 다수개로 설치되어, 상기 웨이퍼(W)의 저면을 지지함과 아울러 승하강시킨다.
이러한 승하강수단(600)은 웨이퍼(W) 저면을 지지하는 리프트핀(610)과, 리프트핀(610)을 승하강구동시키는 구동수단몸체(620)로 구성된 엑츄에이터등의 승하강수단(600)인 것이 좋고, 선택적으로 승하강수단(600)은 웨이퍼(W)를 승하강 시킬 수 있는 유압구동식의 실린더와, 공압식의 실린더일 수도 있고, 나아가 별도의 모터로 구동되어 웨이퍼(W)를 승하강시키는 볼스크루일 수도 있다. 그리고, 웨이퍼(W) 저면을 지지하는 리프트핀(610)에는 웨이퍼(W)가 진공흡착되도록 진공흡입구(미도시)가 형성됨이 좋다.
Referring to FIG. 4A, a boundary line 550 having a predetermined diameter is formed on the X-axis seating part 710.
And, the lifting means 600 is mounted on a plurality of seating portion 700, is mounted on the X-axis seating portion 710, the mounting position is preferably installed in a space including the bottom surface of the wafer (W) Do.
That is, as shown in Figure 4a, the lifting means 600 is disposed inside the boundary line 550, the X-axis seating portion in a concentric circle so that a plurality of diameters (D1, D2, D3) are formed It is provided on the 710, while supporting the bottom of the wafer (W), and raises and lowers.
In addition, the plurality of lifting means 600 is disposed inside the boundary line 550, evenly on the X-axis seating portion 710 so that a plurality of diameters (D1, D2, D3) are formed concentrically. In addition to being installed at intervals, a plurality of them are installed on a plurality of placement axes S from the center of the X-axis seating portion 710 to support and lower the bottom surface of the wafer W.
The lifting means 600 is a lifting means 600, such as an actuator consisting of a lift pin 610 for supporting the bottom surface of the wafer (W), and a drive means body 620 for lifting and lowering the lift pin 610. Preferably, the elevating means 600 may be a hydraulically driven cylinder capable of raising or lowering the wafer W and a pneumatic cylinder, or may be driven by a separate motor to lift the wafer W. It may be a ball screw to lower. In addition, a vacuum suction opening (not shown) may be formed in the lift pin 610 that supports the bottom surface of the wafer W so that the wafer W is vacuum-adsorbed.

그리고 승하강수단(600)에는 웨이퍼(W) 저면으로의 Z축 변위값을 계측할 수 있는 광센서등의 변위센서(300)가 적어도 하나이상 장착된다.In addition, at least one displacement sensor 300 such as an optical sensor capable of measuring a Z-axis displacement value on the bottom surface of the wafer W is mounted on the lifting means 600.

다음은 도 2 및 도 3을 참조로 하여, 본 발명에 따른 웨이퍼 스테이지에 장착된 평행조절수단의 구성을 설명하도록 한다.Next, with reference to Figures 2 and 3, it will be described the configuration of the parallel adjustment means mounted on the wafer stage according to the present invention.

도 2 및 도 4a를 참조하면, 평행조절수단은 다수개의 승하강수단(600)들이 지지하는 위치에서의 웨이퍼(W) 저면과의 Z축 변위값을 계측하는 변위센서(300)와, 변위센서(300)로부터 계측된 Z축 변위값들과 상기 Z축변위값들의 평균값을 비교하여 승하강수단(600)들의 구동량을 계산하는 제어부(400)와, 제어부(400)에서 계산된 구동량에 따라 승하강수단(600)을 구동시키는 구동부(500)로 구성된다.
그리고, 도 1 및 도 2에 도시된 바와 같이, 상기 구동부(500)는 상기 X,Y안착부(710, 720)를 X,Y방향으로 이동시키도록 구동시키는 제 1구동부(510)와, 상기 승하강수단들(600)의 리프트핀(610)을 Z축방향으로 이동시키도록 구동시키는 제 2구동부(520)로 구성된다.
2 and 4A, the parallel adjustment means includes a displacement sensor 300 for measuring a Z axis displacement value with the bottom surface of the wafer W at a position supported by the plurality of lifting means 600, and a displacement sensor. The control unit 400 and the control unit 400 calculate the driving amount of the lifting means 600 by comparing the Z-axis displacement values measured from 300 and the average value of the Z-axis displacement values. In accordance with the driving unit 500 for driving the lifting means (600).
1 and 2, the driving part 500 includes a first driving part 510 for driving the X, Y seating parts 710 and 720 to move in the X and Y directions, and The second driving unit 520 is configured to drive the lift pins 610 of the lifting means 600 to move in the Z-axis direction.

여기서 변위센서(300)는 구동수단몸체(620)상에 설치되어 리프트핀(610) 상에 지지된 웨이퍼(W) 저면과의 거리인 Z축변위값을 계측하도록 된다. 여기서 변위센서(300)는 수광부 및 발광부로 구성된 광센서인 것이 바람직하나, 초음파센서를 사용할 수도 있다. Here, the displacement sensor 300 is installed on the driving means body 620 to measure the Z-axis displacement value which is a distance from the bottom surface of the wafer W supported on the lift pin 610. Here, the displacement sensor 300 is preferably an optical sensor composed of a light receiving unit and a light emitting unit, but may also use an ultrasonic sensor.                     

다음은 상기와 같은 본 발명의 바람직한 실시예의 구성을 통한 동작을 설명하도록 한다.Next will be described the operation through the configuration of the preferred embodiment of the present invention as described above.

도 1을 참조하면, 래티클(110)에 형성된 회로패턴을 투영광학계(130)를 통해 웨이퍼(W)의 쇼트영역에 전사시키기 위해 웨이퍼(W)를 웨이퍼 스테이지(800)에 안착시킨다. 여기서 안착되는 웨이퍼(W)는 투영광학계(130)로부터의 결상면이 웨이퍼(W) 상의 쇼트영역과 평행하여야 한다.Referring to FIG. 1, the wafer W is mounted on the wafer stage 800 to transfer the circuit pattern formed on the reticle 110 to the shot region of the wafer W through the projection optical system 130. The wafer W to be seated here must have an image plane from the projection optical system 130 parallel to the short region on the wafer W.

도 2를 참조하면, 웨이퍼(W)는 X축 안착부(710)에 장착된 다수개의 승하강수단(600)의 리프트핀(610) 상부에 안착된다. 이때, 웨이퍼(W) 저면은 리프트핀(610)에 형성된 진공흡입구에 의해 진공흡착된 상태이다.Referring to FIG. 2, the wafer W is seated on the lift pins 610 of the plurality of lifting means 600 mounted on the X-axis seating part 710. At this time, the bottom surface of the wafer (W) is vacuum suctioned by the vacuum suction opening formed in the lift pin (610).

이러한 상태에서 웨이퍼(W) 쇼트영역을 투영광학계(130)의 결상면에 맞추기 위해 제어부(400)는 제 1구동부(510)에 구동신호를 주어 쇼트영역의 중심좌표에 해당하는 X,Y좌표데이타를 기준으로 X, Y안착부(710, 720)를 이동시켜 웨이퍼(W)의 위치를 가변시킨다. In this state, in order to match the short region of the wafer W to the image plane of the projection optical system 130, the controller 400 gives a driving signal to the first driving unit 510 to provide X and Y coordinate data corresponding to the center coordinates of the short region. The position of the wafer W is changed by moving the X and Y seating parts 710 and 720 with respect to the reference point.

이어, 제어부(400)는 평행조절수단을 구동시켜 쇼트영역면과 투영광학계(130)의 결상면이 평행하하도록 한다.Subsequently, the controller 400 drives the parallel adjusting means so that the shot region surface and the imaging surface of the projection optical system 130 are parallel to each other.

먼저, 구동수단몸체들(620)에 장착된 변위센서들(300)은 리프트핀(610) 상부에 지지된 웨이퍼(W) 저면과의 거리인 Z축 변위값들을 각각 계측하고, 이와 같이 각 웨이퍼(W) 저면과의 Z축 변위값이 계측된 상태에서 이 결과를 제어부(400)로 전달시켜 준다.First, the displacement sensors 300 mounted on the driving means bodies 620 respectively measure the Z-axis displacement values, which are distances from the bottom surface of the wafer W supported on the lift pin 610, and thus each wafer. (W) The Z-axis displacement with the bottom surface is measured and the result is transmitted to the controller 400.

제어부(400)는 각 변위센서들(300)로부터 전달받은 Z축 변위값들이 기설정된 최소한의 오차값 범위안에 들면 웨이퍼(W)가 평행인 상태로 된 것으로 인지하여 노광공정을 그대로 진행하게하고, 오차값 범위를 벗어 나게 되면 웨이퍼(W)가 경사지게 된 것이므로 인지하여 각 승하강수단(600)을 구동시켜 웨이퍼(W)를 평행하게 한다.The controller 400 recognizes that the wafers W are in a parallel state when the Z-axis displacement values transmitted from the displacement sensors 300 are within a predetermined minimum error value range, and proceeds the exposure process as it is. If the error value is out of the range because the wafer (W) is inclined to recognize and drive each lifting means 600 to parallel the wafer (W).

여기서, 오차값은 노광공정을 진행함에 있어서 웨이퍼(W) 표면의 최소 경사값이며, 이러한 최소 경사값은 웨이퍼(W)로의 노광공정을 진행함에 있어 영향을 주지않는 최소의 Z축 변위값이다.Here, the error value is the minimum inclination value of the surface of the wafer W in the exposure process, and this minimum inclination value is the minimum Z-axis displacement value that does not affect the exposure process in the wafer W.

이어, 제어부(400)는 상기와 같이 웨이퍼(W)를 평행으로 하기 위해 전달받은 각 Z변위값들을의 평균값을 산출하고, 각 Z축변위값과 상기 평균값을 독립적으로 비교한다.Subsequently, the controller 400 calculates an average value of each of the Z displacement values transmitted to parallel the wafers W as described above, and independently compares each Z axis displacement value with the average value.

이어, 각 Z축변위값들이 상기 평균값에 근사되도록 하는 보정값을 산출한다.Then, a correction value is calculated so that each Z axis displacement value is approximated to the average value.

이와 같이 산출된 보정값은 각 승하강수단(600)의 리프트핀(610)을 동작시키기 위한 구동량으로 산출되는데, 예컨대 상기 보정값은 승하강수단(600)의 리프트핀(610)을 Z축방향에서 양의 방향과 음의 방향으로 구동시키게 하는 값이다.The correction value calculated as described above is calculated as a driving amount for operating the lift pins 610 of each lifting means 600. For example, the correction value is the Z-axis of the lift pins 610 of the lifting means 600. It is the value to drive in the positive and negative direction.

이어, 제어부(400)는 상기와 같이 산출된 구동량을 제 2구동부(520)로 전달시켜 승하강수단(600)을 구동시킨다. 즉, 다수 위치의 승하강수단(600)의 리프트핀(610)을 Z축상에서 승강 또는 하강 시킴으로써 웨이퍼(W)를 평행이되도록 맞추는 것이다.
Subsequently, the controller 400 transmits the driving amount calculated as described above to the second driving unit 520 to drive the lifting means 600. That is, by lifting or lowering the lift pins 610 of the lifting means 600 in multiple positions on the Z axis, the wafers W are aligned to be parallel.

한편, 본 발명에 따른 승하강수단의 설치위치의 다른 실시예의 경우, 웨이퍼(W) 저면의 외주부를 지지할 수 있도록 X축 안착부(710)상에 균등하게 장착될 수도 있다(도 4a 참조). 또한 또 다른 실시예의 경우, 웨이퍼(W) 저면 전체를 지지할 수 있도록 X축 안착부(710) 상에 장착될 수도 있다(도 5b 참조). 이와 같은 경우에도 상기 바람직한 실시예에서 설명한 바와 같이 제어부(400)는 각 변위센서들(300)로부터 Z축 변위값을 전달받아 각 승하강수단(600)을 구동시켜 웨이퍼(W)의 평행을 맞추는 일련의 동작은 동일하다.On the other hand, in another embodiment of the installation position of the elevating means according to the invention, it may be evenly mounted on the X-axis seating portion 710 so as to support the outer peripheral portion of the bottom surface of the wafer (W) (see Fig. 4a) . In addition, in another embodiment, it may be mounted on the X-axis seating portion 710 to support the entire bottom surface of the wafer (W) (see FIG. 5B). Even in this case, as described in the preferred embodiment, the control unit 400 receives the Z-axis displacement values from each of the displacement sensors 300 to drive the respective lifting means 600 to align the wafer W in parallel. The sequence of operations is the same.

다음은 본 발명의 노광장치용 웨이퍼 스테이지를 이용한 웨이퍼 평행조절방법을 설명하도록 한다.Next, a wafer parallel adjusting method using the wafer stage for an exposure apparatus of the present invention will be described.

도 2 및 도5를 참조로 하면, 본 발명에 따른 웨이퍼 평행조절방법은 웨이퍼(W) 저면을 복수 위치에서 복수개의 승하강수단(600)에 의해 지지되고 있는 각 웨이퍼(W) 지지부에서의 웨이퍼(W) 저면과의 Z변위값을 광센서등의 변위센서(300)를 통해 계측하는 단계를 거친다.(S100)2 and 5, the wafer parallel adjustment method according to the present invention is a wafer at each wafer (W) support portion that is supported by a plurality of lifting means 600 in a plurality of positions the bottom surface of the wafer (W) (W) The Z displacement value with the bottom surface is measured through a displacement sensor 300 such as an optical sensor. (S100)

여기서, 제어부(400)는 계측된 Z변위값들이 기 설정된 최소한의 오차값 범위안에 들면 다음 단계를 진행하지 않고, 상기 오차값 범위를 벗어나게 되면 다음 단계를 진행하도록 된다.(S200) Here, the controller 400 does not proceed to the next step when the measured Z displacement values fall within a preset minimum error value range, and proceeds to the next step when the measured Z displacement values are out of the error value range (S200).

이어, 후자의 경우에는 상기와 같이 측된 Z변위값들과, 상기 Z변위값들의 평균값과 비교하여 상기 계측된 Z변위값들과 평균값과의 오차량인 보정값을 산출하는 단계를 거친다.(S300)Subsequently, in the latter case, a correction value that is an error amount between the measured Z displacement values and the average value is calculated by comparing the measured Z displacement values with the average value of the Z displacement values as described above (S300). )

여기서, 최소한의 오차값은 노광공정을 진행함에 있어서 웨이퍼(W) 표면의 최소 경사값이며, 이러한 최소 경사값은 웨이퍼(W)로의 노광공정을 진행함에 있어 영향을 주지않는 최소의 Z축 변위값이다.Here, the minimum error value is the minimum inclination value of the surface of the wafer W in the exposure process, and this minimum inclination value is the minimum Z-axis displacement value that does not affect the exposure process in the wafer W. .

다음, 보정값이 산출된 후, 이러한 보정값에 따라서 상기 웨이퍼(W) 평행을 맞추기 위해 승하강수단(600)의 리프트핀(610)을 Z축방향으로 구동시키기 위한 구동량을 산출하는 단계를 거치는데(S400), 여기서 구동량은 상기 보정값에 따른 각 위치의 복수개의 승하강수단(600)을 구동시키는데 필요한 값이다.Next, after the correction value is calculated, calculating a driving amount for driving the lift pin 610 of the elevating means 600 in the Z-axis direction to align the wafer W according to the correction value. In step S400, the driving amount is a value required to drive the plurality of lifting means 600 at each position according to the correction value.

이어, 상기와 같이 산출된 구동량에 따라서 승하강수단(600)들을 독립적으로 구동시키는 단계(S500)를 거침으로서 웨이퍼(W)는 평행인 상태로 된다.Subsequently, the wafers W are in a parallel state through the step S500 of independently driving the lifting means 600 according to the driving amount calculated as described above.

따라서, 본 발명에 의하면, 스텝퍼 및 스캐너등의 노광장치를 통해 웨이퍼 상에 회로패턴을 노광시킬 경우, 웨이퍼 스테이지 상에 안착되는 웨이퍼의 평행을 실시간으로 조절하게 함으로써, 웨이퍼가 경사지는 것을 방지하여 웨이퍼 쇼트영역에서의 디포커스 현상을 방지할 수 있으며, 또한, 이에 따라 생산되는 제품의 수율을 향상시킬 수 있는 효과가 있다.Therefore, according to the present invention, when exposing a circuit pattern on a wafer through an exposure apparatus such as a stepper and a scanner, the wafer is prevented from tilting by adjusting the parallelism of the wafer seated on the wafer stage in real time. The defocus phenomenon in the short region can be prevented, and accordingly, the yield of the product produced can be improved.

Claims (6)

일정의 직경을 갖는 경계라인이 형성되며, 웨이퍼가 안착되어 X, Y방향으로 이동되는 안착부;A boundary line having a predetermined diameter is formed, and a seating portion in which a wafer is seated and moved in X and Y directions; 상기 경계라인의 내부에 배치되되, 동심원상으로 복수의 직경이 형성되도록 상기 안착부 상에 균등간격으로 설치됨과 아울러 상기 안착부의 중심으로부터 방사형상이 되도록 다수의 배치축상에 다수개로 설치되어, 상기 웨이퍼의 저면을 지지함과 아울러 승하강시키는 복수개의 승하강수단; 및The wafer is disposed inside the boundary line, and is installed on the seating portion at equal intervals so that a plurality of diameters are formed concentrically, and is installed on a plurality of arrangement shafts so as to be radial from the center of the seating portion. A plurality of lifting means for supporting and lowering the bottom; And 상기 안착부의 상면과 상기 웨이퍼가 평행이되도록 상기 승하강수단의 구동을 제어하는 평행조절수단을 구비한 것을 특징으로 하는 노광장치용 웨이퍼 스테이지.And parallel adjusting means for controlling the driving of the elevating means such that the upper surface of the seating portion and the wafer are parallel to each other. 삭제delete 삭제delete 제 1항에 있어서,The method of claim 1, 상기 평행조절수단은 상기 승하강수단들에 장착되어 상기 웨이퍼 저면과의 Z축 변위값을 계측하는 변위센서와, 상기 변위센서로부터 계측된 상기 Z축 변위값들과 상기 Z축 변위값들의 평균값을 비교하여 상기 승하강수단들의 구동량을 계산하 는 제어부와, 상기 제어부로부터 계산된 구동량에 따라서 상기 승하강수단을 구동시키는 구동부를 구비하는 것을 특징으로 하는 노광장치용 웨이퍼 스테이지.The parallel adjusting means is mounted on the lifting means and measures a displacement sensor for measuring the Z axis displacement value with the bottom surface of the wafer, and the average value of the Z axis displacement values and the Z axis displacement values measured from the displacement sensor. And a control unit for comparing the driving amount of the elevating means, and a driving unit for driving the elevating means in accordance with the driving amount calculated by the control unit. 제 4항에 있어서,The method of claim 4, wherein 상기 변위센서는 광센서와 초음파센서 중 어느 하나인 것을 특징으로 하는 노광장치용 웨이퍼 스테이지.The displacement sensor is a wafer stage for an exposure apparatus, characterized in that any one of an optical sensor and an ultrasonic sensor. 동심원상으로 복수의 직경이 형성되도록 안착부 상에 균등간격으로 설치됨과 아울러 상기 안착부의 중심으로부터 다수의 배치축상에 다수개로 설치되어, 상기 웨이퍼의 저면을 지지함과 아울러 승하강시키는 복수개의 승하강수단으로 부터 상기 웨이퍼의 저면에 대한 Z변위값을 계측하는 단계;It is installed at equal intervals on the seating portion so as to form a plurality of diameters in a concentric manner, and a plurality of seats are installed on a plurality of placement axes from the center of the seating portion to support the bottom surface of the wafer, and to move up and down Measuring Z displacement from the means to the bottom of the wafer; 상기 Z변위값들과, 상기 Z변위값들의 평균값을 비교하여 보정값을 산출하는 단계;Calculating a correction value by comparing the Z displacement values with an average value of the Z displacement values; 상기 보정값에 따른 상기 승하강수단들의 구동량을 산출하는 단계; 및Calculating a driving amount of the lifting means according to the correction value; And 상기 구동량에 따라서 상기 승하강수단들을 독립적으로 구동시켜 상기 웨이퍼를 수평으로 하는 단계를 포함하는 것을 특징으로 하는 노광장치용 웨이퍼 스테이지를 이용한 웨이퍼 평행조절방법.And driving the lifting means independently in accordance with the driving amount to level the wafer.
KR1020050004311A 2005-01-17 2005-01-17 Wafer Stage for Exposure Apparatus and Wafer Parallel Control Method KR100678469B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050004311A KR100678469B1 (en) 2005-01-17 2005-01-17 Wafer Stage for Exposure Apparatus and Wafer Parallel Control Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050004311A KR100678469B1 (en) 2005-01-17 2005-01-17 Wafer Stage for Exposure Apparatus and Wafer Parallel Control Method

Publications (2)

Publication Number Publication Date
KR20060084050A KR20060084050A (en) 2006-07-21
KR100678469B1 true KR100678469B1 (en) 2007-02-02

Family

ID=37174209

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050004311A KR100678469B1 (en) 2005-01-17 2005-01-17 Wafer Stage for Exposure Apparatus and Wafer Parallel Control Method

Country Status (1)

Country Link
KR (1) KR100678469B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105185703A (en) * 2014-06-18 2015-12-23 上海华力微电子有限公司 Wafer edge leveling method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102086623B1 (en) * 2018-07-23 2020-03-09 강명훈 Smart furniture apparatus with horizontal control function

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950025844A (en) * 1994-02-18 1995-09-18 미타라이 하지메 Stage device
KR960026107A (en) * 1994-12-08 1996-07-22 오노 시게오 Projection exposure equipment
KR19980032589A (en) * 1996-10-07 1998-07-25 요시다 쇼이치로 Focusing and tilting systems for lithographic sorters, manufacturing or inspection devices
KR20000047499A (en) * 1998-09-25 2000-07-25 가네코 히사시 Scanning exposure method and apparatus used for a same
KR20000070669A (en) * 1997-12-02 2000-11-25 에이에스엠 리소그라피 비.브이. Interferometer system and lithographic apparatus comprising such a system
KR20020067658A (en) * 2001-02-15 2002-08-23 캐논 가부시끼가이샤 Exposure apparatus including interferometer system
KR20050003101A (en) * 2003-06-30 2005-01-10 삼성전자주식회사 Method of inspecting wafer surface and Apparatus of the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950025844A (en) * 1994-02-18 1995-09-18 미타라이 하지메 Stage device
KR960026107A (en) * 1994-12-08 1996-07-22 오노 시게오 Projection exposure equipment
KR19980032589A (en) * 1996-10-07 1998-07-25 요시다 쇼이치로 Focusing and tilting systems for lithographic sorters, manufacturing or inspection devices
KR20000070669A (en) * 1997-12-02 2000-11-25 에이에스엠 리소그라피 비.브이. Interferometer system and lithographic apparatus comprising such a system
KR20000047499A (en) * 1998-09-25 2000-07-25 가네코 히사시 Scanning exposure method and apparatus used for a same
KR20020067658A (en) * 2001-02-15 2002-08-23 캐논 가부시끼가이샤 Exposure apparatus including interferometer system
KR20050003101A (en) * 2003-06-30 2005-01-10 삼성전자주식회사 Method of inspecting wafer surface and Apparatus of the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1019980032589 *
1020020067658 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105185703A (en) * 2014-06-18 2015-12-23 上海华力微电子有限公司 Wafer edge leveling method

Also Published As

Publication number Publication date
KR20060084050A (en) 2006-07-21

Similar Documents

Publication Publication Date Title
JP6806841B2 (en) Substrate support, method for mounting the substrate in the substrate support location, lithography equipment, and device manufacturing method
JP7212701B2 (en) Multi-substrate processing in digital lithography systems
JP2003249542A (en) Substrate holder, aligner, and method of manufacturing device
KR100819556B1 (en) Waper stage and exposure equipment having the same and method for correcting wafer flatness using the same
JP2017175071A (en) Holding apparatus, holding method, lithographic apparatus, and article manufacturing method
US20110232075A1 (en) Wafer holding apparatus and method
US10651075B2 (en) Wafer table with dynamic support pins
JP2014003259A (en) Load method, substrate holding apparatus, and exposure apparatus
KR100678469B1 (en) Wafer Stage for Exposure Apparatus and Wafer Parallel Control Method
KR20030005956A (en) photo-lithography fabrication system and method there of
JP2004221323A (en) Substrate holding device, aligner and method for manufacturing device
JP5434549B2 (en) Exposure apparatus and exposure method
JP2005277117A (en) Substrate holding device, exposure method and device, and device manufacturing method
JP2005044882A (en) Transporting device and aligner
KR20190041644A (en) Driving method of semiconductor manufacturing apparatus
KR102555126B1 (en) Substrate processing apparatus and article manufacturing method
JP2004163366A (en) Measuring method, method and apparatus for holding substrate, and aligner
KR101326061B1 (en) Exposure apparatus having mask leveling device and mask leveling method
JP3624057B2 (en) Exposure equipment
JP6211691B2 (en) Reticle shaping apparatus, method, and exposure apparatus used therefor
JP7229307B2 (en) Installation system, installation method, and storage medium for semiconductor manufacturing equipment
JP2004087943A (en) Chucking apparatus and method for semiconductor wafer
JP5537063B2 (en) Proximity exposure apparatus, gap control method for proximity exposure apparatus, and method for manufacturing display panel substrate
JP2017175070A (en) Holding apparatus, holding method, lithographic apparatus, and article manufacturing method
JP7025165B2 (en) Manufacturing method of exposure equipment, transport equipment and articles

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110103

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee