KR100672941B1 - Solution of inhibiting Copper erosion and CMP process using the solution - Google Patents

Solution of inhibiting Copper erosion and CMP process using the solution Download PDF

Info

Publication number
KR100672941B1
KR100672941B1 KR1020040079543A KR20040079543A KR100672941B1 KR 100672941 B1 KR100672941 B1 KR 100672941B1 KR 1020040079543 A KR1020040079543 A KR 1020040079543A KR 20040079543 A KR20040079543 A KR 20040079543A KR 100672941 B1 KR100672941 B1 KR 100672941B1
Authority
KR
South Korea
Prior art keywords
tetrazole
acid
wafer
pad
cleaning solution
Prior art date
Application number
KR1020040079543A
Other languages
Korean (ko)
Other versions
KR20060030685A (en
Inventor
이종원
이효종
홍창기
홍욱선
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020040079543A priority Critical patent/KR100672941B1/en
Publication of KR20060030685A publication Critical patent/KR20060030685A/en
Application granted granted Critical
Publication of KR100672941B1 publication Critical patent/KR100672941B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

구리 다마신 공정 후에 웨이퍼 상에 발생하는 부식을 효과적으로 억제할 수 있는 부식 억제 세정 용액 및 이를 이용하는 씨엠피 공정을 제공한다. 상기 부식 억제 세정 용액은 테트라졸(tetrazole) 화합물을 포함하는 부식억제제; 용매; 및 pH 조절제를 포함한다. 상기 부식 억제 세정 용액은 구리를 포함하는 웨이퍼의 표면을 세정하는 세정 공정에 사용될 수 있다. 또한 구리막을 연마하는 CMP 공정 후에, 상기 부식 억제 세정 용액을 이용하여 연마 패드를 컨디셔닝할 수 있다. Provided are a corrosion inhibiting cleaning solution capable of effectively inhibiting corrosion occurring on a wafer after a copper damascene process and a CMP process using the same. The corrosion inhibiting cleaning solution includes a corrosion inhibitor comprising a tetrazole (tetrazole) compound; menstruum; And pH adjusters. The corrosion inhibiting cleaning solution may be used in a cleaning process for cleaning the surface of a wafer containing copper. In addition, after the CMP process of polishing the copper film, the polishing pad can be conditioned using the corrosion inhibiting cleaning solution.

부식 억제Corrosion suppression

Description

구리 부식 억제 세정 용액 및 이를 이용하는 씨엠피 공정{Solution of inhibiting Copper erosion and CMP process using the solution}Solution of inhibiting copper erosion and CMP process using the solution

도 1은 첫번째 실험예에 따른 결과를 나타내는 그래프이다. 1 is a graph showing the results according to the first experimental example.

도 2는 두번째 실험예에 따른 결과를 나타내는 그래프이다. 2 is a graph showing the results according to the second experimental example.

도 3은 세번째 실험예에 따른 결과를 나타내는 그래프이다. 3 is a graph showing the results according to the third experimental example.

도 4는 네번째 실험결과를 나타내는 도면이다.4 is a view showing a fourth experimental result.

도 5는 다섯번째 실험결과를 나타내는 도면이다. 5 is a view showing a fifth experiment result.

본 발명은 반도체 제조 공정에 사용되는 용액 및 이를 이용하는 반도체 제조 공정에 관한 것으로, 더욱 상세하게는 구리 부식 억제 세정 용액 및 이를 사용하는 세정 공정에 관한 것이다. The present invention relates to a solution used in a semiconductor manufacturing process and a semiconductor manufacturing process using the same, and more particularly, to a copper corrosion inhibiting cleaning solution and a cleaning process using the same.

화학기계적 연마(Chemical mechanical polishing, CMP) 공정은 반도체 제조 공정 중 다양한 막을 제거하거나 평탄화 하는데 있어서 매우 유용한 공정이다. Chemical mechanical polishing (CMP) is a very useful process for removing or planarizing various films during semiconductor manufacturing.

최근에는 텅스텐과 알루미늄이 배선 형성에 있어 가장 활용도가 높았으나, 저유전막과 함께 사용하는 구리 배선이 알루미늄 배선에 비교했을 때 칩 구동 속 도, 요구되는 메탈 배선층 수, 구동 전력 및 제조 비용 측면에서 보다 효과적이고 저렴하며 우수한 특성을 보이는 구리에 대한 관심 및 사용이 크게 증가하고 있는 추세이다. In recent years, tungsten and aluminum have been most utilized for wiring formation, but copper wiring used in conjunction with low dielectric films is more expensive in terms of chip driving speed, required metal wiring layer, driving power, and manufacturing cost than aluminum wiring. There is a significant increase in the interest and use of copper which is effective, inexpensive and exhibits excellent properties.

일반적으로 구리 CMP 공정은 막질의 특성 차이에 의한 디싱(dishing) 현상들을 방지하기 위해 벌크 구리를 제거하는 제1차 CMP 공정과 층간절연막 상의 불필요한 메탈을 모두 제거하는 제2차 CMP 공정으로 나누어 진행을 한다. 제1차 CMP 단계에서는 구리에 대하여 빠른 연마속도 특성을 갖는 슬러리를 이용하여 대부분의 Cu를 1차적으로 제거하는 공정을 진행하고, 제2차 CMP 단계에서는 구리의 연마속도와 하부 막질들과의 연마속도가 같거나 비슷한 특성을 갖는 슬러리를 이용하여 공정을 진행한다.  In general, the copper CMP process is divided into a first CMP process for removing bulk copper and a second CMP process for removing unnecessary metals on the interlayer insulating layer to prevent dishing due to differences in film quality. do. In the first CMP step, most of the Cu is first removed by using a slurry having a fast polishing rate with respect to copper. In the second CMP step, the polishing rate of copper and the lower layers are polished. The process is carried out using slurries with the same or similar properties.

이러한 구리 CMP 공정에서 구리가 부분적으로 부식되는 문제가 발생한다. 이러한 구리의 부식으로 반도체 소자의 전기적 특성이 열화될 수 있다. 이를 방지하기 위해 부식 방지제로 종래에는 벤조트리아졸(Benzotriazole)을 슬러리등에 첨가하여 구리의 부식을 방지하고자 하였다. 그러나 CMP 공정 중에는 부식이 방지될지라도, CMP 공정 완료 후 웨이퍼 위에 묻어 있는 슬러리 또는 케미컬을 제거하기 위해 진행하는 탈이온수를 이용하는 린스 단계에서, 또는 세정기로 웨이퍼를 이동시키는 단계에서 물 또는 공기 중에 상기 웨이퍼가 노출되는 동안 구리 배선에 부식이 발생하게 된다. In such a copper CMP process, a problem arises in which copper is partially corroded. Corrosion of the copper may deteriorate electrical characteristics of the semiconductor device. In order to prevent this, conventionally, benzotriazole was added to the slurry as a corrosion inhibitor to prevent corrosion of copper. However, even if corrosion is prevented during the CMP process, the wafer may be in water or air in a rinsing step using deionized water that proceeds to remove slurry or chemicals on the wafer after the CMP process is completed, or in moving the wafer to a scrubber. Corrosion will occur in the copper wiring during the exposure.

상기 문제점을 해결하기 위하여, 본 발명의 기술적 과제는 구리의 부식을 효과적으로 방지할 수 있는 부식 억제 세정 용액 및 이를 사용하는 씨엠피 공정을 제공하는데 있다. In order to solve the above problems, the present invention is to provide a corrosion inhibiting cleaning solution that can effectively prevent the corrosion of copper and CMP process using the same.

상기 기술적 과제를 달성하기 위한 본 발명에 따른 부식 억제 세정 용액은 테트라졸(tetrazole) 화합물을 포함하는 부식억제제; 용매; 및 pH 조절제를 포함한다. 상기 용매는 바람직하게는 탈이온수이다. Corrosion inhibitory cleaning solution according to the present invention for achieving the above technical problem is a corrosion inhibitor comprising a tetrazole (tetrazole) compound; menstruum; And pH adjusters. The solvent is preferably deionized water.

상기 테트라졸 화합물은 아민기(NH2-), 알킬기(R-) 및 멀캅토기(SH-)를 포함하는 그룹에서 선택되는 적어도 하나의 작용기를 구비할 수 있다. 바람직하게는 상기 테트라졸 화합물은 5-아미노테트라졸(5-aminotetrazole), 1,5-펜타메틸렌테트라졸(1,5-pentamethylenetetrazole), 1-(2-(디메틸아미노)에틸)-1H-테트라졸-5-티올(1-(2-(dimethylamino)ethyl)-1H-tetrazole-5-thiol), 1-(4-히드록시페닐)-1H-테트라졸-5-티올(1-(4-hydroxyphenyl)-1H-tetrazole-5-thiol), 1-페닐-1H-테트라졸-5-티올(1-phenyl-1H-tetrazole-5-thiol), 1-페닐-5-멀캅토테트라졸(1-페틸-5-멀캅토테트라졸), 1H-테트라졸(1H-tetrazole), 1H-테트라졸-5-아세트산(1H-tetrazole-5-acetic acid), 5,5'-디티오비스(1-페닐-1H-테트라졸)(5,5'-dithiobis(1-phenyl-1H-tetrazole)), 5-(2-브로모페닐)-1H-테트라졸(5-(2-bromophenyl)-1H-tetrazole), 5-(4-메틸페닐)-1H-tetrazole(5-(4-methylphenyl)-1H-tetrazole),5-(5-브로모-3-피리딜)-1H-테트라졸(5-(5-bromo-3-pyridyl)-1H-tetrazole), 5-(에틸티오)-1H-테트라졸(5-(ethylthio)-1H-tetrazole),5-아미노테트라졸(5-aminotetrazole),5-클로로-1-페닐-1H-테트라졸(5-chloro-1-phenyl-1H-tetrazole), 5-에틸티오-1H-테트라졸(5-ethylthio-1H-tetrazole), 5-멀캅토-1-메틸테트라졸(5-mercapto-1-methyltetrazole), 5-멀캅토-1H-테트라졸-1-메탄슬폰산(5-mercapto-1H-tetrazole-1-methanesulfonic acid), 5-메틸-1H-테트라졸(5-methyl-1H-tetrazole), 5-페닐-1H-테트라졸(5-phenyl-1H-tetrazole),에틸-1H-테트라졸-5-아세테이트(ethyl-1H-tetrazole-5-acetate), 및 펜틸렌테트라졸(pentylenetetrazole)을 포함하는 그룹에서 선택되는 적어도 하나의 물질일 수 있다. 상기 테트라졸 화합물은 바람직하게는 0.001~0.5M의 농도로 포함되며, 효과적으로는 0.001M~0.05M의 농도로 상기 부식 억제 세정 용액에 포함된다. The tetrazole compound may have at least one functional group selected from the group consisting of an amine group (NH 2 −), an alkyl group (R −), and a mercapto group (SH −). Preferably, the tetrazole compound is 5-aminotetrazole, 1,5-pentamethylenetetrazole, 1- (2- (dimethylamino) ethyl) -1H-tetra Sol-5-thiol (1- (2- (dimethylamino) ethyl) -1H-tetrazole-5-thiol), 1- (4-hydroxyphenyl) -1H-tetrazol-5-thiol (1- (4- hydroxyphenyl) -1H-tetrazole-5-thiol), 1-phenyl-1H-tetrazol-5-thiol, 1-phenyl-5-mercaptotetrazole (1 -Petyl-5-mercaptotetrazole), 1H-tetrazole, 1H-tetrazole-5-acetic acid, 5,5'-dithiobis (1-H-tetrazole) Phenyl-1H-tetrazole) (5,5'-dithiobis (1-phenyl-1H-tetrazole)), 5- (2-bromophenyl) -1H-tetrazole (5- (2-bromophenyl) -1H- tetrazole), 5- (4-methylphenyl) -1H-tetrazole (5- (4-methylphenyl) -1H-tetrazole), 5- (5-bromo-3-pyridyl) -1H-tetrazole (5- ( 5-bromo-3-pyridyl) -1H-tetrazole), 5- (ethylthio) -1H-tetrazole (5- (ethylthio) -1H-tetrazole), 5-aminotetrazole, 5- Claw 5-chloro-1-phenyl-1H-tetrazole, 5-ethylthio-1H-tetrazole, 5-mercapto-1-methyl 5-mercapto-1-methyltetrazole, 5-mercapto-1H-tetrazol-1-methanesulfonic acid, 5-methyl-1H-tetrazole (5-methyl-1H-tetrazole), 5-phenyl-1H-tetrazole, ethyl-1H-tetrazole-5-acetate, And pentylenetetrazole (pentylenetetrazole) may be at least one material selected from the group containing. The tetrazole compound is preferably included at a concentration of 0.001 to 0.5M, and effectively included in the corrosion inhibiting cleaning solution at a concentration of 0.001M to 0.05M.

상기 pH 조절제는 바람직하게는 황산, 인산, 염산, 질산, 카르복실산, 수산화칼륨, 암모니아수, 및 수산화나트륨을 포함하는 그룹에서 선택되는 적어도 하나이다. 상기 pH 조절제는 상기 부식 억제 세정 용액의 pH가 바람직하게는 2~12, 효과적으로는 4~8이 되도록 첨가될 수 있다. The pH adjusting agent is preferably at least one selected from the group consisting of sulfuric acid, phosphoric acid, hydrochloric acid, nitric acid, carboxylic acid, potassium hydroxide, aqueous ammonia, and sodium hydroxide. The pH adjusting agent may be added so that the pH of the corrosion inhibiting cleaning solution is preferably 2-12, effectively 4-8.

상기 부식 억제 세정 용액은 착물 형성제를 더 포함할 수 있으며, 이때 상기 착물 형성제는 카르복실기(COOH-)를 포함하는 화합물이다. 상기 착물 형성제는 바람직하게는 폴리아크릴산(polyacrylic acid), 구연산(citric acid), 아세트산(acetic acid), 포름산(formic aicd), 말레산(maleic acid), 말산(malic acid), 말론산(malonic acid), 타르타르산(tartaric acid), 글루타르산(glutaric acid), 옥살산(oxalic acid), 프로피온산(propionic acid), 및 숙신산(succinic acid)을 포함하는 그룹에서 선택되는 적어도 하나이다. 상기 착물 형성제는 상기 부식 억제 세정 용액의 전체 중량의 0.01~0.5중량%로 첨가된다. The corrosion inhibiting cleaning solution may further include a complex former, wherein the complex former is a compound comprising a carboxyl group (COOH—). The complex forming agent is preferably polyacrylic acid, citric acid, acetic acid, formic acid, maleic acid, maleic acid, malic acid, malonic acid. acid), tartaric acid, glutaric acid, glutaric acid, oxalic acid, propionic acid, and succinic acid. The complex forming agent is added at 0.01 to 0.5% by weight of the total weight of the corrosion inhibiting cleaning solution.

상기 부식 억제 세정 용액은 구리를 포함하는 웨이퍼의 표면을 세정하는 세정 공정에 사용될 수 있다. 또한 구리막을 연마하는 CMP 공정 후에, 상기 부식 억제 세정 용액을 이용하여 연마 패드를 컨디셔닝할 수 있다. The corrosion inhibiting cleaning solution may be used in a cleaning process for cleaning the surface of a wafer containing copper. In addition, after the CMP process of polishing the copper film, the polishing pad can be conditioned using the corrosion inhibiting cleaning solution.

상기 또 다른 기술적 과제를 달성하기 위한 본 발명에 따른 씨엠피 공정은 다음과 같다. 패드(pad), 컨디셔너(conditioner) 및 헤드(head)를 구비하는 씨엠피 장비를 이용하는 씨엠피(CMP, chemical mechanical polishing) 공정에 있어서, 먼저 베리어막이 형성된 그루브를 갖는 층간절연막 상에 위치하며 상기 그루브를 채우는 구리막을 구비하는 웨이퍼를 상기 헤드에 고정시킨다. 상기 웨이퍼를 고정하는 헤드를 내려 상기 웨이퍼가 상기 패드에 접하게 한다. 상기 헤드와 상기 패드를 회전시켜 상기 층간절연막 상의 구리막을 제거하는 1차 연마를 실시한다. 상기 헤드와 상기 패드의 회전을 중단하고 상기 웨이퍼가 상기 패드에 접한 상태에서 상기 부식 억제 세정 용액을 이용하여 상기 웨이퍼 표면의 이물질을 제거하는 린스(rinse)를 실시한다. 상기 헤드를 이동하여 상기 웨이퍼가 다른 패드 상에 위치하도록 하는 동시에 상기 부식 억제 세정 용액을 상기 웨이퍼 상에 분무한다. 상기 헤드를 내려 상기 웨이퍼를 상기 다른 패드에 접하게 한다. 그리고 상기 헤드와 상기 패드를 회전시켜 상기 층간절연막 상의 상기 베리어막을 제거하는 2차 연마를 실시한다. CMP process according to the present invention for achieving the above another technical problem is as follows. In a chemical mechanical polishing (CMP) process using CMP equipment having a pad, a conditioner and a head, the groove is first placed on an interlayer insulating film having a groove on which a barrier film is formed. A wafer having a copper film filling the wafer is fixed to the head. The head holding the wafer is lowered to bring the wafer into contact with the pad. The head and the pad are rotated to perform primary polishing to remove the copper film on the interlayer insulating film. The rotation of the head and the pad is stopped and a rinse is performed to remove foreign substances on the surface of the wafer using the corrosion inhibiting cleaning solution while the wafer is in contact with the pad. The head is moved to position the wafer on another pad while simultaneously spraying the corrosion inhibiting cleaning solution onto the wafer. The head is lowered to bring the wafer into contact with the other pad. The head and the pad are rotated to perform secondary polishing to remove the barrier film on the interlayer insulating film.

상기 공정에 있어서, 상기 부식 억제 세정 용액을 상기 웨이퍼 상에 분무하는 동안, 상기 부식 억제 세정 용액을 이용하여 상기 패드의 표면을 컨디셔너로 컨디셔닝할 수 있다. In the above process, while spraying the corrosion inhibiting cleaning solution onto the wafer, the surface of the pad may be conditioned with a conditioner using the corrosion inhibiting cleaning solution.

본 발명에 관한 보다 상세한 내용은 다음의 실험예들을 통하여 설명하되, 여기에 기재되지 않은 내용은 이 기술분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 설명을 생략한다. More detailed information on the present invention will be described through the following experimental examples, but the information not described herein will be omitted because it is sufficiently technically inferred by those skilled in the art.

<실험예 1>Experimental Example 1

부식 억제 세정 용액에 첨가되는 부식억제제의 식각 억제 능력을 평가하기 위하여 11개의 샘플 용액을 제조하였다. 폴리실리콘 기판 상에 PETEOS(plasma enhanced tetraethyl orthosilicate, Si(OC2H5)4)를 3000Å 두께로 증착한 후, Ta막과 TaN막을 각각 100Å과 250Å의 두께들로 증착하였다. 그리고 상기 TaN 막상에 구리 시드층을 1200Å의 두께로 PVD 방법으로 증착하고, 상기 구리 시드층 상에 전기도금(electroplating) 방법으로 벌크 구리막을 12000Å 두께로 증착하여 시료 웨이퍼를 완성하였다. 본 실험은 정적(static)인 상태에서 진행하였다. 제조된 11개의 샘플 용액들 각각에 시료 웨이퍼를 60분 동안 담근 후, 담그기 전과 담근 후의 저항을 측정하여 제거된 구리의 양을 계산하고 이를 이용하여 식각률을 계산하였다. 제조된 샘플 용액들의 조건과 각 용액별 평가 결과는 표 1에 나타내었다. 그리고 표 1의 결과를 토대로 도1의 그래프를 작성하였다. 본 실험에서는 실험목적상 임의로 구리의 부식 속도를 높여 주기 위하여 과산화수소와 구연산을 사용하였다.Eleven sample solutions were prepared to evaluate the etch inhibiting ability of the corrosion inhibitor added to the corrosion inhibiting cleaning solution. PETEOS (plasma enhanced tetraethyl orthosilicate, Si (OC 2 H 5 ) 4 ) was deposited on a polysilicon substrate at a thickness of 3000 kPa, and then a Ta film and a TaN film were deposited at thicknesses of 100 kPa and 250 kPa, respectively. A copper seed layer was deposited on the TaN film by a PVD method at a thickness of 1200 kPa, and a bulk copper film was deposited on the copper seed layer by 12000 kPa by an electroplating method to complete a sample wafer. This experiment was conducted in a static state. After immersing the sample wafer in each of the 11 sample solutions prepared for 60 minutes, the resistance before and after soaking was measured to calculate the amount of copper removed and the etch rate was calculated using the sample wafer. The conditions of the prepared sample solutions and the evaluation results for each solution are shown in Table 1. And the graph of FIG. 1 was created based on the result of Table 1. For the purpose of this experiment, hydrogen peroxide and citric acid were used to increase the corrosion rate of copper arbitrarily.

샘플 용액Sample solution 과산화수소(중량%)Hydrogen peroxide (% by weight) 구연산 (mole/L)Citric acid (mole / L) 벤조트리아졸(Benzotriazole) (mole/L)Benzotriazole (mole / L) 5-아미노테트라졸(aminotetrazole)(mole/L)5-aminotetrazole (mole / L) 식각률 (Å/min)Etch Rate (Å / min) 1One 22 0.020.02 00 00 186186 22 22 0.020.02 0.0010.001 00 241241 33 22 0.020.02 0.0050.005 00 307307 44 22 0.020.02 0.010.01 00 1515 55 22 0.020.02 0.030.03 00 1One 66 22 0.020.02 0.050.05 00 00 77 22 0.020.02 00 0.0010.001 174174 88 22 0.020.02 00 0.0050.005 111111 99 22 0.020.02 00 0.010.01 2121 1010 22 0.020.02 00 0.030.03 88 1111 22 0.020.02 00 0.050.05 00

표 1과 도 1을 참조하면, 종래의 부식억제제로 첨가된 벤조트리아졸의 경우 0.01M 이하의 소량 첨가시 구리의 식각률이 첨가하지 않은 경우 보다 크게 증가하는 결과를 보여 불안정하였다. 한편, 본 발명의 부식 억제제인 5-아미노테트라졸의 경우 첨가량이 증가함에 따라서 안정적으로 감소하는 결과를 볼 수 있었다. 본 평가 결과를 통해 종래의 벤조트리아졸은 실제 공정 적용에 있어 문제점이 있음을 알 수 있다. Referring to Table 1 and Figure 1, the benzotriazole added as a conventional corrosion inhibitor was unstable as a result of increasing the etching rate of the copper when added in a small amount of less than 0.01M. On the other hand, in the case of the 5-aminotetrazole corrosion inhibitor of the present invention was found to decrease stably as the addition amount increases. The evaluation results show that the conventional benzotriazole has a problem in actual process application.

<실험예 2>Experimental Example 2

본 실험은 본 발명의 부식억제제의 능력을 평가하기 위한 것으로, 첫번째 실험예에서 제작된 시료 웨이퍼들을 탈이온수에 과산화수소와 구연산만이 첨가된 샘플 용액들에 담그고, 동적(dynamic)인 상태에서 시료웨이퍼에 0.5볼트의 전압을 가한 후, 시간에 따른 전류 밀도를 측정하였다. 실험 시작 후 40초가 지난 시점에서 벤조트리아졸과 5-아미노테트라졸을 상기 시료 샘플 용액들에 각각 첨가하고, 이에 300초 동안 변하는 전류 밀도의 양을 비교하는 방법으로 본 실험을 진행하였다. 본 실험에서 과산화수소와 구연산을 첨가한 이유는 첫번째 실험예와 동일하다. 제조된 샘플 용액들의 조건과 각 용액별 평가 결과는 표 2에 나타내었다. 그리고 표 2의 결과 중에 4번째 샘플 용액에 대한 결과와 8번째 샘플 용액에 대한 결과를 도 2의 그래프로 나타내었다. This experiment is to evaluate the capability of the corrosion inhibitor of the present invention, the sample wafers prepared in the first experimental example is immersed in the sample solution added only hydrogen peroxide and citric acid to deionized water, the sample wafer in a dynamic state After applying a voltage of 0.5 volts, the current density over time was measured. 40 seconds after the start of the experiment, benzotriazole and 5-aminotetrazole were added to the sample sample solutions, respectively, and the experiment was conducted by comparing the amount of current density changed for 300 seconds. The reason for adding hydrogen peroxide and citric acid in this experiment is the same as the first experimental example. The conditions of the prepared sample solutions and the evaluation results for each solution are shown in Table 2. And the results for the fourth sample solution and the results for the eighth sample solution in the results of Table 2 are shown in the graph of FIG.

샘플 용액Sample solution 과산화수소(중량%)Hydrogen peroxide (% by weight) 구연산 (mole/L)Citric acid (mole / L) 벤조트리아졸 (mole/L)Benzotriazole (mole / L) 5-아미노테트라졸 (mole/L)5-aminotetrazole (mole / L) 전류 밀도 (μA/cm2)Current density (μA / cm 2 ) 1One 22 0.020.02 00 00 -688-688 22 22 0.020.02 0.0010.001 00 -541-541 33 22 0.020.02 0.0050.005 00 -414-414 44 22 0.020.02 0.010.01 00 -225-225 55 22 0.020.02 0.020.02 00 -153-153 66 22 0.020.02 00 0.0010.001 -485-485 77 22 0.020.02 00 0.0050.005 -286-286 88 22 0.020.02 00 0.010.01 -206-206 99 22 0.020.02 00 0.020.02 -130-130

도 2를 참조하면, 벤조트리아졸과 5-아미노테트라졸의 농도가 0.01M일 때의 시간에 따른 그래프로서, 부식 억제제를 첨가하기 전에는 -688μA/cm2의 전류밀도를 갖다가 40초 부근에서 급격한 변화가 있다가 각각 -225μA/cm2와 -206μA/cm2으로 안정화되는 형태를 나타낸다. 표 2와 도 2를 참조하면, 부식 억제제가 전혀 첨가되지 않은 조건의 경우 전류밀도 값이 -688μA/cm2 이 나왔으나, 벤조트리아졸과 5-아미노테트라졸이 첨가된 후 전류 밀도 값이 감소함으로써 구리막 표면에 흡착 보호막(passivation layer)이 형성되었음을 알 수 있다. 보호막이 효과적으로 형성되는지를 판단하는 근거는 옴의 법칙(V=I×R)이다. 즉, 보호막 형성으로 인하여 R( 저항)이 증가를 하면 전압은 주어진 조건인 0.5볼트로 고정되어 있기 때문에 결국 I(전류) 값은 감소를 하게 됨으로써 I 값의 절대값이 작을수록 보다 효과적인 부식억제제라 할 수 있다. 따라서 실험결과 동일 전압 조건 하에서 5-아미노테트라졸이 첨가된 조건이 소량 첨가 조건 및 모든 조건에서 벤조트라이졸 대비 우수한 결과를 보이고 있음을 알 수 있다.Referring to FIG. 2, it is a graph of the time when the concentrations of benzotriazole and 5-aminotetrazole are 0.01 M. Before adding the corrosion inhibitor, the current density of −688 μA / cm 2 is obtained at about 40 seconds. that there is a rapid change represents a form in which each stabilized with -225μA / cm 2 and -206μA / cm 2. Referring to Table 2 and FIG. 2, the current density value was -688 μA / cm 2 for the condition that the corrosion inhibitor was not added at all, but the current density value decreased after the addition of benzotriazole and 5-aminotetrazole. It can be seen that an adsorption passivation layer was formed on the surface of the copper film. The basis for judging whether the protective film is effectively formed is Ohm's law (V = I × R). In other words, if R (resistance) increases due to the formation of the protective film, the voltage is fixed at 0.5 volts, which is a given condition. Therefore, the value of I (current) decreases, so the smaller the absolute value of I, the more effective corrosion inhibitor. can do. Therefore, it can be seen that the results of the addition of 5-aminotetrazole under the same voltage condition showed excellent results compared to benzotriazole under a small amount of addition conditions and all conditions.

<실험예 3>Experimental Example 3

본 실험은 본 발명의 착물형성제의 능력을 평가하기 위한 것으로, 첫번째 실험예에서 제작된 시료 웨이퍼들을 탈이온수에 과산화수소와 구연산만이 첨가된 샘플 용액들에 담그고, 동적(dynamic)인 상태에서 시료웨이퍼에 0.5볼트의 전압을 가한 후, 시간에 따른 전류 밀도를 측정하였다. 실험 시작 후 40초가 지난 시점에서 5-아미노테트라졸과 폴리아크릴산(polyacylic acid)을 상기 시료 샘플 용액들에 각각 첨가하고, 이에 300초 동안 변하는 전류 밀도의 양을 비교하는 방법으로 본 실험을 진행하였다. 본 실험에서 과산화수소와 구연산을 첨가한 이유는 첫번째 실험예와 동일하다. 제조된 샘플 용액들의 조건과 각 용액별 평가 결과는 표 3에 나타내었다. 그리고 표 3의 결과 중에 4번째 샘플 용액에 대한 결과와 8번째 샘플 용액에 대한 결과를 도 3의 그래프로 나타내었다. This experiment is to evaluate the capability of the complexing agent of the present invention. The sample wafers prepared in the first experimental example are immersed in sample solutions in which only hydrogen peroxide and citric acid are added to deionized water, and the sample is in a dynamic state. After applying a voltage of 0.5 volt to the wafer, the current density over time was measured. 40 seconds after the start of the experiment, 5-aminotetrazole and polyacrylic acid were added to the sample sample solutions, respectively, and the experiment was performed by comparing the amount of current density changed for 300 seconds. . The reason for adding hydrogen peroxide and citric acid in this experiment is the same as the first experimental example. The conditions of the prepared sample solutions and the evaluation results for each solution are shown in Table 3. And the results for the fourth sample solution and the eighth sample solution in the results of Table 3 is shown in the graph of FIG.

샘플 용액Sample solution 과산화수소(중량%)Hydrogen peroxide (% by weight) 구연산 (mole/L)Citric acid (mole / L) 5-아미노테트라졸 (mole/L)5-aminotetrazole (mole / L) 폴리아크릴산 (wt%)Polyacrylic acid (wt%) 전류밀도(μA/cm2)Current density (μA / cm 2 ) 1One 22 0.020.02 00 00 -688-688 22 22 0.020.02 0.0010.001 00 -485-485 33 22 0.020.02 0.0050.005 00 -286-286 44 22 0.020.02 0.010.01 00 -225-225 55 22 0.020.02 0.020.02 00 -153-153 66 22 0.020.02 0.0010.001 0.010.01 -428-428 77 22 0.020.02 0.0050.005 0.010.01 -221-221 88 22 0.020.02 0.010.01 0.010.01 -189-189 99 22 0.020.02 0.020.02 0.010.01 -121-121

도 3을 참조하면, 5-아미노테트라졸의 농도가 0.01M일 때 폴리아크릴산의 첨가 유무에 따른 그래프로서, 5-아미노테트라졸을 첨가하기 전에는 -688μA/cm2의 전류밀도를 갖다가 40초 부근에서 급격한 변화가 있다가 폴리아크릴산을 첨가하지 않은 경우는 -225μA/cm2로, 폴리아크릴산을 첨가한 경우는 -189μA/cm2으로 안정화되는 형태를 나타낸다. 표 3과 도 3을 참조하면, 5-아미노테트라졸과 폴리아크릴산이 첨가된 후 전류 밀도 값이 감소함으로써 구리막 표면에 흡착 보호막(passivation layer)이 형성되었음을 알 수 있다. 보호막이 효과적으로 형성되는지를 판단하는 옴의 법칙(V=I×R)으로부터 폴리아크릴산이 첨가됨으로써 전류밀도가 전체적으로 감소하는 결과를 확인할 수 있었다.Referring to FIG. 3, when the concentration of 5-aminotetrazole is 0.01 M, polyacrylic acid is added or not, and before adding 5-aminotetrazole, a current density of −688 μA / cm 2 is obtained for 40 seconds. When there is a drastic change in the vicinity, when polyacrylic acid is not added, it is stabilized at -225 μA / cm 2 and when polyacrylic acid is added at -189 μA / cm 2 . Referring to Table 3 and FIG. 3, it can be seen that a passivation layer was formed on the surface of the copper film by decreasing the current density value after 5-aminotetrazole and polyacrylic acid were added. From the Ohm's law (V = I × R), which determines whether the protective film is effectively formed, polyacrylic acid was added to confirm the result of decreasing the current density as a whole.

<실험예 4>Experimental Example 4

실제 공정 중 5-아미노테트라졸 사용시 부식 억제 능력을 알아보기 위하여, 1차 연마 공정 후, 부식 억제제를 첨가한 용액을 사용하여 린스(rinse)를 진행하였다. 본 실험에서는 실제로 구리 배선을 형성하기 위해 구리 다마신 공정이 진행된 동일한 런 웨이퍼들이 사용되었다. 상기 린스 단계에서는 상기 런 웨이퍼가 패드와 접하고 있는 상태에서 패드 위에 부식 억제 세정 용액을 공급하여 진행되었다. 상기 린스 단계 후에 웨이퍼 상에 부식이 발생한 부분들을 포함하는 결함(defect)들의 갯수를 측정하여 표 4에 나타내었고, 도 4는 본 실험의 결과를 나타내는 웨이퍼 상태이다. In order to determine the corrosion inhibition ability when using 5-aminotetrazole in the actual process, after the primary polishing process, the rinse was performed using a solution to which the corrosion inhibitor was added. In this experiment, the same run wafers with the copper damascene process were used to actually form the copper wiring. In the rinsing step, the anti-corrosion cleaning solution was supplied onto the pad while the run wafer was in contact with the pad. After the rinsing step, the number of defects including the parts where corrosion occurred on the wafer was measured and shown in Table 4, and FIG. 4 is a wafer state showing the results of the present experiment.

샘플 용액Sample solution 부식억제제Corrosion inhibitor 첨가 농도 (mole/L)Concentration (mole / L) 측정결과 (결함 개수/웨이퍼)Measurement result (number of defects / wafer) 1One 부식억제제 없이 탈이온수만 사용한 경우When only deionized water is used without corrosion inhibitor -- 1,9041,904 22 벤조트리아졸Benzotriazole 0.010.01 15,91015,910 33 5-아미노테트라졸5-aminotetrazole 0.010.01 826826

도 4와 표 4를 참조하면, 부식억제제를 첨가하지 않고 탈이온수만 사용하여 린스를 진행한 경우 약 1900개의 부식이 발생한 결과를 보였으며, 종래의 벤조트리아졸이 첨가된 용액을 이용하여 린스를 진행한 경우엔 약 16,000개 정도로 부식이 크게 증가한 결과를 보였다. 반면 본 발명의 5-아미노테트라졸이 첨가된 용액을 이용하여 린스를 진행한 결과 부식이 발생한 부분이 탈이온수만 사용한 경우 보다 절반 수준으로 크게 감소한 결과를 보였다. 이로써, 본 발명의 부식억제제가 실제로 부식을 방지하는데 매우 효과적임을 알 수 있다. Referring to FIG. 4 and Table 4, when rinsing was performed using only deionized water without adding a corrosion inhibitor, about 1900 corrosion was generated, and rinsing was performed using a conventional benzotriazole-added solution. In the case of progress, the corrosion was increased to about 16,000. On the other hand, as a result of rinsing using the solution of the 5-aminotetrazole of the present invention, the corrosion occurred was reduced to about half the level compared to the case of using only deionized water. Thus, it can be seen that the corrosion inhibitor of the present invention is very effective in actually preventing corrosion.

<실험예 5>Experimental Example 5

실제 CMP 공정 도중 문제가 발생하여, 공정이 중단되고, 패드에 웨이퍼가 접한 상태로 웨이퍼가 정체하는 경우가 있다. 이 경우 종래에는 결국엔 웨이퍼를 버려야했다. 본 실험은 이러한 경우에 본 발명의 부식 억제 세정 용액을 사용하여 해결할 수 있는지를 입증하기 위하여 행해졌다. Problems may occur during the actual CMP process, the process may be stopped, and the wafer may be stagnant while the wafer is in contact with the pad. In this case, the wafer had to be discarded eventually. This experiment was conducted to demonstrate if this can be solved using the corrosion inhibiting cleaning solution of the present invention.

본 실험에서는 실제의 런 웨이퍼들에 대해 구리 다마신 공정을 진행하고 탈이온수만을 공급하여 10분간 정체시키며 린스하는 경우와, 정체하기 30초 전에 5-아미노테트라졸을 포함하는 부식 억제 세정 용액을 공급하여 정체시키며 린스한 경우 얼마나 많이 부식이 발생했는지를 측정하였다. 이 결과는 표 5와 도 5에 나타내었다. In this experiment, the copper wafers were subjected to the copper damascene process, and only deionized water was allowed to stand for 10 minutes to rinse and rinse. In the case of stagnation and rinse, it was measured how much corrosion occurred. The results are shown in Table 5 and FIG.

샘플 용액Sample solution 첨가제additive 린스 시간 (초)Rinse time (seconds) 정체시간Stagnation time 측정결과 측정결과 (부식이 발생한 부분 갯수/웨이퍼)Measurement result Measurement result (number of corroded parts / wafer) 1One 탈이온수만 사용한 경우When only deionized water is used 30"30 " 10분10 minutes 28672867 22 5-아미노테트라졸5-aminotetrazole 30"30 " 10분10 minutes 66

표 5와 도 5를 참조하면, 탈이온수만을 이용하여 린스한 경우, 웨이퍼 전체에서 2867개의 부식이 발생한 반면, 5-아미노테트라졸을 포함하는 부식 억제 세정 용액을 이용한 경우 오직 6개의 부식이 발생하였다. 이로써 본 발명의 부식 억제 세정 용액을 사용할 경우 단순정체시 발생하는 부식을 1/500 수준으로 획기적으로 감소시킬 수 있음을 알 수 있다. Referring to Table 5 and FIG. 5, when rinsing using only deionized water, 2867 corrosions occurred throughout the wafer, whereas only 6 corrosions occurred when using a corrosion inhibiting cleaning solution containing 5-aminotetrazole. . As a result, it can be seen that when the corrosion inhibiting cleaning solution of the present invention is used, the corrosion generated during simple stagnation can be drastically reduced to 1/500.

따라서, 본 발명에 따른 테트라졸 화합물을 포함하는 부식 억제 세정 용액을 사용함으로써, 구리 다마신 공정 후에 웨이퍼 상에 발생하는 부식을 효과적으로 억제할 수 있다.Therefore, by using the corrosion inhibiting cleaning solution containing the tetrazole compound according to the present invention, corrosion occurring on the wafer after the copper damascene process can be effectively suppressed.

Claims (22)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 패드(pad), 컨디셔너(conditioner) 및 헤드(head)를 구비하는 씨엠피 장비를 이용하는 씨엠피(CMP, chemical mechanical polishing) 공정에 있어서,In a chemical mechanical polishing (CMP) process using a CMP equipment having a pad, a conditioner and a head, 베리어막이 형성된 그루브를 갖는 층간절연막 상에 위치하며 상기 그루브를 채우는 구리막을 구비하는 웨이퍼를 상기 헤드에 고정시키는 단계;Fixing a wafer to the head, the wafer having a copper film filling the groove and positioned on the interlayer insulating film having a barrier film formed thereon; 상기 웨이퍼를 고정하는 헤드를 내려 상기 웨이퍼가 상기 패드에 접하게 하는 단계;Lowering the head holding the wafer to bring the wafer into contact with the pad; 상기 헤드와 상기 패드를 회전시켜 상기 층간절연막 상의 구리막을 제거하는 1차 연마 단계;A primary polishing step of removing the copper film on the interlayer insulating film by rotating the head and the pad; 상기 헤드와 상기 패드의 회전을 중단하고 상기 웨이퍼가 상기 패드에 접한 상태에서 테트라졸 화합물을 포함하는 부식 억제 세정 용액을 이용하여 상기 웨이퍼 표면의 이물질을 제거하는 린스(rinse) 단계;A rinse step of stopping the rotation of the head and the pad and removing foreign substances on the surface of the wafer by using a corrosion inhibiting cleaning solution containing a tetrazole compound while the wafer is in contact with the pad; 상기 헤드를 이동하여 상기 웨이퍼가 다른 패드 상에 위치하도록 이동하는 동안 상기 부식 억제 세정 용액을 상기 웨이퍼 상에 분무하는 단계;Spraying the corrosion inhibiting cleaning solution onto the wafer while moving the head to move the wafer onto another pad; 상기 헤드를 내려 상기 웨이퍼를 상기 다른 패드에 접하게 하는 단계; 및Lowering the head to bring the wafer into contact with the other pad; And 상기 헤드와 상기 패드를 회전시켜 상기 층간절연막 상의 상기 베리어막을 제거하는 2차 연마 단계를 구비하는 씨엠피 공정.And a second polishing step of rotating the head and the pad to remove the barrier film on the interlayer insulating film. 제 12 항에 있어서,The method of claim 12, 상기 부식 억제 세정 용액을 상기 웨이퍼 상에 분무하는 단계 동안, 상기 부식 억제 세정 용액을 이용하여 상기 패드의 표면을 컨디셔너로 컨디셔닝하는 단계를 더 구비하는 씨엠피 공정. And during said spraying said corrosion inhibiting cleaning solution onto said wafer, conditioning the surface of said pad with a conditioner using said corrosion inhibiting cleaning solution. 제 12 또는 13항에 있어서,The method of claim 12 or 13, 상기 부식 억제 세정 용액은 용매 및 pH 조절제를 더 포함하는 것을 특징으로 하는 씨엠피 공정.The corrosion inhibiting cleaning solution CMP process, characterized in that further comprises a solvent and a pH adjuster. 제 14항에 있어서,The method of claim 14, 상기 용매는 탈이온수인 것을 특징으로 하는 씨엠피 공정.CMP process, characterized in that the solvent is deionized water. 제 14 항에 있어서,The method of claim 14, 상기 테트라졸 화합물은 아민기(NH2-), 알킬기(R-) 및 멀캅토기(SH-)를 포함하는 그룹에서 선택되는 적어도 하나의 작용기를 구비하는 것을 특징으로 하는 씨 엠피 공정.Said tetrazole compound has at least one functional group selected from the group consisting of an amine group (NH 2- ), an alkyl group (R-) and a mercapto group (SH-). 제 14 항에 있어서,The method of claim 14, 상기 테트라졸 화합물은 5-아미노테트라졸(5-aminotetrazole), 1,5-펜타메틸렌테트라졸(1,5-pentamethylenetetrazole), 1-(2-(디메틸아미노)에틸)-1H-테트라졸-5-티올(1-(2-(dimethylamino)ethyl)-1H-tetrazole-5-thiol), 1-(4-히드록시페닐)-1H-테트라졸-5-티올(1-(4-hydroxyphenyl)-1H-tetrazole-5-thiol), 1-페닐-1H-테트라졸-5-티올(1-phenyl-1H-tetrazole-5-thiol), 1-페닐-5-멀캅토테트라졸(1-페틸-5-멀캅토테트라졸), 1H-테트라졸(1H-tetrazole), 1H-테트라졸-5-아세트산(1H-tetrazole-5-acetic acid), 5,5'-디티오비스(1-페닐-1H-테트라졸)(5,5'-dithiobis(1-phenyl-1H-tetrazole)), 5-(2-브로모페닐)-1H-테트라졸(5-(2-bromophenyl)-1H-tetrazole), 5-(4-메틸페닐)-1H-tetrazole(5-(4-methylphenyl)-1H-tetrazole),5-(5-브로모-3-피리딜)-1H-테트라졸(5-(5-bromo-3-pyridyl)-1H-tetrazole), 5-(에틸티오)-1H-테트라졸(5-(ethylthio)-1H-tetrazole),5-아미노테트라졸(5-aminotetrazole),5-클로로-1-페닐-1H-테트라졸(5-chloro-1-phenyl-1H-tetrazole), 5-에틸티오-1H-테트라졸(5-ethylthio-1H-tetrazole), 5-멀캅토-1-메틸테트라졸(5-mercapto-1-methyltetrazole), 5-멀캅토-1H-테트라졸-1-메탄슬폰산(5-mercapto-1H-tetrazole-1-methanesulfonic acid), 5-메틸-1H-테트라졸(5-methyl-1H-tetrazole), 5-페닐-1H-테트라졸(5-phenyl-1H-tetrazole),에틸-1H-테트라졸-5-아세테이트(ethyl-1H-tetrazole-5-acetate), 및 펜틸렌테트라졸 (pentylenetetrazole)을 포함하는 그룹에서 선택되는 적어도 하나의 물질인 것을 특징으로 하는 씨엠피 공정.The tetrazole compound is 5-aminotetrazole, 1,5-pentamethylenetetrazole, 1- (2- (dimethylamino) ethyl) -1H-tetrazole-5 -Thiol (1- (2- (dimethylamino) ethyl) -1H-tetrazole-5-thiol), 1- (4-hydroxyphenyl) -1H-tetrazol-5-thiol (1- (4-hydroxyphenyl)- 1H-tetrazole-5-thiol), 1-phenyl-1H-tetrazol-5-thiol, 1-phenyl-5-mercaptotetrazole (1-petyl- 5-mercaptotetrazole), 1H-tetrazole, 1H-tetrazole-5-acetic acid, 5,5'-dithiobis (1-phenyl-1H) -Tetrazole) (5,5'-dithiobis (1-phenyl-1H-tetrazole)), 5- (2-bromophenyl) -1H-tetrazole (5- (2-bromophenyl) -1H-tetrazole), 5- (4-methylphenyl) -1H-tetrazole (5- (4-methylphenyl) -1H-tetrazole), 5- (5-bromo-3-pyridyl) -1H-tetrazole (5- (5-bromo 3-pyridyl) -1H-tetrazole), 5- (ethylthio) -1H-tetrazole, 5-aminotetrazole, 5-chloro-1 -Phenyl-1H-te 5-zol-1-phenyl-1H-tetrazole, 5-ethylthio-1H-tetrazole, 5-mercapto-1-methyltetrazole -methyltetrazole), 5-mercapto-1H-tetrazole-1-methanesulfonic acid, 5-methyl-1H-tetrazole ), 5-phenyl-1H-tetrazole, ethyl-1H-tetrazole-5-acetate, and pentylenetetrazole CMP process, characterized in that at least one material selected from the group comprising. 제 14 항에 있어서,The method of claim 14, 상기 테트라졸 화합물은 0.001M~0.05M의 농도로 포함되는 것을 특징으로 하는 씨엠피 공정. Said tetrazole compound is CMP process, characterized in that contained in a concentration of 0.001M ~ 0.05M. 제 14 항에 있어서,The method of claim 14, 상기 pH 조절제는 황산, 인산, 염산, 질산, 카르복실산, 수산화칼륨, 암모니아수, 및 수산화나트륨을 포함하는 그룹에서 선택되는 적어도 하나인 것을 특징으로 하는 씨엠피 공정. Said pH adjusting agent is at least one selected from the group consisting of sulfuric acid, phosphoric acid, hydrochloric acid, nitric acid, carboxylic acid, potassium hydroxide, ammonia water, and sodium hydroxide. 제 14 항에 있어서,The method of claim 14, 상기 부식 억제 세정 용액은 착물형성제를 더 포함하며 상기 착물 형성제는 카르복실기(COOH-)를 포함하는 화합물인 것을 특징으로 하는 씨엠피 공정.The corrosion inhibiting cleaning solution further comprises a complexing agent and the complexing agent is a CMP process, characterized in that the compound containing a carboxyl group (COOH-). 제 20 항에 있어서,The method of claim 20, 상기 착물 형성제는 폴리아크릴산(polyacrylic acid), 구연산(citric acid), 아세트산(acetic acid), 포름산(formic aicd), 말레산(maleic acid), 말산(malic acid), 말론산(malonic acid), 타르타르산(tartaric acid), 글루타르산(glutaric acid), 옥살산(oxalic acid), 프로피온산(propionic acid), 및 숙신산(succinic acid)을 포함하는 그룹에서 선택되는 적어도 하나인 것을 특징으로 하는 씨엠피 공정.The complex forming agent is polyacrylic acid, citric acid, acetic acid, formic acid, maleic acid, maleic acid, malic acid, malonic acid, CPM process, characterized in that at least one selected from the group consisting of tartaric acid, glutaric acid (glutaric acid), oxalic acid (oxalic acid), propionic acid (propionic acid), and succinic acid. 제 20 항에 있어서,The method of claim 20, 상기 착물 형성제는 상기 부식 억제 세정 용액의 전체 중량의 0.01~0.5중량%로 첨가되는 것을 특징으로 하는 씨엠피 공정. The complex forming agent is CMP process, characterized in that added to 0.01 to 0.5% by weight of the total weight of the corrosion inhibiting cleaning solution.
KR1020040079543A 2004-10-06 2004-10-06 Solution of inhibiting Copper erosion and CMP process using the solution KR100672941B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040079543A KR100672941B1 (en) 2004-10-06 2004-10-06 Solution of inhibiting Copper erosion and CMP process using the solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040079543A KR100672941B1 (en) 2004-10-06 2004-10-06 Solution of inhibiting Copper erosion and CMP process using the solution

Publications (2)

Publication Number Publication Date
KR20060030685A KR20060030685A (en) 2006-04-11
KR100672941B1 true KR100672941B1 (en) 2007-01-24

Family

ID=37140630

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040079543A KR100672941B1 (en) 2004-10-06 2004-10-06 Solution of inhibiting Copper erosion and CMP process using the solution

Country Status (1)

Country Link
KR (1) KR100672941B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10170335B1 (en) * 2017-09-21 2019-01-01 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing method for cobalt

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272065A (en) * 1993-03-16 1994-09-27 Rin Kagaku Kogyo Kk Liquid chemical abrasive composition for aluminum and aluminum alloy
KR20010039863A (en) * 1999-09-06 2001-05-15 마쯔모또 에이찌 Aqueous Dispersion Composition for Chemical Mechanical Polishing for Use in Manufacture of Semiconductor Devices
KR20010095160A (en) * 2000-03-31 2001-11-03 마쯔모또 에이찌 Aqueous Dispersion for Chemical Mechanical Polishing
KR20010101276A (en) * 1998-12-16 2001-11-14 카리 홀란드 Multi-step chemical mechanical polishing
KR20030092605A (en) * 2002-05-30 2003-12-06 동우 화인켐 주식회사 Slurry compositions for metal cmp
JP2004031446A (en) 2002-06-21 2004-01-29 Hitachi Chem Co Ltd Polishing solution and polishing method
US20040108302A1 (en) * 2002-12-10 2004-06-10 Jun Liu Passivative chemical mechanical polishing composition for copper film planarization

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272065A (en) * 1993-03-16 1994-09-27 Rin Kagaku Kogyo Kk Liquid chemical abrasive composition for aluminum and aluminum alloy
KR20010101276A (en) * 1998-12-16 2001-11-14 카리 홀란드 Multi-step chemical mechanical polishing
KR20010039863A (en) * 1999-09-06 2001-05-15 마쯔모또 에이찌 Aqueous Dispersion Composition for Chemical Mechanical Polishing for Use in Manufacture of Semiconductor Devices
KR20010095160A (en) * 2000-03-31 2001-11-03 마쯔모또 에이찌 Aqueous Dispersion for Chemical Mechanical Polishing
KR20030092605A (en) * 2002-05-30 2003-12-06 동우 화인켐 주식회사 Slurry compositions for metal cmp
JP2004031446A (en) 2002-06-21 2004-01-29 Hitachi Chem Co Ltd Polishing solution and polishing method
US20040108302A1 (en) * 2002-12-10 2004-06-10 Jun Liu Passivative chemical mechanical polishing composition for copper film planarization

Also Published As

Publication number Publication date
KR20060030685A (en) 2006-04-11

Similar Documents

Publication Publication Date Title
JP4560294B2 (en) Tantalum barrier removal solution
EP2242091B1 (en) Polishing solution for metal and polishing method
US8337716B2 (en) Sarcosine compound used as corrosion inhibitor
US20050194563A1 (en) Bicine/tricine containing composition and method for chemical-mechanical planarization
US20080067077A1 (en) Electrolytic liquid for electrolytic polishing and electrolytic polishing method
KR100818996B1 (en) Slurry For Polishing Metal Lines
KR20100044777A (en) Composition for cleaning and rust prevention and process for producing semiconductor element or display element
US8841216B2 (en) Method and composition for chemical mechanical planarization of a metal
US20050126588A1 (en) Chemical mechanical polishing slurries and cleaners containing salicylic acid as a corrosion inhibitor
JP2008196047A (en) Electrolytic liquid for electrolytic polishing and electrolytic polishing method
KR20150143627A (en) Cleaning agent for metal wiring substrate, and method for cleaning semiconductor substrate
JP7103794B2 (en) Chemical mechanical polishing method for tungsten
US20090061630A1 (en) Method for Chemical Mechanical Planarization of A Metal-containing Substrate
JPWO2007074734A1 (en) Abrasive-free polishing liquid and CMP polishing method
KR100672941B1 (en) Solution of inhibiting Copper erosion and CMP process using the solution
TWI647305B (en) Chemical mechanical polishing after washing composition
JP2003068683A (en) Polishing liquid for metal and method for polishing
TWI259201B (en) Slurry for metal polishing and method of polishing with the same
JP2010103409A (en) Metal polishing solution and polishing method using same
JP3463045B2 (en) Anticorrosion treatment stock solution
JP2008221344A (en) Conditioning method and conditioning liquid
JPWO2004012248A1 (en) Polishing liquid and polishing method
KR20090118358A (en) Chemical mechanical polishing slurry
JP2004363141A (en) Liquid and method for polishing metal
WO2008023215A1 (en) Post chemical mechanical polishing rinse formulation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100114

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee