KR100671612B1 - Apparatus for depositing metal and a method for forming a metal layer using the same - Google Patents

Apparatus for depositing metal and a method for forming a metal layer using the same Download PDF

Info

Publication number
KR100671612B1
KR100671612B1 KR1020000037022A KR20000037022A KR100671612B1 KR 100671612 B1 KR100671612 B1 KR 100671612B1 KR 1020000037022 A KR1020000037022 A KR 1020000037022A KR 20000037022 A KR20000037022 A KR 20000037022A KR 100671612 B1 KR100671612 B1 KR 100671612B1
Authority
KR
South Korea
Prior art keywords
metal
chamber
wafer
raw material
valve
Prior art date
Application number
KR1020000037022A
Other languages
Korean (ko)
Other versions
KR20020002736A (en
Inventor
이원준
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020000037022A priority Critical patent/KR100671612B1/en
Publication of KR20020002736A publication Critical patent/KR20020002736A/en
Application granted granted Critical
Publication of KR100671612B1 publication Critical patent/KR100671612B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/14Deposition of only one other metal element
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76855After-treatment introducing at least one additional element into the layer
    • H01L21/76856After-treatment introducing at least one additional element into the layer by treatment in plasmas or gaseous environments, e.g. nitriding a refractory metal liner

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 금속 증착 장비 및 이를 이용한 금속층 형성 방법에 관한 것으로, 저면부에 웨이퍼가 놓일 수 있도록 웨이퍼 척이 설치된 챔버와, 제 1 밸브가 설치된 제 1 관로에 의해 챔버와 연결되며, 제 1 가스 공급관을 통해 반응가스를 공급받는 플라즈마 생성부와, 제 2 밸브가 설치된 제 2 관로에 의해 챔버와 연결되는 금속원료 저장용기와, 제 3 밸브가 설치되며 불활성 가스를 공급받는 제 2 가스 공급관과, 제 4 밸브가 설치된 제 3 관로에 의해 챔버와 연결되는 배기펌프를 포함하여 이루어진다.
The present invention relates to a metal deposition apparatus and a method for forming a metal layer using the same. The present invention relates to a first gas supply pipe connected to a chamber by a chamber in which a wafer chuck is installed so that a wafer can be placed on a bottom surface thereof, and a first pipeline in which a first valve is installed. A plasma generating unit receiving a reaction gas through the gas, a metal raw material storage container connected to the chamber by a second pipe line provided with a second valve, a second gas supply pipe having a third valve and receiving an inert gas, and It comprises an exhaust pump which is connected to the chamber by a third conduit with four valves.

CVD, 챔버, 레디컬, 이온, 흡착, 금속, 환원반응CVD, chamber, radical, ion, adsorption, metal, reduction

Description

금속 증착 장비 및 이를 이용한 금속층 형성 방법 {Apparatus for depositing metal and a method for forming a metal layer using the same} Metal deposition equipment and method for forming metal layer using same {Apparatus for depositing metal and a method for forming a metal layer using the same}             

도 1은 본 발명에 따른 금속 증착 장비의 구성도.1 is a block diagram of a metal deposition equipment according to the present invention.

도 2a 및 도 2b는 본 발명에 따른 금속층 형성 방법을 설명하기 위한 소자의 단면도.2A and 2B are cross-sectional views of devices for explaining the metal layer forming method according to the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for main parts of the drawings>

1: 제 1 관로 2: 플라즈마 생성부1: first duct 2: plasma generator

3: 제 1 밸브 4: 챔버3: first valve 4: chamber

5: 웨이퍼 척 6: 웨이퍼5: wafer chuck 6: wafer

7: 제 2 관로 8: 제 2 밸브7: second pipe 8: second valve

9: 금속원료 저장용기 10: 제 4 밸브9: metal raw material storage container 10: fourth valve

11: 제 3 관로 12: 배기펌프11: third conduit 12: exhaust pump

13: 제 3 밸브 14: 제 2 가스 공급관13: 3rd valve 14: 2nd gas supply line

15: 제 1 가스 공급관 20: 반도체 기판15: first gas supply pipe 20: semiconductor substrate

21: 절연막 22: 금속원료21: insulating film 22: metal raw material

22a: 금속
22a: metal

본 발명은 금속 증착 장비 및 이를 이용한 금속층 형성 방법에 관한 것으로, 특히, 증착 과정에서 레디컬(Radical) 또는 이온(Ion)을 챔버(Chamber) 내부로 공급할 수 있도록 구성된 화학기상증착(CVD) 장비 및 이를 이용한 금속층 형성 방법에 관한 것이다.The present invention relates to a metal deposition apparatus and a method for forming a metal layer using the same, and in particular, chemical vapor deposition (CVD) equipment configured to supply radicals or ions into a chamber during deposition; It relates to a metal layer forming method using the same.

일반적으로 반도체 소자가 고집적화 및 고속화됨에 따라 소자의 금속배선 재료로써 구리(Cu)가 적용되는 추세이며, 이 경우 Ta, TaN, TiN 등을 사용하여 구리(Cu)층의 하부에 확산 방지막을 형성하는데, TiN에 비해 확산방지 특성이 우수한 Ta 및 TaN이 주로 사용된다. 특히, Ta는 확산방지 특성이 우수하기 때문에 구리(Cu) 배선의 신뢰성을 높일 수 있다.In general, as semiconductor devices are highly integrated and high speed, copper (Cu) is applied as a metal wiring material of the device. In this case, a diffusion barrier layer is formed under the copper (Cu) layer by using Ta, TaN, TiN, or the like. In comparison with TiN, Ta and TaN having excellent diffusion preventing properties are mainly used. In particular, Ta has an excellent diffusion preventing property, thereby improving the reliability of the copper (Cu) wiring.

Ta 및 TaN은 주로 콜리메이티드 스퍼터링(Collimated Sputtering), 롱-쓰루(Long-Throw) 스퍼터링, 이온화 물리기상증착(Ionized Physical Vapor Deposition; I-PVD) 등과 같은 물리기상증착(PVD) 방식으로 증착된다.Ta and TaN are usually deposited by physical vapor deposition (PVD) methods such as collimated sputtering, long-throw sputtering, ionized physical vapor deposition (I-PVD), and the like. .

그러나 반도체 소자가 고집적화됨에 따라 물리기상증착(PVD) 방식으로는 더 이상 상기와 같은 금속을 증착하기 어렵기 때문에 0.1㎛의 디자인 룰(Design Rule)을 갖는 소자의 제조 공정에서는 화학기상증착(CVD) 방식을 이용한 확산방지 금속의 증착이 요구될 것으로 예상된다. However, as the semiconductor devices are highly integrated, it is difficult to deposit such metals by physical vapor deposition (PVD) method anymore, so chemical vapor deposition (CVD) is performed in the manufacturing process of devices having a design rule of 0.1 μm. It is anticipated that deposition of anti-diffusion metal using the method will be required.                         

화학기상증착(CVD) 방식으로 Ta 및 TaN를 증착하기 위해서는 금속원료 즉, 전구체(Precursor)가 필요한데, 현재 Ta의 전구체로써 TaCl5 또는 Ta를 포함하는 유기금속 화합물이 사용된다. 그런데 TaCl5는 증착 온도가 높고 염소(Cl)를 함유하는 문제점을 가지며, 금속 유기 화학기상증착(Metal Organic CVD; MOCVD) 방식으로 유기금속 화합물을 증착하는 경우 비저항이 높고 다량의 탄화수소(Hydrocarbon)가 함유되는 문제점이 있다.
In order to deposit Ta and TaN by chemical vapor deposition (CVD), a metal raw material, that is, a precursor (precursor) is required, and an organometallic compound including TaCl 5 or Ta is currently used as a precursor of Ta. However, TaCl 5 has a high deposition temperature and has a problem of containing chlorine (Cl), and when the organic metal compound is deposited by a metal organic chemical vapor deposition (MOCVD) method, a high resistivity and a large amount of hydrocarbon There is a problem contained.

따라서 본 발명은 화학기상증착(CVD) 방식으로 확산방지 금속을 증착할 수 있도록 화학기상증착(CVD) 장비를 새로이 구성하고, 이를 이용하여 확산방지 금속층을 형성할 수 있도록 한 금속층 형성 방법을 제공한다.
Accordingly, the present invention provides a method for newly forming a chemical vapor deposition (CVD) device to deposit a diffusion barrier metal by chemical vapor deposition (CVD) method, and to form a diffusion barrier metal layer using the same. .

본 발명에 따른 금속 증착 장비는 저면부에 웨이퍼가 놓일 수 있도록 웨이퍼 척이 설치된 챔버와, 제 1 밸브가 설치된 제 1 관로에 의해 챔버와 연결되며, 제 1 가스 공급관을 통해 반응가스를 공급받는 플라즈마 생성부와, 제 2 밸브가 설치된 제 2 관로에 의해 챔버와 연결되는 금속원료 저장용기와, 제 3 밸브가 설치되며 불활성 가스를 공급받는 제 2 가스 공급관과, 제 4 밸브가 설치된 제 3 관로에 의해 챔버와 연결되는 배기펌프를 포함하여 이루어진다. The metal deposition apparatus according to the present invention is connected to the chamber by a chamber in which a wafer chuck is installed so that a wafer can be placed on a bottom portion thereof, and a first pipe line in which a first valve is installed, and receives a reaction gas through a first gas supply pipe. A metal raw material storage container connected to the chamber by a generation unit, a second pipe line provided with a second valve, a second gas supply pipe provided with a third valve and supplied with an inert gas, and a third pipe line provided with a fourth valve. It comprises an exhaust pump connected to the chamber by.                     

또한, 본 발명에 따른 금속층 형성 방법은 챔버 내부로 기체 상태의 금속원료를 공급하여 웨이퍼의 표면에 금속원료가 화학적으로 흡착되도록 하는 제 1 단계와, 웨이퍼의 표면에 흡착되지 않고 잔류하는 금속원료를 외부로 배출시키기 위하여 정화 공정을 실시하는 제 2 단계와, 챔버 내부로 플라즈마 레디컬 또는 이온을 공급하여 웨이퍼에 흡착된 금속원료와의 환원반응에 의해 웨이퍼상에 금속이 증착되도록 하는 제 3 단계와, 금속 증착시 생성된 반응 부산물과 반응하지 않은 금속원료를 외부로 배출시키기 위하여 정화 공정을 실시하는 제 4 단계와, 원하는 두께의 금속이 증착될 때까지 제 1 내지 제 4 단계의 공정을 반복 실시하는 제 5 단계로 이루어진다.In addition, the method for forming a metal layer according to the present invention provides a first step of supplying a gaseous metal raw material into the chamber to chemically adsorb the metal raw material on the surface of the wafer, and a metal raw material remaining without being adsorbed on the surface of the wafer. A second step of performing a purification process to discharge to the outside, a third step of supplying plasma radicals or ions into the chamber to deposit metal on the wafer by a reduction reaction with a metal material adsorbed on the wafer; In order to discharge the metal raw material that has not reacted with the reaction by-product generated during metal deposition to the outside, the fourth step of carrying out the purification process and the first to fourth steps are repeated until the metal of the desired thickness is deposited. There is a fifth step.

상기 금속원료는 TaCl5, TiCl4 또는 WF6이며, 상기 제 2 및 제 4 단계의 정화 공정은 불활성 가스를 이용하여 실시하고, 상기 플라즈마 레디컬 및 이온은 H2, NH3/H2, NF3/H2 및 N2/H2중 어느 하나의 가스에 의해 생성된다.The metal raw material is TaCl 5 , TiCl 4 or WF 6 , the purification process of the second and fourth steps is carried out using an inert gas, the plasma radicals and ions are H 2 , NH 3 / H 2 , NF It is produced by the gas of any one of 3 / H 2 and N 2 / H 2 .

그러면 이하, 첨부된 도면을 참조하여 본 발명을 상세히 설명하기로 한다.Next, the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 화학기상증착(CVD) 장비의 구성도이다.1 is a block diagram of a chemical vapor deposition (CVD) equipment according to the present invention.

챔버(4) 내부의 저면에는 웨이퍼(6)가 장착되는 웨이퍼 척(Wafer Chuck; 5)이 설치된다. 상기 챔버(4)의 상부에는 플라즈마 생성부(2)와 연결된 제 1 관로(1)가 연결되며, 상기 제 1 관로(1)에는 제 1 밸브(3)가 설치된다. 그리고 상기 플라즈마 생성부(2)에는 반응가스가 공급되는 제 1 가스 공급관(15)이 연결된다. 상기 챔버(4)의 측벽에는 금속원료 저장용기(9)와 연결된 제 2 관로(7) 및 불활성 가스 가 공급되는 제 2 가스 공급관(14)이 각각 연결되는데, 상기 제 2 관로(7)에는 제 2 밸브(8)가 설치되며, 상기 제 2 가스 공급관(14)에는 제 3 밸브(13)가 설치된다. 또한 상기 챔버(4)의 다른 측벽에는 배기펌프(12)와 연결된 제 3 관로(11)가 연결되며, 상기 제 3 관로(11)에는 제 4 밸브(10)가 설치된다.A wafer chuck 5 on which the wafer 6 is mounted is provided on the bottom surface of the chamber 4. The first conduit 1 connected to the plasma generator 2 is connected to an upper portion of the chamber 4, and a first valve 3 is installed in the first conduit 1. The first gas supply pipe 15 through which the reaction gas is supplied is connected to the plasma generation unit 2. A second pipe line 7 connected to the metal raw material storage container 9 and a second gas supply pipe 14 to which an inert gas is supplied are connected to the side wall of the chamber 4, respectively. Two valves 8 are installed, and a third valve 13 is installed in the second gas supply pipe 14. In addition, a third conduit 11 connected to the exhaust pump 12 is connected to the other side wall of the chamber 4, and a fourth valve 10 is installed in the third conduit 11.

여기서, 상기 배기펌프(12)로는 배기압이 높은 터보 분자 펌프(Turbomolecular Pump)를 사용한다.The exhaust pump 12 uses a turbomolecular pump having a high exhaust pressure.

그러면 상기와 같이 구성된 금속 증착 장비를 이용하여 웨이퍼상에 금속을 증착하는 과정을 도 2a 및 도 2b를 참조하여 설명하면 다음과 같다.Next, a process of depositing a metal on a wafer using the metal deposition apparatus configured as described above will be described with reference to FIGS. 2A and 2B.

제 1 단계 : 금속원료 공급First step: supply metal raw materials

상기 제 2 밸브(8)을 개방하여 상기 제 2 관로(7)를 통해 상기 금속원료 저장용기(9)로부터 기체 상태의 금속원료가 상기 챔버(4)의 내부로 공급되도록 한다. 그러면 공급된 기체 상태의 금속원료는 상기 웨이퍼(6)의 표면에 화학적으로 흡착(Chemisorption)된다. 이때, 금속원료가 상기 웨이퍼(6)의 전체 표면에 흡착되어 충분한 반응이 이루어지도록 공급량을 제어한다.The second valve 8 is opened so that a gaseous metal raw material is supplied into the chamber 4 from the metal raw material storage container 9 through the second conduit 7. The supplied gaseous metal raw material is then chemically adsorbed onto the surface of the wafer 6. At this time, the feed amount is controlled so that the metal raw material is adsorbed onto the entire surface of the wafer 6 to allow sufficient reaction.

도 2a는 절연막(21)이 형성된 반도체 기판(20)상에 금속원료(22)가 흡착된 상태가 도시된다.2A shows a state in which the metal raw material 22 is adsorbed on the semiconductor substrate 20 on which the insulating film 21 is formed.

제 2 단계 : 정화 및 배기Second step: purification and exhaust

상기 제 2 밸브(8)를 닫고 상기 제 3 밸브(13)를 개방하여 상기 제 2 가스 공급관(14)을 통해 상기 챔버(4) 내부로 아르곤(Ar), 헬륨(He)과 같은 불활성 가스가 공급되도록 하는 동시에 상기 제 4 밸브(10)를 개방하고 상기 배기펌프(12)를 동작시킨다. 그러면 상기 웨이퍼(6)에 흡착되지 않은 채로 잔류되는 금속원료가 상기 제 3 관로를 통해 외부로 배출된다.By closing the second valve 8 and opening the third valve 13, inert gas such as argon (Ar) and helium (He) is introduced into the chamber 4 through the second gas supply pipe 14. At the same time, the fourth valve 10 is opened and the exhaust pump 12 is operated. Then, the metal raw material remaining without being adsorbed to the wafer 6 is discharged to the outside through the third conduit.

제 3 단계 : 금속 증착Third step: metal deposition

상기 제 3 및 제 4 밸브(13 및 10)를 닫고 상기 제 1 가스 공급관(15)을 통해 상기 플라즈마 생성부(2)로 반응가스를 공급하여 플라즈마가 생성되도록 하고, 상기 제 1 밸브(3)를 개방하여 플라즈마에 포함된 레디컬 또는 이온이 상기 제 1 관로(1)를 통해 상기 챔버(4) 내부로 공급되도록 한다. 이때, 공급된 레디컬 또는 이온과 상기 웨이퍼(6)에 흡착된 금속원료와의 환원반응에 의해 상기 웨이퍼(6)상에 금속이 증착되는 동시에 반응 분산물이 생성된다. 도 2b는 상기 절연막(21)상에 금속(22)이 증착된 상태가 도시된다.The third and fourth valves 13 and 10 are closed and a reaction gas is supplied to the plasma generation unit 2 through the first gas supply pipe 15 to generate plasma, and the first valve 3 Open so that the radicals or ions contained in the plasma are supplied into the chamber 4 through the first conduit 1. At this time, metal is deposited on the wafer 6 by a reduction reaction between the supplied radicals or ions and the metal raw material adsorbed on the wafer 6, and at the same time, a reaction dispersion is generated. 2B shows a state in which a metal 22 is deposited on the insulating film 21.

이때, 플라즈마 소오스로써 IC(Inductively Coupled) 플라즈마, ECR(Electron Cyclotron Resonance) 플라즈마, 헬리콘(Helicon) 플라즈마 등과 같은 고밀도 플라즈마 소오스를 사용한다.At this time, a high-density plasma source such as an IC (Inductively Coupled) plasma, an ECR (Electron Cyclotron Resonance) plasma, a Helicon plasma, or the like is used as the plasma source.

제 4 단계 : 정화 및 배기Fourth step: purification and exhaust

상기 제 1 밸브(3)를 닫고 제 3 및 제 4 밸브(13 및 10)를 개방하여 상기 제 2 가스 공급관(14)을 통해 상기 챔버(4)내로 불활성 가스가 공급되도록 하면 상기 반응 부산물과 잔류된 금속원료가 상기 제 3 관로(11)를 통해 외부로 배출된다.When the first valve 3 is closed and the third and fourth valves 13 and 10 are opened to allow the inert gas to be supplied into the chamber 4 through the second gas supply pipe 14, the reaction by-products and residues remain. Metal raw material is discharged to the outside through the third conduit (11).

제 5 단계 : 원하는 두께의 금속 박막이 증착될 때까지 상기 제 1 내지 4 단계의 공정을 반복하여 실시한다. Step 5: The above steps 1 to 4 are repeated until a thin metal film having a desired thickness is deposited.                     

예를들어, 상기 웨이퍼(6)상에 Ta층을 형성하고자 하는 경우 TaCl5를 금속원료로 사용하고, 상기 플라즈마를 생성하기 위한 반응가스로써 H2를 사용한다. 그러면 웨이퍼(6)상에 흡착된 TaCl5와 수소(H) 레데컬 또는 수소(H) 이온의 환원반응에 의해 하기의 화학식 1과 같이 웨이퍼(6)상에 Ta가 증착되는 동시에 반응하지 않은 H2, H*, H+ 등과 같은 반응 부산물(5HCl)이 생성된다. For example, when a Ta layer is to be formed on the wafer 6, TaCl 5 is used as a metal raw material, and H 2 is used as a reaction gas for generating the plasma. Then, Ta is deposited on the wafer 6 by the reduction reaction of TaCl 5 adsorbed onto the wafer 6 with hydrogen (H) radical or hydrogen (H) ion, and H2 is not reacted at the same time. Reaction byproducts (5HCl) are produced, such as H *, H + and the like.

TaCl5+ 5H →Ta + 5HCl↑TaCl 5 + 5H → Ta + 5HCl ↑

또한, 본 발명을 이용하면 금속 질화막을 형성할 수 있는데, 금속 질화막을 형성하기 위해서는 상기 제 2 단계 공정시 플라즈마를 생성하기 위한 반응가스로써 NH3/H2, NF3/H2 또는 N2/H2를 공급하여 N 및 H 레디컬 및 이온이 상기 챔버(4)로 공급되도록 하고, N 및 H 레디컬 및 금속원료의 환원반응에 의해 하기의 화학식 2와 같은 반응이 일어나 상기 웨이퍼(6)상에 Ta 질화막이 증착되도록 한다. 이때, 반응하지 않은 N2, NH3, NF3, N*, N+, H2, H*, H+ 등과 같은 반응 부산물(HCl5)이 생성된다.In addition, by using the present invention, a metal nitride film may be formed. In order to form the metal nitride film, NH 3 / H 2 , NF 3 / H 2, or N 2 / H 2 is supplied to allow N and H radicals and ions to be supplied to the chamber 4, and a reaction such as the following Chemical Formula 2 is generated by a reduction reaction of N and H radicals and a metal raw material to produce the wafer 6. Allow the Ta nitride film to be deposited on it. At this time, reaction by-products (HCl 5), such as N 2 , NH 3 , NF 3 , N *, N +, H 2 , H *, H +, which are not reacted, are produced.

TaCl5+ xN + 5H →TaNx + 5HCl↑TaCl 5 + xN + 5H → TaNx + 5HCl ↑

본 발명은 티타늄(Ti) 또는 텅스텐(W)과 같은 금속의 증착에도 이용될 수 있는데, 티타늄(Ti)을 증착하기 위해서는 TiCl4를 금속원료로 사용하며, 텅스텐(W)을 증착하기 위해서는 WF6를 금속원료로 사용한다.The present invention can also be used for the deposition of metals such as titanium (Ti) or tungsten (W), TiCl 4 is used as a metal raw material for depositing titanium (Ti), WF 6 for depositing tungsten (W) Is used as a metal raw material.

TiCl4를 금속원료로 사용하는 경우에는 하기의 화학식 3과 같은 반응에 의해 웨이퍼상에 텅스텐(W)이 증착되며, 이때, H2, H*, H+ 등과 같은 반응 부산물(HCl)이 생성된다.In the case of using TiCl 4 as a metal raw material, tungsten (W) is deposited on the wafer by a reaction as shown in Chemical Formula 3 below, whereby reaction by-products (HCl) such as H 2, H *, and H + are produced.

TiCl4 + 4H →Ti + 4HCl↑TiCl4 + 4H → Ti + 4HCl ↑

상술한 바와 같이 본 발명은 기체 상태의 금속원료를 웨이퍼의 표면에 흡착시킨 후 흡착된 금속원료가 플라즈마에 포함된 레디컬 및 이온과 반응하도록 하여 웨이퍼상에 금속이 증착되도록 하되, 금속원료 공급단계 및 증착단계 후에 챔버의 내부를 정화시켜 불필요한 금속이온 및 반응 부산물이 챔버의 외부로 배출되도록 한다.As described above, the present invention allows the metal material to be deposited on the wafer by adsorbing the metal material in a gaseous state onto the surface of the wafer and allowing the adsorbed metal material to react with radicals and ions included in the plasma. And purifying the interior of the chamber after the deposition step so that unnecessary metal ions and reaction by-products are discharged out of the chamber.

따라서 본 발명은 종래의 물리기상증착(PVD) 방식을 이용하는 경우보다 층덮힘이 우수하며 핀홀(Pin Hole)이 매우적은 금속박막을 증착할 수 있다. 또한, 종래의 화학기상증착(CVD) 방식을 이용하는 경우보다 저온(400℃ 이하)에서 우수한 물성과 층덮힘을 갖는 금속박막을 증착할 수 있다.Therefore, the present invention is superior to the case of using the conventional physical vapor deposition (PVD) method and can deposit a metal thin film having a very small pin hole (Pin Hole). In addition, it is possible to deposit a metal thin film having excellent physical properties and layer covering at a low temperature (400 ℃ or less) than when using a conventional chemical vapor deposition (CVD) method.

그러므로 본 발명을 이용하여 확산방지막을 형성하면 확산방지 효과가 우수하며, 0.1㎛의 디자인 룰을 갖는 반도체 소자를 용이하게 제조할 수 있다. Therefore, by forming the diffusion barrier using the present invention is excellent in the diffusion prevention effect, it is possible to easily manufacture a semiconductor device having a design rule of 0.1㎛.

Claims (9)

삭제delete 삭제delete 삭제delete 삭제delete 챔버 내부로 기체 상태의 금속원료를 공급하여 웨이퍼의 표면에 금속원료가 화학적으로 흡착되도록 하는 제 1 단계와,Supplying a gaseous metal material into the chamber to chemically adsorb the metal material to the surface of the wafer; 상기 웨이퍼의 표면에 흡착되지 않고 잔류하는 금속원료를 외부로 배출시키기 위하여 정화 공정을 실시하는 제 2 단계와,A second step of performing a purification process for discharging the remaining metal raw material without being adsorbed on the surface of the wafer; 상기 챔버 내부로 H2, NH3/H2, NF3/H2 및 N2/H2중 어느 하나의 가스에 의해 생성되는 플라즈마 레디컬 또는 이온을 공급하여 웨이퍼에 흡착된 금속원료와의 환원반응에 의해 상기 웨이퍼상에 금속이 증착되도록 하는 제 3 단계와,Supplying plasma radicals or ions generated by any one of H 2 , NH 3 / H 2 , NF 3 / H 2, and N 2 / H 2 into the chamber to reduce the metal raw material adsorbed on the wafer A third step of depositing a metal on the wafer by reaction; 상기 금속 증착시 생성된 반응 부산물과 반응하지 않은 금속원료를 외부로 배출시키기 위하여 정화 공정을 실시하는 제 4 단계와,A fourth step of performing a purification process to discharge the metal raw material not reacted with the reaction by-product generated during the metal deposition to the outside; 원하는 두께의 금속이 증착될 때까지 상기 제 1 내지 제 4 단계의 공정을 반복 실시하는 제 5 단계로 이루어지는 것을 특징으로 하는 금속층 형성 방법.And a fifth step of repeating the processes of the first to fourth steps until a metal having a desired thickness is deposited. 제 5 항에 있어서,The method of claim 5, 상기 금속원료는 TaCl5, TiCl4 및 WF6중 어느 하나인 것을 특징으로 하는 금속층 형성 방법.The metal raw material is a metal layer forming method, characterized in that any one of TaCl 5 , TiCl 4 and WF 6 . 제 5 항에 있어서,The method of claim 5, 상기 제 2 및 제 4 단계의 정화 공정은 불활성 가스를 이용하여 실시하는 것을 특징으로 하는 금속층 형성 방법.The second and fourth purification steps are performed using an inert gas. 제 7 항에 있어서,The method of claim 7, wherein 상기 불활성 가스는 아르곤(Ar) 및 헬륨(He)중 어느 하나인 것을 특징으로 하는 금속층 형성 방법.The inert gas is any one of argon (Ar) and helium (He) characterized in that the metal layer forming method. 삭제delete
KR1020000037022A 2000-06-30 2000-06-30 Apparatus for depositing metal and a method for forming a metal layer using the same KR100671612B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000037022A KR100671612B1 (en) 2000-06-30 2000-06-30 Apparatus for depositing metal and a method for forming a metal layer using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000037022A KR100671612B1 (en) 2000-06-30 2000-06-30 Apparatus for depositing metal and a method for forming a metal layer using the same

Publications (2)

Publication Number Publication Date
KR20020002736A KR20020002736A (en) 2002-01-10
KR100671612B1 true KR100671612B1 (en) 2007-01-18

Family

ID=19675285

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000037022A KR100671612B1 (en) 2000-06-30 2000-06-30 Apparatus for depositing metal and a method for forming a metal layer using the same

Country Status (1)

Country Link
KR (1) KR100671612B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100479639B1 (en) * 2002-04-06 2005-03-30 재단법인서울대학교산학협력재단 Chemical Vapor Deposition System for Depositing Multilayer Film And Method for Depositing Multilayer Film Using The Same
KR100714269B1 (en) * 2004-10-14 2007-05-02 삼성전자주식회사 Method for forming metal layer used the manufacturing semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04107271A (en) * 1990-08-24 1992-04-08 Olympus Optical Co Ltd Method and equipment for synthesizing cubic boron nitride
KR970052058A (en) * 1995-12-04 1997-07-29 문정환 Thin Film Formation Method by Chemical Vapor Deposition (CVD)
KR19990002926A (en) * 1997-06-24 1999-01-15 박병재 Amorphous Alloys Excluding Rare Earth Metals
KR19990029260A (en) * 1997-09-29 1999-04-26 윤종용 Method of forming metal nitride film by chemical vapor deposition and method of forming metal contact of semiconductor device using same
KR19990040442A (en) * 1997-11-18 1999-06-05 윤종용 Method for producing aluminum layer by atomic layer deposition
KR20010039874A (en) * 1999-10-06 2001-05-15 윤종용 Thin film formation method using atomic layer deposition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04107271A (en) * 1990-08-24 1992-04-08 Olympus Optical Co Ltd Method and equipment for synthesizing cubic boron nitride
KR970052058A (en) * 1995-12-04 1997-07-29 문정환 Thin Film Formation Method by Chemical Vapor Deposition (CVD)
KR0172857B1 (en) * 1995-12-04 1999-03-30 문정환 Thin film forming method by cvd
KR19990002926A (en) * 1997-06-24 1999-01-15 박병재 Amorphous Alloys Excluding Rare Earth Metals
KR19990029260A (en) * 1997-09-29 1999-04-26 윤종용 Method of forming metal nitride film by chemical vapor deposition and method of forming metal contact of semiconductor device using same
KR19990040442A (en) * 1997-11-18 1999-06-05 윤종용 Method for producing aluminum layer by atomic layer deposition
KR20010039874A (en) * 1999-10-06 2001-05-15 윤종용 Thin film formation method using atomic layer deposition

Also Published As

Publication number Publication date
KR20020002736A (en) 2002-01-10

Similar Documents

Publication Publication Date Title
US7589017B2 (en) Methods for growing low-resistivity tungsten film
KR102496626B1 (en) Chamber conditioning for remote plasma process
US7262125B2 (en) Method of forming low-resistivity tungsten interconnects
JP5965955B2 (en) Atomic layer deposition equipment
KR101287271B1 (en) Method for improving adhesion of low resistivity tungsten/tungsten nitride layers
US9159571B2 (en) Tungsten deposition process using germanium-containing reducing agent
JP5173098B2 (en) Conformal lining layer for damascene metallization
US7094685B2 (en) Integration of titanium and titanium nitride layers
US7244683B2 (en) Integration of ALD/CVD barriers with porous low k materials
CN113166929A (en) Void free low stress fill
JP4703810B2 (en) CVD film forming method
JP2024038138A (en) Metal fill process for three-dimensional vertical nand wordline
US20060068104A1 (en) Thin-film formation in semiconductor device fabrication process and film deposition apparatus
US20030017697A1 (en) Methods of forming metal layers using metallic precursors
KR20040058239A (en) Integration of ald tantalum nitride and alpha-phase tantalum for copper metallization application
JPWO2005101473A1 (en) Barrier film formation method and electrode film formation method
KR20060079144A (en) Atomic layer deposition of barrier materials
KR102443978B1 (en) Systems and methods for forming low resistivity metal contacts and interconnects by reducing and removing metallic oxide
KR100519376B1 (en) Method for Forming Barrier Layer of Semiconductor Device
US7067420B2 (en) Methods for forming a metal layer on a semiconductor
TW202309974A (en) Tungsten wordline fill in high aspect ratio 3d nand architecture
KR102017944B1 (en) Manufacturing method of nickel wiring
JP4804725B2 (en) Method for forming conductive structure of semiconductor device
KR100671612B1 (en) Apparatus for depositing metal and a method for forming a metal layer using the same
KR20230024367A (en) Methods for Nucleation of Conductive Nitride Films

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20101224

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee