KR100671612B1 - Apparatus for depositing metal and a method for forming a metal layer using the same - Google Patents
Apparatus for depositing metal and a method for forming a metal layer using the same Download PDFInfo
- Publication number
- KR100671612B1 KR100671612B1 KR1020000037022A KR20000037022A KR100671612B1 KR 100671612 B1 KR100671612 B1 KR 100671612B1 KR 1020000037022 A KR1020000037022 A KR 1020000037022A KR 20000037022 A KR20000037022 A KR 20000037022A KR 100671612 B1 KR100671612 B1 KR 100671612B1
- Authority
- KR
- South Korea
- Prior art keywords
- metal
- chamber
- wafer
- raw material
- valve
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4401—Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
- C23C16/4408—Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/06—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
- C23C16/08—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
- C23C16/14—Deposition of only one other metal element
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/52—Controlling or regulating the coating process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76853—Barrier, adhesion or liner layers characterized by particular after-treatment steps
- H01L21/76855—After-treatment introducing at least one additional element into the layer
- H01L21/76856—After-treatment introducing at least one additional element into the layer by treatment in plasmas or gaseous environments, e.g. nitriding a refractory metal liner
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Electrodes Of Semiconductors (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
본 발명은 금속 증착 장비 및 이를 이용한 금속층 형성 방법에 관한 것으로, 저면부에 웨이퍼가 놓일 수 있도록 웨이퍼 척이 설치된 챔버와, 제 1 밸브가 설치된 제 1 관로에 의해 챔버와 연결되며, 제 1 가스 공급관을 통해 반응가스를 공급받는 플라즈마 생성부와, 제 2 밸브가 설치된 제 2 관로에 의해 챔버와 연결되는 금속원료 저장용기와, 제 3 밸브가 설치되며 불활성 가스를 공급받는 제 2 가스 공급관과, 제 4 밸브가 설치된 제 3 관로에 의해 챔버와 연결되는 배기펌프를 포함하여 이루어진다.
The present invention relates to a metal deposition apparatus and a method for forming a metal layer using the same. The present invention relates to a first gas supply pipe connected to a chamber by a chamber in which a wafer chuck is installed so that a wafer can be placed on a bottom surface thereof, and a first pipeline in which a first valve is installed. A plasma generating unit receiving a reaction gas through the gas, a metal raw material storage container connected to the chamber by a second pipe line provided with a second valve, a second gas supply pipe having a third valve and receiving an inert gas, and It comprises an exhaust pump which is connected to the chamber by a third conduit with four valves.
CVD, 챔버, 레디컬, 이온, 흡착, 금속, 환원반응CVD, chamber, radical, ion, adsorption, metal, reduction
Description
도 1은 본 발명에 따른 금속 증착 장비의 구성도.1 is a block diagram of a metal deposition equipment according to the present invention.
도 2a 및 도 2b는 본 발명에 따른 금속층 형성 방법을 설명하기 위한 소자의 단면도.2A and 2B are cross-sectional views of devices for explaining the metal layer forming method according to the present invention.
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for main parts of the drawings>
1: 제 1 관로 2: 플라즈마 생성부1: first duct 2: plasma generator
3: 제 1 밸브 4: 챔버3: first valve 4: chamber
5: 웨이퍼 척 6: 웨이퍼5: wafer chuck 6: wafer
7: 제 2 관로 8: 제 2 밸브7: second pipe 8: second valve
9: 금속원료 저장용기 10: 제 4 밸브9: metal raw material storage container 10: fourth valve
11: 제 3 관로 12: 배기펌프11: third conduit 12: exhaust pump
13: 제 3 밸브 14: 제 2 가스 공급관13: 3rd valve 14: 2nd gas supply line
15: 제 1 가스 공급관 20: 반도체 기판15: first gas supply pipe 20: semiconductor substrate
21: 절연막 22: 금속원료21: insulating film 22: metal raw material
22a: 금속
22a: metal
본 발명은 금속 증착 장비 및 이를 이용한 금속층 형성 방법에 관한 것으로, 특히, 증착 과정에서 레디컬(Radical) 또는 이온(Ion)을 챔버(Chamber) 내부로 공급할 수 있도록 구성된 화학기상증착(CVD) 장비 및 이를 이용한 금속층 형성 방법에 관한 것이다.The present invention relates to a metal deposition apparatus and a method for forming a metal layer using the same, and in particular, chemical vapor deposition (CVD) equipment configured to supply radicals or ions into a chamber during deposition; It relates to a metal layer forming method using the same.
일반적으로 반도체 소자가 고집적화 및 고속화됨에 따라 소자의 금속배선 재료로써 구리(Cu)가 적용되는 추세이며, 이 경우 Ta, TaN, TiN 등을 사용하여 구리(Cu)층의 하부에 확산 방지막을 형성하는데, TiN에 비해 확산방지 특성이 우수한 Ta 및 TaN이 주로 사용된다. 특히, Ta는 확산방지 특성이 우수하기 때문에 구리(Cu) 배선의 신뢰성을 높일 수 있다.In general, as semiconductor devices are highly integrated and high speed, copper (Cu) is applied as a metal wiring material of the device. In this case, a diffusion barrier layer is formed under the copper (Cu) layer by using Ta, TaN, TiN, or the like. In comparison with TiN, Ta and TaN having excellent diffusion preventing properties are mainly used. In particular, Ta has an excellent diffusion preventing property, thereby improving the reliability of the copper (Cu) wiring.
Ta 및 TaN은 주로 콜리메이티드 스퍼터링(Collimated Sputtering), 롱-쓰루(Long-Throw) 스퍼터링, 이온화 물리기상증착(Ionized Physical Vapor Deposition; I-PVD) 등과 같은 물리기상증착(PVD) 방식으로 증착된다.Ta and TaN are usually deposited by physical vapor deposition (PVD) methods such as collimated sputtering, long-throw sputtering, ionized physical vapor deposition (I-PVD), and the like. .
그러나 반도체 소자가 고집적화됨에 따라 물리기상증착(PVD) 방식으로는 더 이상 상기와 같은 금속을 증착하기 어렵기 때문에 0.1㎛의 디자인 룰(Design Rule)을 갖는 소자의 제조 공정에서는 화학기상증착(CVD) 방식을 이용한 확산방지 금속의 증착이 요구될 것으로 예상된다. However, as the semiconductor devices are highly integrated, it is difficult to deposit such metals by physical vapor deposition (PVD) method anymore, so chemical vapor deposition (CVD) is performed in the manufacturing process of devices having a design rule of 0.1 μm. It is anticipated that deposition of anti-diffusion metal using the method will be required.
화학기상증착(CVD) 방식으로 Ta 및 TaN를 증착하기 위해서는 금속원료 즉, 전구체(Precursor)가 필요한데, 현재 Ta의 전구체로써 TaCl5 또는 Ta를 포함하는 유기금속 화합물이 사용된다. 그런데 TaCl5는 증착 온도가 높고 염소(Cl)를 함유하는 문제점을 가지며, 금속 유기 화학기상증착(Metal Organic CVD; MOCVD) 방식으로 유기금속 화합물을 증착하는 경우 비저항이 높고 다량의 탄화수소(Hydrocarbon)가 함유되는 문제점이 있다.
In order to deposit Ta and TaN by chemical vapor deposition (CVD), a metal raw material, that is, a precursor (precursor) is required, and an organometallic compound including TaCl 5 or Ta is currently used as a precursor of Ta. However, TaCl 5 has a high deposition temperature and has a problem of containing chlorine (Cl), and when the organic metal compound is deposited by a metal organic chemical vapor deposition (MOCVD) method, a high resistivity and a large amount of hydrocarbon There is a problem contained.
따라서 본 발명은 화학기상증착(CVD) 방식으로 확산방지 금속을 증착할 수 있도록 화학기상증착(CVD) 장비를 새로이 구성하고, 이를 이용하여 확산방지 금속층을 형성할 수 있도록 한 금속층 형성 방법을 제공한다.
Accordingly, the present invention provides a method for newly forming a chemical vapor deposition (CVD) device to deposit a diffusion barrier metal by chemical vapor deposition (CVD) method, and to form a diffusion barrier metal layer using the same. .
본 발명에 따른 금속 증착 장비는 저면부에 웨이퍼가 놓일 수 있도록 웨이퍼 척이 설치된 챔버와, 제 1 밸브가 설치된 제 1 관로에 의해 챔버와 연결되며, 제 1 가스 공급관을 통해 반응가스를 공급받는 플라즈마 생성부와, 제 2 밸브가 설치된 제 2 관로에 의해 챔버와 연결되는 금속원료 저장용기와, 제 3 밸브가 설치되며 불활성 가스를 공급받는 제 2 가스 공급관과, 제 4 밸브가 설치된 제 3 관로에 의해 챔버와 연결되는 배기펌프를 포함하여 이루어진다. The metal deposition apparatus according to the present invention is connected to the chamber by a chamber in which a wafer chuck is installed so that a wafer can be placed on a bottom portion thereof, and a first pipe line in which a first valve is installed, and receives a reaction gas through a first gas supply pipe. A metal raw material storage container connected to the chamber by a generation unit, a second pipe line provided with a second valve, a second gas supply pipe provided with a third valve and supplied with an inert gas, and a third pipe line provided with a fourth valve. It comprises an exhaust pump connected to the chamber by.
또한, 본 발명에 따른 금속층 형성 방법은 챔버 내부로 기체 상태의 금속원료를 공급하여 웨이퍼의 표면에 금속원료가 화학적으로 흡착되도록 하는 제 1 단계와, 웨이퍼의 표면에 흡착되지 않고 잔류하는 금속원료를 외부로 배출시키기 위하여 정화 공정을 실시하는 제 2 단계와, 챔버 내부로 플라즈마 레디컬 또는 이온을 공급하여 웨이퍼에 흡착된 금속원료와의 환원반응에 의해 웨이퍼상에 금속이 증착되도록 하는 제 3 단계와, 금속 증착시 생성된 반응 부산물과 반응하지 않은 금속원료를 외부로 배출시키기 위하여 정화 공정을 실시하는 제 4 단계와, 원하는 두께의 금속이 증착될 때까지 제 1 내지 제 4 단계의 공정을 반복 실시하는 제 5 단계로 이루어진다.In addition, the method for forming a metal layer according to the present invention provides a first step of supplying a gaseous metal raw material into the chamber to chemically adsorb the metal raw material on the surface of the wafer, and a metal raw material remaining without being adsorbed on the surface of the wafer. A second step of performing a purification process to discharge to the outside, a third step of supplying plasma radicals or ions into the chamber to deposit metal on the wafer by a reduction reaction with a metal material adsorbed on the wafer; In order to discharge the metal raw material that has not reacted with the reaction by-product generated during metal deposition to the outside, the fourth step of carrying out the purification process and the first to fourth steps are repeated until the metal of the desired thickness is deposited. There is a fifth step.
상기 금속원료는 TaCl5, TiCl4 또는 WF6이며, 상기 제 2 및 제 4 단계의 정화 공정은 불활성 가스를 이용하여 실시하고, 상기 플라즈마 레디컬 및 이온은 H2, NH3/H2, NF3/H2 및 N2/H2중 어느 하나의 가스에 의해 생성된다.The metal raw material is TaCl 5 , TiCl 4 or WF 6 , the purification process of the second and fourth steps is carried out using an inert gas, the plasma radicals and ions are H 2 , NH 3 / H 2 , NF It is produced by the gas of any one of 3 / H 2 and N 2 / H 2 .
그러면 이하, 첨부된 도면을 참조하여 본 발명을 상세히 설명하기로 한다.Next, the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명에 따른 화학기상증착(CVD) 장비의 구성도이다.1 is a block diagram of a chemical vapor deposition (CVD) equipment according to the present invention.
챔버(4) 내부의 저면에는 웨이퍼(6)가 장착되는 웨이퍼 척(Wafer Chuck; 5)이 설치된다. 상기 챔버(4)의 상부에는 플라즈마 생성부(2)와 연결된 제 1 관로(1)가 연결되며, 상기 제 1 관로(1)에는 제 1 밸브(3)가 설치된다. 그리고 상기 플라즈마 생성부(2)에는 반응가스가 공급되는 제 1 가스 공급관(15)이 연결된다. 상기 챔버(4)의 측벽에는 금속원료 저장용기(9)와 연결된 제 2 관로(7) 및 불활성 가스 가 공급되는 제 2 가스 공급관(14)이 각각 연결되는데, 상기 제 2 관로(7)에는 제 2 밸브(8)가 설치되며, 상기 제 2 가스 공급관(14)에는 제 3 밸브(13)가 설치된다. 또한 상기 챔버(4)의 다른 측벽에는 배기펌프(12)와 연결된 제 3 관로(11)가 연결되며, 상기 제 3 관로(11)에는 제 4 밸브(10)가 설치된다.A
여기서, 상기 배기펌프(12)로는 배기압이 높은 터보 분자 펌프(Turbomolecular Pump)를 사용한다.The exhaust pump 12 uses a turbomolecular pump having a high exhaust pressure.
그러면 상기와 같이 구성된 금속 증착 장비를 이용하여 웨이퍼상에 금속을 증착하는 과정을 도 2a 및 도 2b를 참조하여 설명하면 다음과 같다.Next, a process of depositing a metal on a wafer using the metal deposition apparatus configured as described above will be described with reference to FIGS. 2A and 2B.
제 1 단계 : 금속원료 공급First step: supply metal raw materials
상기 제 2 밸브(8)을 개방하여 상기 제 2 관로(7)를 통해 상기 금속원료 저장용기(9)로부터 기체 상태의 금속원료가 상기 챔버(4)의 내부로 공급되도록 한다. 그러면 공급된 기체 상태의 금속원료는 상기 웨이퍼(6)의 표면에 화학적으로 흡착(Chemisorption)된다. 이때, 금속원료가 상기 웨이퍼(6)의 전체 표면에 흡착되어 충분한 반응이 이루어지도록 공급량을 제어한다.The
도 2a는 절연막(21)이 형성된 반도체 기판(20)상에 금속원료(22)가 흡착된 상태가 도시된다.2A shows a state in which the metal
제 2 단계 : 정화 및 배기Second step: purification and exhaust
상기 제 2 밸브(8)를 닫고 상기 제 3 밸브(13)를 개방하여 상기 제 2 가스 공급관(14)을 통해 상기 챔버(4) 내부로 아르곤(Ar), 헬륨(He)과 같은 불활성 가스가 공급되도록 하는 동시에 상기 제 4 밸브(10)를 개방하고 상기 배기펌프(12)를 동작시킨다. 그러면 상기 웨이퍼(6)에 흡착되지 않은 채로 잔류되는 금속원료가 상기 제 3 관로를 통해 외부로 배출된다.By closing the
제 3 단계 : 금속 증착Third step: metal deposition
상기 제 3 및 제 4 밸브(13 및 10)를 닫고 상기 제 1 가스 공급관(15)을 통해 상기 플라즈마 생성부(2)로 반응가스를 공급하여 플라즈마가 생성되도록 하고, 상기 제 1 밸브(3)를 개방하여 플라즈마에 포함된 레디컬 또는 이온이 상기 제 1 관로(1)를 통해 상기 챔버(4) 내부로 공급되도록 한다. 이때, 공급된 레디컬 또는 이온과 상기 웨이퍼(6)에 흡착된 금속원료와의 환원반응에 의해 상기 웨이퍼(6)상에 금속이 증착되는 동시에 반응 분산물이 생성된다. 도 2b는 상기 절연막(21)상에 금속(22)이 증착된 상태가 도시된다.The third and
이때, 플라즈마 소오스로써 IC(Inductively Coupled) 플라즈마, ECR(Electron Cyclotron Resonance) 플라즈마, 헬리콘(Helicon) 플라즈마 등과 같은 고밀도 플라즈마 소오스를 사용한다.At this time, a high-density plasma source such as an IC (Inductively Coupled) plasma, an ECR (Electron Cyclotron Resonance) plasma, a Helicon plasma, or the like is used as the plasma source.
제 4 단계 : 정화 및 배기Fourth step: purification and exhaust
상기 제 1 밸브(3)를 닫고 제 3 및 제 4 밸브(13 및 10)를 개방하여 상기 제 2 가스 공급관(14)을 통해 상기 챔버(4)내로 불활성 가스가 공급되도록 하면 상기 반응 부산물과 잔류된 금속원료가 상기 제 3 관로(11)를 통해 외부로 배출된다.When the first valve 3 is closed and the third and
제 5 단계 : 원하는 두께의 금속 박막이 증착될 때까지 상기 제 1 내지 4 단계의 공정을 반복하여 실시한다. Step 5: The above steps 1 to 4 are repeated until a thin metal film having a desired thickness is deposited.
예를들어, 상기 웨이퍼(6)상에 Ta층을 형성하고자 하는 경우 TaCl5를 금속원료로 사용하고, 상기 플라즈마를 생성하기 위한 반응가스로써 H2를 사용한다. 그러면 웨이퍼(6)상에 흡착된 TaCl5와 수소(H) 레데컬 또는 수소(H) 이온의 환원반응에 의해 하기의 화학식 1과 같이 웨이퍼(6)상에 Ta가 증착되는 동시에 반응하지 않은 H2, H*, H+ 등과 같은 반응 부산물(5HCl)이 생성된다. For example, when a Ta layer is to be formed on the
또한, 본 발명을 이용하면 금속 질화막을 형성할 수 있는데, 금속 질화막을 형성하기 위해서는 상기 제 2 단계 공정시 플라즈마를 생성하기 위한 반응가스로써 NH3/H2, NF3/H2 또는 N2/H2를 공급하여 N 및 H 레디컬 및 이온이 상기 챔버(4)로 공급되도록 하고, N 및 H 레디컬 및 금속원료의 환원반응에 의해 하기의 화학식 2와 같은 반응이 일어나 상기 웨이퍼(6)상에 Ta 질화막이 증착되도록 한다. 이때, 반응하지 않은 N2, NH3, NF3, N*, N+, H2, H*, H+ 등과 같은 반응 부산물(HCl5)이 생성된다.In addition, by using the present invention, a metal nitride film may be formed. In order to form the metal nitride film, NH 3 / H 2 , NF 3 / H 2, or N 2 / H 2 is supplied to allow N and H radicals and ions to be supplied to the chamber 4, and a reaction such as the following Chemical Formula 2 is generated by a reduction reaction of N and H radicals and a metal raw material to produce the
본 발명은 티타늄(Ti) 또는 텅스텐(W)과 같은 금속의 증착에도 이용될 수 있는데, 티타늄(Ti)을 증착하기 위해서는 TiCl4를 금속원료로 사용하며, 텅스텐(W)을 증착하기 위해서는 WF6를 금속원료로 사용한다.The present invention can also be used for the deposition of metals such as titanium (Ti) or tungsten (W), TiCl 4 is used as a metal raw material for depositing titanium (Ti), WF 6 for depositing tungsten (W) Is used as a metal raw material.
TiCl4를 금속원료로 사용하는 경우에는 하기의 화학식 3과 같은 반응에 의해 웨이퍼상에 텅스텐(W)이 증착되며, 이때, H2, H*, H+ 등과 같은 반응 부산물(HCl)이 생성된다.In the case of using TiCl 4 as a metal raw material, tungsten (W) is deposited on the wafer by a reaction as shown in Chemical Formula 3 below, whereby reaction by-products (HCl) such as H 2, H *, and H + are produced.
상술한 바와 같이 본 발명은 기체 상태의 금속원료를 웨이퍼의 표면에 흡착시킨 후 흡착된 금속원료가 플라즈마에 포함된 레디컬 및 이온과 반응하도록 하여 웨이퍼상에 금속이 증착되도록 하되, 금속원료 공급단계 및 증착단계 후에 챔버의 내부를 정화시켜 불필요한 금속이온 및 반응 부산물이 챔버의 외부로 배출되도록 한다.As described above, the present invention allows the metal material to be deposited on the wafer by adsorbing the metal material in a gaseous state onto the surface of the wafer and allowing the adsorbed metal material to react with radicals and ions included in the plasma. And purifying the interior of the chamber after the deposition step so that unnecessary metal ions and reaction by-products are discharged out of the chamber.
따라서 본 발명은 종래의 물리기상증착(PVD) 방식을 이용하는 경우보다 층덮힘이 우수하며 핀홀(Pin Hole)이 매우적은 금속박막을 증착할 수 있다. 또한, 종래의 화학기상증착(CVD) 방식을 이용하는 경우보다 저온(400℃ 이하)에서 우수한 물성과 층덮힘을 갖는 금속박막을 증착할 수 있다.Therefore, the present invention is superior to the case of using the conventional physical vapor deposition (PVD) method and can deposit a metal thin film having a very small pin hole (Pin Hole). In addition, it is possible to deposit a metal thin film having excellent physical properties and layer covering at a low temperature (400 ℃ or less) than when using a conventional chemical vapor deposition (CVD) method.
그러므로 본 발명을 이용하여 확산방지막을 형성하면 확산방지 효과가 우수하며, 0.1㎛의 디자인 룰을 갖는 반도체 소자를 용이하게 제조할 수 있다. Therefore, by forming the diffusion barrier using the present invention is excellent in the diffusion prevention effect, it is possible to easily manufacture a semiconductor device having a design rule of 0.1㎛.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000037022A KR100671612B1 (en) | 2000-06-30 | 2000-06-30 | Apparatus for depositing metal and a method for forming a metal layer using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000037022A KR100671612B1 (en) | 2000-06-30 | 2000-06-30 | Apparatus for depositing metal and a method for forming a metal layer using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20020002736A KR20020002736A (en) | 2002-01-10 |
KR100671612B1 true KR100671612B1 (en) | 2007-01-18 |
Family
ID=19675285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020000037022A KR100671612B1 (en) | 2000-06-30 | 2000-06-30 | Apparatus for depositing metal and a method for forming a metal layer using the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100671612B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100479639B1 (en) * | 2002-04-06 | 2005-03-30 | 재단법인서울대학교산학협력재단 | Chemical Vapor Deposition System for Depositing Multilayer Film And Method for Depositing Multilayer Film Using The Same |
KR100714269B1 (en) * | 2004-10-14 | 2007-05-02 | 삼성전자주식회사 | Method for forming metal layer used the manufacturing semiconductor device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04107271A (en) * | 1990-08-24 | 1992-04-08 | Olympus Optical Co Ltd | Method and equipment for synthesizing cubic boron nitride |
KR970052058A (en) * | 1995-12-04 | 1997-07-29 | 문정환 | Thin Film Formation Method by Chemical Vapor Deposition (CVD) |
KR19990002926A (en) * | 1997-06-24 | 1999-01-15 | 박병재 | Amorphous Alloys Excluding Rare Earth Metals |
KR19990029260A (en) * | 1997-09-29 | 1999-04-26 | 윤종용 | Method of forming metal nitride film by chemical vapor deposition and method of forming metal contact of semiconductor device using same |
KR19990040442A (en) * | 1997-11-18 | 1999-06-05 | 윤종용 | Method for producing aluminum layer by atomic layer deposition |
KR20010039874A (en) * | 1999-10-06 | 2001-05-15 | 윤종용 | Thin film formation method using atomic layer deposition |
-
2000
- 2000-06-30 KR KR1020000037022A patent/KR100671612B1/en not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04107271A (en) * | 1990-08-24 | 1992-04-08 | Olympus Optical Co Ltd | Method and equipment for synthesizing cubic boron nitride |
KR970052058A (en) * | 1995-12-04 | 1997-07-29 | 문정환 | Thin Film Formation Method by Chemical Vapor Deposition (CVD) |
KR0172857B1 (en) * | 1995-12-04 | 1999-03-30 | 문정환 | Thin film forming method by cvd |
KR19990002926A (en) * | 1997-06-24 | 1999-01-15 | 박병재 | Amorphous Alloys Excluding Rare Earth Metals |
KR19990029260A (en) * | 1997-09-29 | 1999-04-26 | 윤종용 | Method of forming metal nitride film by chemical vapor deposition and method of forming metal contact of semiconductor device using same |
KR19990040442A (en) * | 1997-11-18 | 1999-06-05 | 윤종용 | Method for producing aluminum layer by atomic layer deposition |
KR20010039874A (en) * | 1999-10-06 | 2001-05-15 | 윤종용 | Thin film formation method using atomic layer deposition |
Also Published As
Publication number | Publication date |
---|---|
KR20020002736A (en) | 2002-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7589017B2 (en) | Methods for growing low-resistivity tungsten film | |
KR102496626B1 (en) | Chamber conditioning for remote plasma process | |
US7262125B2 (en) | Method of forming low-resistivity tungsten interconnects | |
JP5965955B2 (en) | Atomic layer deposition equipment | |
KR101287271B1 (en) | Method for improving adhesion of low resistivity tungsten/tungsten nitride layers | |
US9159571B2 (en) | Tungsten deposition process using germanium-containing reducing agent | |
JP5173098B2 (en) | Conformal lining layer for damascene metallization | |
US7094685B2 (en) | Integration of titanium and titanium nitride layers | |
US7244683B2 (en) | Integration of ALD/CVD barriers with porous low k materials | |
CN113166929A (en) | Void free low stress fill | |
JP4703810B2 (en) | CVD film forming method | |
JP2024038138A (en) | Metal fill process for three-dimensional vertical nand wordline | |
US20060068104A1 (en) | Thin-film formation in semiconductor device fabrication process and film deposition apparatus | |
US20030017697A1 (en) | Methods of forming metal layers using metallic precursors | |
KR20040058239A (en) | Integration of ald tantalum nitride and alpha-phase tantalum for copper metallization application | |
JPWO2005101473A1 (en) | Barrier film formation method and electrode film formation method | |
KR20060079144A (en) | Atomic layer deposition of barrier materials | |
KR102443978B1 (en) | Systems and methods for forming low resistivity metal contacts and interconnects by reducing and removing metallic oxide | |
KR100519376B1 (en) | Method for Forming Barrier Layer of Semiconductor Device | |
US7067420B2 (en) | Methods for forming a metal layer on a semiconductor | |
TW202309974A (en) | Tungsten wordline fill in high aspect ratio 3d nand architecture | |
KR102017944B1 (en) | Manufacturing method of nickel wiring | |
JP4804725B2 (en) | Method for forming conductive structure of semiconductor device | |
KR100671612B1 (en) | Apparatus for depositing metal and a method for forming a metal layer using the same | |
KR20230024367A (en) | Methods for Nucleation of Conductive Nitride Films |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20101224 Year of fee payment: 5 |
|
LAPS | Lapse due to unpaid annual fee |