KR100664769B1 - Furnace for manufacturing semiconductor wafer - Google Patents

Furnace for manufacturing semiconductor wafer Download PDF

Info

Publication number
KR100664769B1
KR100664769B1 KR1020010036200A KR20010036200A KR100664769B1 KR 100664769 B1 KR100664769 B1 KR 100664769B1 KR 1020010036200 A KR1020010036200 A KR 1020010036200A KR 20010036200 A KR20010036200 A KR 20010036200A KR 100664769 B1 KR100664769 B1 KR 100664769B1
Authority
KR
South Korea
Prior art keywords
reaction gas
inner tube
semiconductor wafer
boat
cross
Prior art date
Application number
KR1020010036200A
Other languages
Korean (ko)
Other versions
KR20030000430A (en
Inventor
김재용
Original Assignee
동부일렉트로닉스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동부일렉트로닉스 주식회사 filed Critical 동부일렉트로닉스 주식회사
Priority to KR1020010036200A priority Critical patent/KR100664769B1/en
Publication of KR20030000430A publication Critical patent/KR20030000430A/en
Application granted granted Critical
Publication of KR100664769B1 publication Critical patent/KR100664769B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment

Abstract

본 발명은 반도체웨이퍼 제조용 확산로에 관한 것으로서, 반도체웨이퍼(W)를 장착한 보트(130)가 내측으로 로딩되며, 일측에 구비된 가스주입구(111)를 통해 반응가스를 내부로 공급받아 타측으로 배출하는 내부튜브(110)를 구비한 확산로에 있어서, 내부튜브(110)는 반응가스 배출측의 단면적이 반응가스 유입측의 단면적보다 작게 형성되어 반응가스가 내부튜브(110) 내를 이동하면서 소모됨으로 인해 반응가스 유동율(flow rate)이 작아지는 것을 보상하는 것으로서, 내부튜브 내에서 반응가스가 이동함에 따라 소모되어 반응가스 유동율이 감소되는 것을 보상함으로써 반응가스 배출측과 반응가스 유입측의 증착 온도의 편차를 줄여 반도체웨이퍼의 산화막 특성을 균일하게 하며, 산화막 두께의 균일성을 향상시키는 효과를 가지고 있다.The present invention relates to a diffusion wafer for manufacturing a semiconductor wafer, the boat 130 equipped with a semiconductor wafer (W) is loaded to the inside, the reaction gas is supplied to the inside through the gas inlet 111 provided on one side to the other side In the diffusion path having the inner tube 110 for discharging, the inner tube 110 has a cross-sectional area of the reaction gas discharge side smaller than that of the reaction gas inlet side, so that the reaction gas moves in the inner tube 110. Compensation that the reaction gas flow rate is reduced by being consumed, and the reaction gas discharge side and the reaction gas inlet side are deposited by compensating that the reaction gas flow rate is reduced by being consumed as the reaction gas moves in the inner tube. The temperature variation is reduced to make the oxide film characteristics of the semiconductor wafer uniform, and the uniformity of the oxide film thickness is improved.

화학기상증착, 확산로, 반응가스 유동율, 내부튜브, 보트Chemical Vapor Deposition, Diffusion Furnace, Reaction Gas Flow Rate, Inner Tube, Boat

Description

반도체웨이퍼 제조용 확산로{FURNACE FOR MANUFACTURING SEMICONDUCTOR WAFER}FURNACE FOR MANUFACTURING SEMICONDUCTOR WAFER}

도 1은 종래의 수직형 확산로를 도시한 단면도,1 is a cross-sectional view showing a conventional vertical diffusion path,

도 2는 본 발명의 제 1 실시예에 따른 반도체웨이퍼 제조용 확산로를 도시한 단면도,2 is a cross-sectional view showing a diffusion path for manufacturing a semiconductor wafer according to a first embodiment of the present invention;

도 3은 본 발명의 제 2 실시예에 따른 반도체웨이퍼 제조용 확산로를 도시한 단면도,3 is a cross-sectional view showing a diffusion path for manufacturing a semiconductor wafer according to a second embodiment of the present invention;

도 4는 본 발명의 제 3 실시예에 따른 반도체웨이퍼 제조용 확산로를 도시한 단면도,4 is a cross-sectional view showing a diffusion path for manufacturing a semiconductor wafer according to a third embodiment of the present invention;

도 5는 본 발명의 제 4 실시예에 따른 반도체웨이퍼 제조용 확산로를 도시한 단면도,5 is a cross-sectional view illustrating a diffusion path for manufacturing a semiconductor wafer according to a fourth embodiment of the present invention;

도 6은 본 발명의 제 5 실시예에 따른 반도체웨이퍼 제조용 확산로를 도시한 단면도이다.6 is a cross-sectional view illustrating a diffusion path for manufacturing a semiconductor wafer according to a fifth embodiment of the present invention.

본 발명은 반도체웨이퍼를 제조하기 위한 CVD 공정에 사용되는 확산로에 관 한 것으로서, 보다 상세하게는 내부튜브 내에서 반응가스가 이동함에 따라 소모되어 반응가스 유동율이 감소되는 것을 보상하는 반도체웨이퍼 제조용 확산로에 관한 것이다.The present invention relates to a diffusion path used in a CVD process for manufacturing a semiconductor wafer, and more particularly, a diffusion for manufacturing a semiconductor wafer, which compensates that the reaction gas flow rate is reduced by being consumed as the reaction gas moves in the inner tube. It's about the furnace.

반도체 소자의 제조공정에서, 반도체웨이퍼의 표면에 분자기체를 반응시켜서 필요한 박막을 형성하는 공정을 화학기상증착(Chemical Vapor Deposition; 이하 "CVD"라 한다) 공정이라 한다. 이러한 CVD 공정은 박막이 형성되는 확산로 내부의 압력 정도에 따라 크게 상압 CVD(Atmosphere Pressure CVD), 저압 CVD(Low Pressure CVD) 및 플라즈마 CVD(Plasma Enhanced CVD) 공정 등이 있다.In the process of manufacturing a semiconductor device, a process of forming a required thin film by reacting a molecular gas on the surface of a semiconductor wafer is called a chemical vapor deposition (hereinafter referred to as "CVD") process. Such CVD processes include atmospheric pressure CVD (Low Pressure CVD), low pressure CVD (Plasma Enhanced CVD), and the like, depending on the pressure inside the diffusion path in which the thin film is formed.

또한, CVD 공정에 사용되는 확산로는 튜브(tube)가 설치되는 형상에 따라 수직형 확산로(vertical type furnace)와 수평형 확산로(horizental type furnace)로 나뉜다. In addition, the diffusion furnace used in the CVD process is divided into a vertical type furnace and a horizontal type furnace according to the shape of the tube.

CVD 공정에 사용되는 확산로 중 수직형 확산로를 첨부된 도면을 이용하여 설명하면 다음과 같다. The vertical diffusion path of the diffusion path used in the CVD process will be described with reference to the accompanying drawings.

도 1은 종래의 수직형 확산로를 도시한 단면도이다. 도시된 바와 같이, 수직형 확산로는 내부 및 외부튜브(10,20)와, 보트(boat;30)와, 히터(heater;40)와, 승강기(50)와, 플랜지(60)를 포함한다.1 is a cross-sectional view showing a conventional vertical diffusion path. As shown, the vertical diffusion furnace includes inner and outer tubes 10, 20, a boat 30, a heater 40, an elevator 50, and a flange 60. .

내부튜브(10)는 외측에 외부튜브(20)가 설치되고, 내측에 일정 갯수의 반도체웨이퍼(W)를 장착한 보트(30)가 설치되며, 하단부 일측에 내부로 반응가스를 공급하는 가스주입구(11)가 구비된다.The inner tube 10 is provided with an outer tube 20 on the outside, a boat 30 equipped with a predetermined number of semiconductor wafers W on the inside, and a gas inlet for supplying reaction gas to one side of the lower end. (11) is provided.

외부튜브(20)는 하단부 일측에 내부튜브(10) 내로 공급된 반응가스가 반응을 마치고 배출되는 가스배출구(21)가 설치되며, 외측에 내.외부튜브(10,20)내로 열을 공급하는 히터(40)가 설치된다.The outer tube 20 is provided with a gas outlet 21 through which the reaction gas supplied into the inner tube 10 is discharged after completion of the reaction, and supplies heat into the inner and outer tubes 10 and 20 on the outside. The heater 40 is installed.

보트(30)는 승강기(50)의 승강판(51)의 상측에 위치하는 캡(31)의 상단에 결합되며, 승강기(50)에 의해 내부튜브(10) 내로 로딩/언로딩된다.The boat 30 is coupled to the upper end of the cap 31 located above the elevating plate 51 of the elevator 50, and is loaded / unloaded into the inner tube 10 by the elevator 50.

승강기(50)는 플랜지(60)에 형성된 보트출입구(61)를 통하여 보트(30)를 내부튜브(10) 내로 로딩/언로딩한다.The elevator 50 loads / unloads the boat 30 into the inner tube 10 through the boat entrance 61 formed in the flange 60.

플랜지(60)는 내부 및 외부튜브(10,20)를 지지하고 있으며, 하면 가장자리에 오링(O-ring;62)이 구비됨으로써 플랜지(60)의 하면과 승강기(50)의 승강판(51)이 접촉시 서로 기밀을 유지하도록 한다.The flange 60 supports the inner and outer tubes 10 and 20, and an O-ring 62 is provided at the edge of the lower surface, so that the lower surface of the flange 60 and the elevating plate 51 of the elevator 50 are provided. It is important to keep each other confidential during this contact.

이와 같은 구조로 이루어진 종래의 수직형 확산로의 작용은 다음과 같다.The operation of the conventional vertical diffusion furnace composed of such a structure is as follows.

히터(40)에 의해 열을 공급받아서 내부튜브(10) 내부의 온도가 일정하게 유지되는 상태에서 일정 갯수의 반도체웨이퍼(W)를 장착한 보트(30)가 승강기(50)에 의해 내부튜브(10) 내로 로딩된다.The boat 30 equipped with a predetermined number of semiconductor wafers W in a state where the temperature inside the inner tube 10 is kept constant by receiving the heat from the heater 40 is lifted by the inner tube (50). 10) loaded into.

내부튜브(10) 내로 보트(30)가 로딩되면, 가스주입구(11)를 통해 CVD 공정을 수행할 암모니아(NH3), 질소(N2), 산소(O2), 실란(SiH4;Silane), 인화수소(PH4;Phosphine) 등의 반응가스가 가스주입구(11)를 통해 내부튜브(10) 내로 주입되고, 주입된 반응가스는 내부튜브(10)의 하측으로부터 상측으로 이동하면서 반도체웨이퍼(W)의 표면에 산화막을 형성시키며, 상측으로 이동한 반응가스는 다시 외부튜브(20)의 상측으로부터 하측으로 이동하여 가스배출구(21)를 통해 외부 로 배출된다.When the boat 30 is loaded into the inner tube 10, the ammonia (NH 3 ), nitrogen (N 2 ), oxygen (O 2 ), and silane (SiH 4 ; Silane) to perform the CVD process through the gas inlet 11 ), Hydrogen phosphide (PH 4 ; Phosphine), and the like, are injected into the inner tube 10 through the gas inlet 11, and the injected reaction gas moves from the lower side of the inner tube 10 to the upper side of the semiconductor wafer. An oxide film is formed on the surface of (W), and the reaction gas moved upwards is moved downward from the upper side of the outer tube 20 and discharged to the outside through the gas outlet 21.

이러한 수직형 확산로는 반도체웨이퍼(W)에 균일한 산화막을 형성시키기 위해서는 온도, 압력, 반응가스의 농도 등이 중요한 요소로 작용한다.In order to form a uniform oxide film on the semiconductor wafer W, the vertical diffusion path acts as an important factor such as temperature, pressure, reaction gas concentration, and the like.

그러나, 가스주입구(11)를 통해 주입된 반응가스는 내부튜브(10) 내에서 하측으로부터 상측으로 이동하면서 반도체웨이퍼(W)와 반응하여 점차 소모되기 때문에 반응가스의 유동율(flow rate)이 감소되며, 내부튜브(10) 내의 상측에 위치한 반도체웨이퍼(W)는 그 하측에 위치한 반도체웨이퍼(W)에 비해 표면에 접하는 반응가스의 양이 상대적으로 적다. However, since the reaction gas injected through the gas inlet 11 is gradually consumed by reacting with the semiconductor wafer W while moving from the lower side to the upper side in the inner tube 10, the flow rate of the reaction gas is reduced. In addition, the amount of the reaction gas in contact with the surface of the semiconductor wafer W located on the upper side of the inner tube 10 is relatively smaller than that of the semiconductor wafer W located on the lower side thereof.

따라서, 내부튜브(10) 내의 상측과 하측에 위치하는 반도체웨이퍼(W) 사이에 증착속도의 차이가 발생하고, 산화막 두께가 서로 다르게 형성되므로, 이러한 문제점들을 해결하기 위하여 내부튜브(10) 내의 상측의 온도를 하측에 비해 높게 하였다.Therefore, a difference in deposition rate occurs between the upper and lower semiconductor wafers (W) in the inner tube 10, the oxide film thickness is formed differently, the upper side in the inner tube 10 to solve these problems The temperature of was made high compared with the lower side.

그러나, 내부튜브(10) 내의 상측과 하측의 온도 차이는 내부튜브(10) 내의 상측과 하측에 위치한 반도체웨이퍼(W) 사이에 산화막 특성을 차이를 발생시키고, 반도체 소자의 특성의 균일성을 유지하는데 불리하게 작용한다. However, the temperature difference between the upper side and the lower side in the inner tube 10 causes a difference in oxide film characteristics between the upper and lower semiconductor wafers W in the inner tube 10 and maintains uniformity of the characteristics of the semiconductor element. It works against

또한, 내부튜브(10)의 상측은 반응가스 유동율이 작고 온도가 높기 때문에 반도체웨이퍼내 산화막 두께의 균일성이 불량해진다.In addition, since the reaction gas flow rate is low and the temperature is high on the upper side of the inner tube 10, the uniformity of the oxide film thickness in the semiconductor wafer becomes poor.

이러한 문제점은 위에서 언급한 수직형 확산로뿐만 아니라 수평형 확산로에서도 동일한 문제점을 발생시킨다.This problem causes the same problem in the horizontal diffusion furnace as well as the vertical diffusion furnace mentioned above.

본 발명은 상술한 종래의 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 내부튜브 내에서 반응가스가 이동함에 따라 소모되어 반응가스 유동율이 감소되는 것을 보상함으로써 반응가스 배출측과 반응가스 유입측의 증착 온도의 편차를 줄여 반도체웨이퍼의 산화막 특성을 균일하게 하며, 산화막 두께의 균일성을 향상시키는 반도체웨이퍼 제조용 확산로를 제공하는데 있다. The present invention is to solve the above-described problems, an object of the present invention is to compensate for the reduction of the reaction gas flow rate is consumed as the reaction gas moves in the inner tube of the reaction gas discharge side and the reaction gas inlet side The present invention provides a diffusion path for manufacturing a semiconductor wafer that reduces the deposition temperature and makes the oxide film characteristics of the semiconductor wafer uniform, and improves the uniformity of the oxide film thickness.

이와 같은 목적을 실현하기 위한 본 발명은, 반도체웨이퍼를 장착한 보트가 내측으로 로딩되며, 일측에 구비된 가스주입구를 통해 반응가스를 내부로 공급받아 타측으로 배출하는 내부튜브를 구비한 확산로에 있어서, 내부튜브는 반응가스 배출측의 단면적이 반응가스 유입측의 단면적보다 작게 형성되어 반응가스가 내부튜브 내를 이동하면서 소모됨으로 인해 반응가스 유동율(flow rate)이 작아지는 것을 보상하되, 내부튜브는 반응가스 유입측으로부터 보트가 로딩되는 부분까지 일정한 단면적을 가지도록 형성되며, 반응가스 배출측에 병목부를 형성하는 원통 형상을 가지는 것을 특징으로 한다.The present invention for achieving the above object, the boat equipped with a semiconductor wafer is loaded into the inside, the diffusion path having an inner tube for supplying the reaction gas to the inside through the gas inlet provided on one side discharged to the other side In the inner tube, the cross-sectional area of the reaction gas discharge side is formed to be smaller than the cross-sectional area of the reaction gas inlet side, thereby compensating for the reduction of the reaction gas flow rate because the reaction gas is consumed while moving in the inner tube, but the inner tube Is formed to have a constant cross-sectional area from the reaction gas inlet side to the portion of the boat is loaded, characterized in that it has a cylindrical shape forming a bottleneck on the reaction gas discharge side.

삭제delete

삭제delete

이하, 본 발명의 가장 바람직한 실시예를 첨부한 도면을 참조하여 본 발명의 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 더욱 상세히 설명하기로 한다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention.

도 2 내지 도 4는 본 발명인 반도체웨이퍼 제조용 확산로를 수직형 확산로에 적용한 예를 각각 나타낸 것이다. 도시된 바와 같이, 본 발명에 따른 수직형 확산로는 내부 및 외부튜브(110,120)와, 보트(boat;130)와, 히터(heater;140)와, 승강기(150)와, 플랜지(160)를 포함한다.2 to 4 show examples of applying the diffusion path for manufacturing a semiconductor wafer of the present invention to a vertical diffusion path, respectively. As shown, the vertical diffusion furnace according to the present invention, the inner and outer tubes 110 and 120, the boat (130), the heater (140), the elevator (150) and the flange (160) Include.

내부튜브(110)는 외측에 외부튜브(120)가 설치되고, 내측에 일정 갯수의 반도체웨이퍼(W)를 장착한 보트(130)가 설치되며, 하단부 일측에 내부로 반응가스를 공급하는 가스주입구(111)가 설치된다.The inner tube 110, the outer tube 120 is installed on the outside, the boat 130 is equipped with a predetermined number of semiconductor wafers (W) is installed on the inside, the gas inlet for supplying the reaction gas to one side of the lower end 111 is installed.

내부튜브(110)는 반응가스 배출측의 단면적이 반응가스 유입측의 단면적보다 작게 형성되며, 이러한 내부튜브(110)는 도 2에 도시된 본 발명의 제 1 실시예에서와 같이, 그 단면적이 반응가스 유입측으로부터 반응가스 배출측으로 점차 작아지는 원통 형상을 가진다. The inner tube 110 has a cross-sectional area of the reaction gas discharge side smaller than the cross-sectional area of the reaction gas inlet side, the inner tube 110 has a cross-sectional area, as in the first embodiment of the present invention shown in FIG. It has a cylindrical shape gradually decreasing from the reaction gas inlet side to the reaction gas discharge side.

따라서, 내부튜브(110) 내에서 반응가스 배출측의 반응가스 이동속도가 반응가스 유입측의 반응가스 이동속도보다 빨라짐으로써 반응가스가 내부튜브(110) 내를 이동하면서 반도체웨이퍼와 반응하여 소모됨으로 인해 작아진 반응가스 유동율(flow rate)을 보상한다. Therefore, the reaction gas moving speed of the reaction gas discharge side in the inner tube 110 is faster than the reaction gas moving speed of the reaction gas inlet side, so that the reaction gas is consumed by reacting with the semiconductor wafer while moving in the inner tube 110. To compensate for the smaller reaction gas flow rate.

외부튜브(120)는 하단부 일측에 내부튜브(110) 내로 유입된 반응가스가 반응을 마치고 배출되는 가스배출구(121)가 설치되며, 외측에 내.외부튜브(110,120)내로 열을 공급하는 히터(140)가 설치된다.The outer tube 120 has a gas outlet 121 through which the reaction gas introduced into the inner tube 110 is discharged after completion of the reaction, and supplies heat to the inner and outer tubes 110 and 120 at the outside thereof. 140 is installed.

보트(130)는 승강기(150)의 승강판(151)의 상측에 위치하는 캡(131)의 상단에 결합되며, 승강기(150)에 의해 내부튜브(110) 내로 로딩/언로딩된다.The boat 130 is coupled to an upper end of the cap 131 located above the elevating plate 151 of the elevator 150, and is loaded / unloaded into the inner tube 110 by the elevator 150.

승강기(150)는 플랜지(160) 내측에 형성된 보트출입구(161)를 통해 보트(130)를 내부튜브(110) 내로 로딩/언로딩한다.The elevator 150 loads / unloads the boat 130 into the inner tube 110 through the boat entrance 161 formed inside the flange 160.

플랜지(160)는 상측에 내부 및 외부튜브(110,120)를 지지하고, 하면 가장자리에 오링(O-ring;162)을 구비함으로써 플랜지(160)의 하면과 승강기(150)의 승강판(151)이 접촉시 서로 기밀을 유지하도록 한다.The flange 160 supports the inner and outer tubes 110 and 120 at an upper side thereof, and has an O-ring 162 at the edge of the lower surface thereof, whereby the lower surface of the flange 160 and the elevating plate 151 of the elevator 150 are provided. Keep each other confidential during contact.

도 3은 본 발명의 제 2 실시예에 따른 반도체웨이퍼 제조용 확산로를 도시한 단면도이다. 도시된 바와 같이, 본 실시예는 도 2에 도시된 본 발명의 제 1 실시예와 동일하나, 외부튜브(220)가 내부튜브(110)와 동일한 형상을 가지도록 형성되어 있다. 즉, 외부튜브(220)는 그 단면적이 가스배출구(221)가 형성된 하측으로부터 내부튜브(110)로부터 반응가스가 공급되는 상측으로 점차 작아지도록 형성되는 원통 형상을 가진다.3 is a cross-sectional view illustrating a diffusion path for manufacturing a semiconductor wafer according to a second embodiment of the present invention. As shown, this embodiment is the same as the first embodiment of the present invention shown in Figure 2, the outer tube 220 is formed to have the same shape as the inner tube (110). That is, the outer tube 220 has a cylindrical shape formed such that its cross-sectional area is gradually reduced from the lower side where the gas outlet 221 is formed to the upper side through which the reaction gas is supplied from the inner tube 110.

따라서, 내부튜브(110)의 외측면과 외부튜브(220)의 내측면과의 간격을 일정하게 유지토록 함으로써 히터(130)로부터 공급되는 열이 내부튜브(210)에 일정한 비율로 공급되게 하여 내부튜브(210) 내의 온도를 균일하게 유지한다.Therefore, by maintaining a constant distance between the outer surface of the inner tube 110 and the inner surface of the outer tube 220 to ensure that the heat supplied from the heater 130 is supplied to the inner tube 210 at a constant rate to the inside. The temperature in the tube 210 is kept uniform.

도 4는 본 발명의 제 3 실시예에 따른 반도체웨이퍼 제조용 확산로를 도시한 단면도이다. 도시된 바와 같이, 본 실시예는 도 2에 도시된 본 발명의 제 1 실시예와 동일하나, 내부튜브(310)는 가스유입구(311)가 설치된 반응가스 유입측으로부터 보트(130)가 로딩되는 부분까지, 즉 보트(130)를 포함하는 부분까지 일정한 단면적을 가지도록 형성되며, 반응가스 배출측에 병목부(312)를 형성하는 원통 형상을 가진다.4 is a cross-sectional view illustrating a diffusion path for manufacturing a semiconductor wafer according to a third embodiment of the present invention. As shown, this embodiment is the same as the first embodiment of the present invention shown in Figure 2, the inner tube 310 is the boat 130 is loaded from the reaction gas inlet side is installed gas inlet 311 It is formed to have a constant cross-sectional area up to a portion, that is to a portion including the boat 130, and has a cylindrical shape to form a bottleneck 312 on the reaction gas discharge side.

따라서, 반응가스 배출측의 반응가스 이동속도가 반응가스 주입측의 반응가 스 이동속도보다 빠르게 되는 한편, 내부튜브(310)중 보트(130)를 포함하는 부위가 일정한 단면적으로 형성됨으로써 내부튜브(310)의 측벽으로부터 반도체웨이퍼들이 동일한 거리를 두고 위치하여 내부튜브(310)의 내측벽을 통해 전달되는 열이 반도체웨이퍼에 균일하게 전달되어 보트(130)내에 장착된 반도체웨이퍼들간의 온도분포가 균일하다.Therefore, the reaction gas moving speed of the reaction gas discharge side is faster than the reaction gas moving speed of the reaction gas injection side, while the portion including the boat 130 of the inner tube 310 is formed in a constant cross-sectional area to form the inner tube 310. The semiconductor wafers are located at the same distance from the sidewall of the lateral wall) and heat transmitted through the inner wall of the inner tube 310 is uniformly transferred to the semiconductor wafer, so that the temperature distribution between the semiconductor wafers mounted in the boat 130 is uniform. .

도 5 및 도 6은 본 발명인 반도체웨이퍼 제조용 확산로를 수평형 확산로에 적용한 예를 각각 나타낸 것이다. 도시된 바와 같이, 본 발명에 따른 수평형 확산로는 내부튜브(410)와, 반응챔버(420)와, 지지부재(430,440)와, 보트(450)와, 셔터(460)와, 히터(470)을 포함한다.5 and 6 show an example in which the present invention, the diffusion path for manufacturing a semiconductor wafer is applied to a horizontal diffusion path. As shown, the horizontal diffusion path according to the present invention, the inner tube 410, the reaction chamber 420, the support members 430 and 440, the boat 450, the shutter 460 and the heater 470 ).

내부튜브(410)는 원통 형상을 가지는 반응챔버(420)의 내부에 수평방향으로 구비되며, 내부튜브(410)의 양단은 한 쌍의 지지부재(430,440)에 의해서 외부튜브(420)에 고정 및 지지된다.The inner tube 410 is provided in a horizontal direction inside the reaction chamber 420 having a cylindrical shape, both ends of the inner tube 410 is fixed to the outer tube 420 by a pair of support members 430 and 440. Supported.

내부튜브(410)는 반응가스 배출측의 단면적이 반응가스 유입측의 단면적보다 작게 형성되는데, 이러한 내부튜브(410)는 도 5에 도시된 본 발명의 제 4 실시예에서와 같이, 그 단면적이 반응가스 유입측으로부터 반응가스 배출측으로 점차 작아지는 원통 형상을 가진다. The inner tube 410 has a cross-sectional area of the reaction gas discharge side smaller than the cross-sectional area of the reaction gas inlet side, the inner tube 410 has a cross-sectional area, as in the fourth embodiment of the present invention shown in FIG. It has a cylindrical shape gradually decreasing from the reaction gas inlet side to the reaction gas discharge side.

따라서, 도 2의 본 발명의 제 1 실시예와 마찬가지로 반응가스가 내부튜브(410) 내를 이동하면서 반도체웨이퍼와 반응하여 소모됨으로 인해 작아진 반응가스 유동율(flow rate)을 보상한다.Therefore, as in the first embodiment of the present invention of FIG. 2, the reaction gas compensates for the reduced reaction gas flow rate due to consumption by reacting with the semiconductor wafer while moving in the inner tube 410.

그리고, 내부튜브(410)의 일측에는 가스주입구(411)가 구비되어 내부튜브(410) 내부로 반응가스를 주입하고, 그 타측은 개방되어져 일정 갯수의 반도체웨이퍼(W)를 장착한 보트(450)가 출입함과 아울러 가스배출구(461)를 구비한 셔터(shutter;460)의 작동에 의해서 개폐된다. In addition, a gas injection hole 411 is provided at one side of the inner tube 410 to inject the reaction gas into the inner tube 410, and the other side thereof is opened, and the boat 450 having a predetermined number of semiconductor wafers W mounted thereon. ) Is opened and closed by the operation of the shutter (460) having a gas outlet (461).

또한, 내부튜브(410)와 반응챔버(420) 사이에는 히터(470)가 구비되어 전원 공급에 의해서 내부튜브(410)를 가열한다. In addition, a heater 470 is provided between the inner tube 410 and the reaction chamber 420 to heat the inner tube 410 by power supply.

도 6은 본 발명의 제 5 실시예에 따른 반도체웨이퍼 제조용 확산로를 도시한 단면도이다. 도시된 바와 같이, 본 실시예는 도 4에 도시된 본 발명의 제 4 실시예와 동일하나, 내부튜브(510)는 반응가스 유입측으로부터 보트(450)가 로딩되는 부분까지, 즉 보트(450)를 포함하는 부분까지 일정한 단면적을 가지도록 형성되며, 반응가스 배출측에 병목부(512)를 형성하는 원통 형상을 가진다.6 is a cross-sectional view illustrating a diffusion path for manufacturing a semiconductor wafer according to a fifth embodiment of the present invention. As shown, this embodiment is the same as the fourth embodiment of the present invention shown in FIG. 4, but the inner tube 510 is from the reaction gas inlet side to the portion where the boat 450 is loaded, that is, the boat 450 It is formed to have a constant cross-sectional area up to a portion including), and has a cylindrical shape to form a bottleneck 512 on the reaction gas discharge side.

따라서, 도 4의 본 발명의 제 3 실시예와 마찬가지로 반응가스 배출측의 반응가스 이동속도가 반응가스 주입측의 반응가스 이동속도보다 빠르게 되는 한편, 내부튜브(510)의 내측벽을 통해 전달되는 열이 반도체웨이퍼에 균일하게 전달되어 보트(450)내에 장착된 반도체웨이퍼들간의 온도분포가 균일하다.Accordingly, as in the third embodiment of the present invention of FIG. 4, the reaction gas moving speed at the reaction gas discharge side is faster than the reaction gas moving speed at the reaction gas injection side, and is transmitted through the inner wall of the inner tube 510. Heat is uniformly transferred to the semiconductor wafer so that the temperature distribution between the semiconductor wafers mounted in the boat 450 is uniform.

이와 같은 수직형 및 수평형 확산로는 내부튜브 내에서 반응가스가 이동함에 따라 소모되어 반응가스 유동율이 감소되는 것을 보상함으로써 반응가스 배출측과 반응가스 유입측의 증착 온도의 편차를 줄여 반도체웨이퍼의 산화막 특성을 균일하게 하며, 산화막 두께의 균일성을 향상시킨다.The vertical and horizontal diffusion paths are compensated for as the reaction gas flow rate decreases as the reaction gas moves in the inner tube, thereby reducing the variation in deposition temperature between the reaction gas discharge side and the reaction gas inlet side. It makes the oxide film characteristic uniform, and improves the uniformity of oxide film thickness.

상술한 바와 같이, 본 발명에 따른 반도체웨이퍼 제조용 확산로는 내부튜브 내에서 반응가스가 이동함에 따라 소모되어 반응가스 유동율이 감소되는 것을 보상함으로써 반응가스 배출측과 반응가스 유입측의 증착 온도의 편차를 줄여 반도체웨이퍼의 산화막 특성을 균일하게 하며, 산화막 두께의 균일성을 향상시키는 효과를 가지고 있다.As described above, the diffusion path for manufacturing a semiconductor wafer according to the present invention is compensated for the reduction of the reaction gas flow rate by being consumed as the reaction gas moves in the inner tube, so that the variation in deposition temperature between the reaction gas discharge side and the reaction gas inlet side. It has the effect of reducing the uniformity of the oxide film characteristics of the semiconductor wafer and improving the uniformity of the oxide film thickness.

이상에서 설명한 것은 본 발명에 따른 반도체웨이퍼 제조용 확산로를 실시하기 위한 하나의 실시예에 불과한 것으로서, 본 발명은 상기한 실시예에 한정되지 않고, 이하의 특허청구범위에서 청구하는 바와 같이 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 기술적 정신이 있다고 할 것이다.What has been described above is just one embodiment for carrying out the diffusion path for manufacturing a semiconductor wafer according to the present invention, the present invention is not limited to the above embodiment, as claimed in the following claims of the present invention Without departing from the gist of the present invention, one of ordinary skill in the art will have the technical spirit of the present invention to the extent that various modifications can be made.

Claims (4)

반도체웨이퍼를 장착한 보트가 내측으로 로딩되며, 일측에 구비된 가스주입구를 통해 반응가스를 내부로 공급받아 타측으로 배출하는 내부튜브를 구비한 확산로에 있어서, In a diffusion furnace having a boat equipped with a semiconductor wafer is loaded to the inside, the inner tube for supplying the reaction gas to the inside through the gas inlet provided on one side and discharged to the other side, 상기 내부튜브는 반응가스 배출측의 단면적이 반응가스 유입측의 단면적보다 작게 형성되어 반응가스가 상기 내부튜브 내를 이동하면서 소모됨으로 인해 반응가스 유동율(flow rate)이 작아지는 것을 보상하되,The inner tube has a cross-sectional area of the reaction gas discharge side is formed smaller than the cross-sectional area of the reaction gas inlet side to compensate for the decrease in the reaction gas flow rate (flow rate) due to the consumption of the reaction gas is moved in the inner tube, 상기 내부튜브는 반응가스 유입측으로부터 상기 보트가 로딩되는 부분까지 일정한 단면적을 가지도록 형성되며, 반응가스 배출측에 병목부를 형성하는 원통 형상을 가지는 것The inner tube is formed to have a constant cross-sectional area from the reaction gas inlet side to the portion where the boat is loaded, having a cylindrical shape forming a bottleneck on the reaction gas discharge side 을 특징으로 하는 반도체웨이퍼 제조용 확산로.Diffusion furnace for manufacturing semiconductor wafers, characterized in that. 삭제delete 삭제delete 삭제delete
KR1020010036200A 2001-06-25 2001-06-25 Furnace for manufacturing semiconductor wafer KR100664769B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010036200A KR100664769B1 (en) 2001-06-25 2001-06-25 Furnace for manufacturing semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010036200A KR100664769B1 (en) 2001-06-25 2001-06-25 Furnace for manufacturing semiconductor wafer

Publications (2)

Publication Number Publication Date
KR20030000430A KR20030000430A (en) 2003-01-06
KR100664769B1 true KR100664769B1 (en) 2007-01-04

Family

ID=27710896

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010036200A KR100664769B1 (en) 2001-06-25 2001-06-25 Furnace for manufacturing semiconductor wafer

Country Status (1)

Country Link
KR (1) KR100664769B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57211728A (en) * 1981-06-23 1982-12-25 Nec Corp Manufacture of semiconductor device
JPS59191325A (en) * 1983-04-15 1984-10-30 Toshiba Corp Vapor growth apparatus
JPH0298924A (en) * 1988-10-05 1990-04-11 Fujitsu Ltd Chemical vapor growth apparatus
KR940001260A (en) * 1992-06-05 1994-01-11 김주용 Low pressure chemical vapor deposition tube
JPH0669138A (en) * 1992-08-20 1994-03-11 Matsushita Electron Corp Low pressure vapor phase epitaxial growth system
KR950010199A (en) * 1993-09-28 1995-04-26 고다 시게노리 Laser light launcher, laser light processor and method
KR20020070161A (en) * 2001-02-28 2002-09-05 니뽄파이오닉스가부시끼가이샤 Chemical vapor deposition apparatus and chemical vapor deposition method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57211728A (en) * 1981-06-23 1982-12-25 Nec Corp Manufacture of semiconductor device
JPS59191325A (en) * 1983-04-15 1984-10-30 Toshiba Corp Vapor growth apparatus
JPH0298924A (en) * 1988-10-05 1990-04-11 Fujitsu Ltd Chemical vapor growth apparatus
KR940001260A (en) * 1992-06-05 1994-01-11 김주용 Low pressure chemical vapor deposition tube
JPH0669138A (en) * 1992-08-20 1994-03-11 Matsushita Electron Corp Low pressure vapor phase epitaxial growth system
KR950010199A (en) * 1993-09-28 1995-04-26 고다 시게노리 Laser light launcher, laser light processor and method
KR20020070161A (en) * 2001-02-28 2002-09-05 니뽄파이오닉스가부시끼가이샤 Chemical vapor deposition apparatus and chemical vapor deposition method

Also Published As

Publication number Publication date
KR20030000430A (en) 2003-01-06

Similar Documents

Publication Publication Date Title
US5503875A (en) Film forming method wherein a partial pressure of a reaction byproduct in a processing container is reduced temporarily
US5925188A (en) Film forming apparatus
US6486083B1 (en) Semiconductor device manufacturing method and semiconductor manufacturing apparatus
KR920007343B1 (en) Semiconductor manufacturing device
US11377730B2 (en) Substrate processing apparatus and furnace opening cover
US20030207547A1 (en) Silicon deposition process in resistively heated single wafer chamber
US7926445B2 (en) Oxidizing method and oxidizing unit for object to be processed
US20090017638A1 (en) Substrate processing apparatus and method for manufacturing semiconductor device
KR20060063188A (en) Equipment for chemical vapor deposition and method used the same
KR101088964B1 (en) Substrate treating apparatus, substrate supporter and method for manufacturing semiconductor device
KR20200018269A (en) Film forming apparatus and film forming method
KR101155291B1 (en) Apparatus for dry etching and substrate processing system having the same
US20080132069A1 (en) Apparatus and method for forming a thin layer on semiconductor substrates
KR100664769B1 (en) Furnace for manufacturing semiconductor wafer
KR20100077813A (en) Semiconductor manufacturing vertical diffusion furnace
KR20110101557A (en) Apparatus for low pressure chemical vapor deposition
JP2002110562A (en) Semiconductor manufacturing apparatus
KR100273223B1 (en) Apparatus for low pressure chemical vapor deposition
KR0116697Y1 (en) Low pressure cvd apparatus
KR20070095564A (en) Furnace for manufacturing a semiconductor device and manufacturing method thereof
JP2001338883A (en) Manufacturing method of semiconductor device
KR200238128Y1 (en) Deposition furnace for semiconductor depositor
JP2004095940A (en) Method of manufacturing semiconductor device
KR20230004292A (en) Chemical Vapor Deposition Furnace for Depositing Films
KR20220143222A (en) Apparatus and method of depositing a thin layer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee