KR100663015B1 - Metal line and method for forming the same - Google Patents

Metal line and method for forming the same Download PDF

Info

Publication number
KR100663015B1
KR100663015B1 KR1020050061816A KR20050061816A KR100663015B1 KR 100663015 B1 KR100663015 B1 KR 100663015B1 KR 1020050061816 A KR1020050061816 A KR 1020050061816A KR 20050061816 A KR20050061816 A KR 20050061816A KR 100663015 B1 KR100663015 B1 KR 100663015B1
Authority
KR
South Korea
Prior art keywords
film
titanium nitride
metal
titanium
nitride film
Prior art date
Application number
KR1020050061816A
Other languages
Korean (ko)
Inventor
김주현
Original Assignee
동부일렉트로닉스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동부일렉트로닉스 주식회사 filed Critical 동부일렉트로닉스 주식회사
Priority to KR1020050061816A priority Critical patent/KR100663015B1/en
Application granted granted Critical
Publication of KR100663015B1 publication Critical patent/KR100663015B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76855After-treatment introducing at least one additional element into the layer
    • H01L21/76856After-treatment introducing at least one additional element into the layer by treatment in plasmas or gaseous environments, e.g. nitriding a refractory metal liner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32139Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/7685Barrier, adhesion or liner layers the layer covering a conductive structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

A metal line and a forming method thereof are provided to control stably the limitation of CD(Critical Dimension) in the metal line itself by preventing the generation of footing in a photo process using a different density of nitrogen components according to the thickness of a deposited titanium nitride layer. A metal film structure(113) is formed on a substrate. The metal film structure includes a titanium nitride layer(111a). A photoresist layer is coated on the metal film structure. A photoresist pattern is formed on the resultant structure by exposing and developing the photoresist layer. The metal film structure is selectively etched by using the photoresist pattern as an etch mask. The titanium nitride layer is formed at an upper portion of the metal film structure. The nitrogen density of an upper portion is smaller than that of a lower portion in the titanium layer.

Description

금속배선 및 그 형성 방법{Metal Line And Method for Forming The Same}Metal line and method for forming the same

도 1 내지 도 4는 종래기술에 따른 금속배선의 형성방법을 나타내는 단면도들이다.1 to 4 are cross-sectional views showing a method of forming a metal wire according to the prior art.

도 5 및 도 6는 본 발명의 제1 실시예에 따른 금속배선의 형성방법을 나타내는 단면도들이다.5 and 6 are cross-sectional views illustrating a method of forming a metal wiring according to a first embodiment of the present invention.

도 7 및 도 8은 본 발명의 제2 실시예에 따른 금속배선의 형성방법을 나타내는 단면도들이다.7 and 8 are cross-sectional views illustrating a method of forming a metal wiring according to a second embodiment of the present invention.

<도면의 주요 부호에 대한 설명><Description of Major Symbols in Drawing>

13, 113: 금속막 11, 111a, 111b: 티타늄질화막13, 113: metal film 11, 111a, 111b: titanium nitride film

본 발명은 금속배선 및 그 형성방법에 관한 것으로서, 좀 더 구체적으로는 풋팅(footing) 현상이 제거 및 완화된 감광막을 사용한 금속배선 및 그 형성방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to metal wiring and a method of forming the same, and more particularly, to metal wiring and a method of forming the same using a photosensitive film in which a footing phenomenon has been removed and alleviated.

반도체 제조공정에서 실리콘 기판에는 트랜지스터, 캐패시터, 저항 등의 다양한 소자가 형성되어 있으며, 이러한 소자들은 배선과 층간절연막으로 절연되어 있다.In a semiconductor manufacturing process, various devices such as transistors, capacitors, and resistors are formed on a silicon substrate, and these devices are insulated with wiring and an interlayer insulating film.

도 1 내지 도 4는 종래기술에 따른 금속배선의 형성방법을 나타내는 단면도들이다.1 to 4 are cross-sectional views showing a method of forming a metal wire according to the prior art.

도 1을 참조하면, 기판의 층간절연막(1) 상에 일련의 금속막(13)을 적층한다. 금속막(13)은 스퍼터링법을 사용하여 티타늄막(3), 티타늄질화막(5), 알루미늄막(7), 티타늄막(9), 티타늄질화막(11)을 차례대로 적층한 구조로 되어 있다. 알루미늄 배선은 실리콘과 접착력이 우수하고, 전기 비저항 값이 타 금속에 비하여 낮다는 장점으로 인하여 금속배선 재료로 널리 사용되고 있는 재료이다. 그런데, 알루미늄 배선은 알루미늄 증착전에는 장벽금속층을 형성하고, 증착 후에는 반사방지막으로 사용되는 다른 금속과 함께 증착된다.Referring to FIG. 1, a series of metal films 13 are stacked on an interlayer insulating film 1 of a substrate. The metal film 13 has a structure in which a titanium film 3, a titanium nitride film 5, an aluminum film 7, a titanium film 9, and a titanium nitride film 11 are sequentially stacked by sputtering. Aluminum wiring is a material widely used as a metal wiring material because of its excellent adhesion with silicon and its low electrical resistivity compared to other metals. By the way, aluminum wiring forms a barrier metal layer before aluminum deposition, and is deposited together with other metal used as an antireflection film after deposition.

여기서, 상부층인 티타늄 질화막(11)은 금속막을 패터닝하기 위한 반사방지막으로 사용되며 스퍼터 증착방법으로 형성한다. 스퍼터(sputter) 증착방법은 외부에서 가해진 전압에 의해 저압의 아르곤(Ar) 기체를 이온화(플라즈마화)시켜서 기체 이온을 형성시키며, 이 기체 이온은 가속되어 음극 타겟(cathode target)을 때린다. 이때 기체 이온의 충돌에 의해 타겟의 원자가 튀어나와 모재(substrate)까지 기상 이동하여 모재 표면에서 응축 성장하게 되는데 이 과정이 스퍼터 증착 과정이다. 이러한 스퍼터 증착법은 화학증착방법에 비해 저온 공정이며, 공정방법이 단순하다는 장점으로 인하여 현재 소자의 금속막 증착법으로 가장 널리 이용되고 있다.Here, the titanium nitride film 11 as an upper layer is used as an antireflection film for patterning a metal film and is formed by a sputter deposition method. The sputter deposition method ionizes (plasmates) a low pressure argon (Ar) gas by an externally applied voltage to form gas ions, and the gas ions are accelerated to hit a cathode target. At this time, the atoms of the target are protruded by the collision of gas ions and vapor phase moves to the substrate to condense and grow on the surface of the substrate, which is a sputter deposition process. The sputter deposition method is a low temperature process compared to the chemical vapor deposition method, and because of the advantages of the simple process method is currently the most widely used as a metal film deposition method of the device.

티타늄 질화막(11)의 스퍼터 증착방법은 티타늄(Ti)의 금속 타겟과 질소(N2) 가스를 이용해서 티타늄(Ti)과 질소(N)의 결합을 유도하여 기판에서 증착되게 한다. 통상적으로 티타늄질화막의 스퍼터링 증착시에는 질소를 넣어주는 압력에 변화를 주지 않으며, 따라서 티타늄(Ti)과 질소(N)의 성분비가 일정하게 유지된다.In the sputter deposition method of the titanium nitride film 11, a metal target of titanium (Ti) and nitrogen (N 2 ) gas are used to induce bonding of titanium (Ti) and nitrogen (N) to be deposited on a substrate. In general, the sputtering deposition of the titanium nitride film does not change the pressure to put nitrogen, and thus the component ratio of titanium (Ti) and nitrogen (N) is kept constant.

상술한 티타늄 질화막(11)을 반사방지막으로 사용하면, 이후의 사진공정에서 하부반사방지막(BARC, bottom anti-reflective coating)을 별도로 형성하지 않아도 되는 장점이 있다. 하부반사방지막을 사용하는 경우에는 하부반사방지막이 열경화성 물질로 사진공정에서 이미 경화가 이루어져서, 식각공정에서 하부반사방지막이 잔유물(residue)로 남아 결함(defect)을 유발하여 수율을 저하시키게 된다.If the above-mentioned titanium nitride film 11 is used as an anti-reflection film, there is an advantage that a bottom anti-reflective coating (BARC) does not need to be separately formed in a subsequent photographic process. When the lower anti-reflection film is used, the lower anti-reflection film is hardened in the photolithography process as a thermosetting material, and the lower anti-reflection film remains as a residue in the etching process, causing defects, thereby lowering the yield.

도 2를 참조하면, 금속막 상에 감광막(15)을 도포하고 패턴이 형성된 레티클(미도시)을 통하여 감광막에 노광공정을 진행하면, 노광된 감광막(15a)에 광화학반응이 일으나게 된다. 노광 에너지에 의하여 PAG(Photo Active Generator)이 강산(H+) 이온을 발생시키는 단계와 PEG(Post Exposure Bake) 공정시 열에너지에 의하여 이미 발생된 강산 이온이 촉매역할을 하여 연쇄반응을 일으킴으로써, 폴리머(polymer)의 결합을 분해하여 저분자화시켜 현상공정시 용해작용을 촉진하게 된다. 그런데, 티타늄 질화막(11)의 표면부근에서 티타늄질화막의 질소(N) 성분이 수소이온(H+)과 반응하여 노광된 감광막(15a)의 하부에는 수소이온의 농도가 상대적으로 적어지는 현상이 발생한다.Referring to FIG. 2, when the photoresist film 15 is coated on a metal film and an exposure process is performed on the photoresist film through a patterned reticle (not shown), a photochemical reaction is performed on the exposed photoresist film 15a. The photo active generator (PAG) generates strong acid (H +) ions by exposure energy and the strong acid ions already generated by thermal energy during the post exposure bake (PEG) process act as a catalyst to cause a chain reaction. Decomposes the bonds of polymers and lowers them to promote dissolution during development. However, in the vicinity of the surface of the titanium nitride film 11, the nitrogen (N) component of the titanium nitride film reacts with the hydrogen ions (H +) to cause the concentration of hydrogen ions to decrease relatively in the lower portion of the exposed photosensitive film 15a. .

도 3을 참조하면, 현상공정을 진행하여 노광된 감광막(15a)을 제거하여 감광막 패턴(15b)을 형성한다. 이 때 감광막 패턴(15b)의 하부에는 감광막 풋팅(footing, 17)이 형성된다. 감광막 풋팅(17)은 티타늄 질화막(11)의 표면부근에서 상대적으로 낮은 수소이온(H+)에 기인하여 감광막이 잔류하여 발생한다.Referring to FIG. 3, the developing process is performed to remove the exposed photosensitive film 15a to form the photosensitive film pattern 15b. At this time, a photosensitive film footing 17 is formed below the photosensitive film pattern 15b. The photosensitive film footing 17 is generated due to residual photoresist due to relatively low hydrogen ions (H +) near the surface of the titanium nitride film 11.

도 4를 참조하면, 감광막 패턴(15b)을 식각마스크로 사용하여 금속막(13)을 패터닝하여 금속배선(13a)을 형성한다. 그런데, 감광막 패턴의 하부에 형성된 감광막 풋팅으로 인하여 금속배선의 폭은 공정규격(specification)에 비하여 커지게 된다.Referring to FIG. 4, the metal film 13 is patterned using the photosensitive film pattern 15b as an etching mask to form the metal wiring 13a. However, due to the photosensitive film put under the photoresist pattern, the width of the metal wiring becomes larger than the process specification.

이와 같이, 감광막 풋팅은 감광막의 상부의 한계치수(CD, Critical Dimension)와 하부의 한계치수 사이에 차이를 유발하여 공정규격을 제어하는데 문제를 야기시키므로, 식각공정에서 예상한 한계치수와 다르게 되는 문제점이 있다.As such, the photoresist film footing causes a difference between the critical dimension (CD) at the upper portion of the photoresist film and the lower limit dimension at the bottom, thereby causing a problem in controlling the process standard, which is different from the expected limit dimension in the etching process. There is this.

본 발명의 목적은 감광막 패턴의 풋팅 현상을 완화 또는 제거하여 한계치수의 손실이 없는 금속배선 및 그 형성방법을 제공하는 것이다. SUMMARY OF THE INVENTION An object of the present invention is to provide a metal wiring and a method of forming the same, by reducing or eliminating the putting phenomenon of the photoresist pattern.

본 발명에 따른 금속배선 형성방법은 기판 상에 티타늄질화막이 상부에 형성된 금속막을 형성하고, 금속막 상에 감광막을 도포한다. 감광막을 노광 현상하여 감광막 패턴을 형성하고, 감광막 패턴을 식각마스크로 사용하여 상기 금속막을 패터닝하며, 티타늄질화막을 형성하는 방법은 반응챔버에 넣어주는 질소(N2)와 아르곤(Ar)의 비율을 다르게 함으로써, 티티늄질화막의 하부의 질소 성분의 농도는 높이고, 상부의 질소 성분의 농도는 감소시키는 스퍼터 증착방법을 사용한다.In the method for forming metal wirings according to the present invention, a metal film having a titanium nitride film formed thereon is formed on a substrate, and a photosensitive film is coated on the metal film. The photoresist is exposed to light to form a photoresist pattern, the metal film is patterned using the photoresist pattern as an etching mask, and a method of forming a titanium nitride film is based on a ratio of nitrogen (N 2 ) and argon (Ar) to the reaction chamber. By making it different, the sputter deposition method which raises the density | concentration of the nitrogen component of the lower part of a titanium nitride film, and reduces the density | concentration of the nitrogen component of an upper part is used.

본 발명에 있어서, 금속막은 티타늄막, 티타늄질화막, 알루미늄막, 티타늄 막, 티타늄질화막을 차례대로 적층하여 형성할 수 있다.In the present invention, the metal film may be formed by sequentially stacking a titanium film, a titanium nitride film, an aluminum film, a titanium film, and a titanium nitride film.

또한, 본 발명에 따른 또 다른 금속배선의 형성방법은 기판 상에 티타늄질화막이 상부에 형성된 금속막을 형성하고, 티타늄질화막 상에 아르곤(Ar) 가스와 산소(O2) 가스를 일정한 비율로 챔버에 투입하여 티타늄산화막(TiO2)을 형성한다. 티타늄산화막의 상부에 감광막을 도포하고, 감광막을 노광 및 현상하여 감광막 패턴을 형성한 후에 감광막 패턴을 식각마스크로 사용하여 상기 금속막을 패터닝한다.In addition, another method for forming a metal wiring according to the present invention forms a metal film formed on top of a titanium nitride film on the substrate, argon (Ar) gas and oxygen (O 2 ) gas on the titanium nitride film in a constant ratio in the chamber. Injected to form a titanium oxide film (TiO 2 ). After the photoresist is coated on the titanium oxide film, the photoresist is exposed and developed to form a photoresist pattern, and the metal film is patterned using the photoresist pattern as an etching mask.

본 발명에 있어서, 금속막은 티타늄막, 티타늄질화막, 알루미늄막, 티타늄막, 티타늄질화막을 차례대로 적층하여 형성할 수 있으며, 티타늄산화막의 두께는 10nm 미만으로 형성하는 것이 바람직하다.In the present invention, the metal film may be formed by sequentially stacking a titanium film, a titanium nitride film, an aluminum film, a titanium film, and a titanium nitride film, and the thickness of the titanium oxide film is preferably less than 10 nm.

구현예Embodiment

이하 도면을 참조로 본 발명의 구현예에 대해 설명한다.Embodiments of the present invention will be described below with reference to the drawings.

(실시예1)Example 1

제1 실시예에서는 반사방지막으로 사용되는 티타늄 질화막을 증착할 때 증착되는 두께에 따라서 질소(N) 성분의 농도를 다르게 하는 방법이다.In the first embodiment, when the titanium nitride film used as the antireflection film is deposited, the concentration of the nitrogen (N) component is varied according to the thickness deposited.

도 5 및 도 6는 본 발명의 제1 실시예에 따른 금속배선의 형성방법을 나타내는 단면도들이다.5 and 6 are cross-sectional views illustrating a method of forming a metal wiring according to a first embodiment of the present invention.

도 5를 참조하면, 기판의 층간절연막(101) 상에 일련의 금속막(113)을 적층한다. 금속막(113)은 스퍼터링법을 사용하여 티타늄막(103), 티타늄질화막(105), 알루미늄막(107), 티타늄막(109), 티타늄질화막(111a)을 차례대로 적층한 구조로 형성된다. 반사방지막으로 사용되는 티타늄질화막(111a)의 스퍼터링에서는 티타늄(Ti)의 금속 타겟과 질소(N2) 가스를 이용해서 티타늄(Ti)과 질소(N)의 결합을 유도하여 기판에서 증착되게 한다. Referring to FIG. 5, a series of metal films 113 are stacked on the interlayer insulating film 101 of the substrate. The metal film 113 is formed in a structure in which a titanium film 103, a titanium nitride film 105, an aluminum film 107, a titanium film 109, and a titanium nitride film 111a are sequentially stacked by sputtering. In the sputtering of the titanium nitride film 111a used as the anti-reflection film, a metal target of titanium (Ti) and nitrogen (N 2 ) gas are used to induce a combination of titanium (Ti) and nitrogen (N) to be deposited on a substrate.

이 때, 티타늄질화막(TiN, 111a)의 스퍼터링 증착방법은 반응챔버에 넣어주는 질소(N2)와 아르곤(Ar)의 비율을 다르게 함으로써, 티타늄질화막의 조성비를 두께에 따라 다르게 형성한다. 즉, 하부의 티타늄막(109)과 접촉하는 부분은 질소 성분의 농도를 높이고, 감광막과 접촉하는 부분은 질소 성분의 농도를 감소시킨다.At this time, the sputtering deposition method of the titanium nitride film (TiN, 111a) by varying the ratio of nitrogen (N 2 ) and argon (Ar) to the reaction chamber, thereby forming a composition ratio of the titanium nitride film according to the thickness. That is, the portion in contact with the lower titanium film 109 increases the concentration of the nitrogen component, and the portion in contact with the photosensitive film decreases the concentration of the nitrogen component.

도 6을 참조하면, 표면의 질소성분이 상대적으로 낮게 증착된 티타늄질화막(111a)의 상부에 감광막(115)을 도포하고 통상의 방법으로 사진식각공정을 진행하여 금속배선(113a)을 형성한다. 감광막 풋팅현상이 발생하지 않으므로 금속배선의 한계치수를 제어할 수 있다.Referring to FIG. 6, the photoresist film 115 is coated on the titanium nitride film 111a having a relatively low nitrogen content on the surface thereof, and a metal etching film 113a is formed by performing a photolithography process in a conventional manner. Since no photoresist putting occurs, it is possible to control the limit of the metal wiring.

(실시예2)Example 2

제2 실시예는 반사방지막으로 사용되는 티타늄 질화막의 증착 후에 티타늄 질화막의 표면에 티타늄산화막을 증착하는 방법이다.The second embodiment is a method of depositing a titanium oxide film on the surface of the titanium nitride film after deposition of the titanium nitride film used as the antireflection film.

도 7 및 도 8은 본 발명의 제2 실시예에 따른 금속배선의 형성방법을 나타내는 단면도들이다.7 and 8 are cross-sectional views illustrating a method of forming a metal wiring according to a second embodiment of the present invention.

도 7을 참조하면, 기판의 층간절연막(101) 상에 일련의 금속막(113)을 적층한다. 금속막(113)은 스퍼터링법을 사용하여 티타늄막(103), 티타늄질화막(105), 알루미늄막(107), 티타늄막(109), 티타늄질화막(111b)을 차례대로 적층한 구조로 형성한다. 티타늄질화막(111b)을 형성한 후에는 아르곤(Ar) 가스와 산소(O2) 가스를 일정한 비율로 챔버에 투입하여 티타늄질화막의 표면에 티타늄산화막(TiO2, 114)을 형성한다. 즉, 타타늄질화막의 질소 성분이 감광막과 접촉하는 것을 사전에 티타늄산화막으로 차단한다. 이때,티타늄산화막의 두께는 10nm 미만으로 형성하여 티타늄산화막에 의한 반사도의 증가를 감소시키는 것이 바람직하다.Referring to FIG. 7, a series of metal films 113 are stacked on the interlayer insulating film 101 of the substrate. The metal film 113 is formed in a structure in which a titanium film 103, a titanium nitride film 105, an aluminum film 107, a titanium film 109, and a titanium nitride film 111b are sequentially stacked by sputtering. After forming the titanium nitride film 111b, argon (Ar) gas and oxygen (O 2 ) gas are introduced into the chamber at a constant ratio to form titanium oxide films (TiO 2 , 114) on the surface of the titanium nitride film. That is, the titanium oxide film blocks the contact of the nitrogen component of the titanium nitride film with the photosensitive film in advance. At this time, the thickness of the titanium oxide film is preferably less than 10nm to reduce the increase in reflectivity by the titanium oxide film.

도 8을 참조하면, 티타늄산화막(114)의 상부에 감광막(115)을 도포하고 통상의 방법으로 사진식각공정을 진행하여 금속배선(113b)을 형성한다. 감광막 풋팅현상이 발생하지 않으므로 금속배선의 한계치수를 제어할 수 있다.Referring to FIG. 8, the photosensitive film 115 is coated on the titanium oxide film 114, and a metal etching film 113b is formed by performing a photolithography process in a conventional manner. Since no photoresist putting occurs, it is possible to control the limit of the metal wiring.

지금까지 본 발명의 구체적인 구현예를 도면을 참조로 설명하였지만 이것은 본 발명이 속하는 기술분야에서 평균적 지식을 가진 자가 쉽게 이해할 수 있도록 하기 위한 것이고 발명의 기술적 범위를 제한하기 위한 것이 아니다. 따라서 본 발명의 기술적 범위는 특허청구범위에 기재된 사항에 의하여 정하여지며, 도면을 참조로 설명한 구현예는 본 발명의 기술적 사상과 범위 내에서 얼마든지 변형하거나 수정할 수 있다.Although specific embodiments of the present invention have been described with reference to the drawings, this is intended to be easily understood by those skilled in the art and is not intended to limit the technical scope of the present invention. Therefore, the technical scope of the present invention is determined by the matters described in the claims, and the embodiments described with reference to the drawings may be modified or modified as much as possible within the technical spirit and scope of the present invention.

본 발명에 따른 금속배선 형성방법은 반사방지막으로 사용되는 티타늄질화막의 증착에서 두께에 따라서 질소(N) 성분의 농도를 다르게 하여, 이후의 사진공정에서 감광막 풋팅현상이 발생하지 않도록하여 금속배선의 한계치수를 제어할 수 있다.In the method of forming the metal wiring according to the present invention, the concentration of the nitrogen (N) component is changed according to the thickness in the deposition of the titanium nitride film used as the anti-reflection film, so that the photoresist film putting phenomenon does not occur in the subsequent photographing process, thereby limiting the metal wiring. You can control the dimensions.

또한, 본 발명에 따른 금속배선의 형성방법은 티타늄 질화막의 증착 후에 티타늄 질화막의 표면에 티타늄산화막을 증착하여, 이후의 사진공정에서 감광막 풋팅현상이 발생하지 않도록하여 금속배선의 한계치수를 제어할 수 있다.In addition, the method for forming a metal wiring according to the present invention can control the limit dimension of the metal wiring by depositing a titanium oxide film on the surface of the titanium nitride film after the deposition of the titanium nitride film, so as not to cause the photosensitive film putting phenomenon in the subsequent photographic process. have.

Claims (6)

티타늄질화막을 포함하는 금속막을 기판 상에 형성하는 단계;Forming a metal film including a titanium nitride film on the substrate; 상기 금속막 상에 감광막을 도포하는 단계;Applying a photoresist film on the metal film; 상기 감광막을 노광 및 현상하여 감광막 패턴을 형성하는 단계; 및 Exposing and developing the photoresist to form a photoresist pattern; And 상기 감광막 패턴을 식각마스크로 사용하여 상기 금속막을 패터닝하는 단계를 포함하고,Patterning the metal film using the photoresist pattern as an etching mask, 상기 티타늄질화막은 상기 금속막의 상부에 형성되고, 아울러 상기 티타늄질화막은 그 상부에서의 질소 성분의 농도가 그 하부에서의 질소 성분의 농도보다 작도록 형성된 것을 특징으로 하는 금속배선 형성방법.And the titanium nitride film is formed on the upper portion of the metal film, and the titanium nitride film is formed such that the concentration of the nitrogen component in the upper portion is smaller than the concentration of the nitrogen component in the lower portion. 제1항에서,In claim 1, 상기 금속막은 티타늄막, 티타늄질화막, 알루미늄막, 티타늄막 및 티타늄질화막을 차례대로 적층하여 형성하는 것을 특징으로 하는 금속배선 형성방법.The metal film is a metal wiring forming method, characterized in that formed by laminating a titanium film, titanium nitride film, aluminum film, titanium film and titanium nitride film in order. 제1항에서,In claim 1, 상기 티타늄질화막은 스퍼터링법에 의해 형성되되, 형성되는 상기 티타늄질화막의 두께에 따라 반응챔버에 공급되는 질소(N2)와 아르곤(Ar)의 비율을 다르게 함으로써, 상기 티티늄질화막의 하부에서의 질소 성분의 농도는 높이고, 그 상부에 서의 질소 성분의 농도는 감소시킨 것을 특징으로 하는 금속배선 형성방법.The titanium nitride film is formed by a sputtering method, the nitrogen in the lower portion of the titanium nitride film by varying the ratio of nitrogen (N 2 ) and argon (Ar) supplied to the reaction chamber according to the thickness of the titanium nitride film is formed. A metal wiring forming method, wherein the concentration of the component is increased and the concentration of the nitrogen component at the top thereof is reduced. 티타늄질화막이 상부에 형성된 금속막을 반도체 기판 상에 형성하는 단계;Forming a metal film having a titanium nitride film formed thereon on a semiconductor substrate; 상기 티타늄질화막 상에 아르곤(Ar) 가스 및 산소(O2) 가스를 일정한 비율로 챔버에 투입하여 티타늄산화막(TiO2)을 형성하는 단계;Argon (Ar) gas and oxygen (O 2 ) gas are introduced into the chamber at a predetermined ratio on the titanium nitride film to form a titanium oxide film (TiO 2 ); 상기 티타늄산화막의 상부에 감광막을 도포하는 단계;Applying a photoresist film on top of the titanium oxide film; 상기 감광막을 노광 및 현상하여 감광막 패턴을 형성하는 단계; 및 Exposing and developing the photoresist to form a photoresist pattern; And 상기 감광막 패턴을 식각 마스크로 사용하여 상기 금속막을 패터닝하는 단계를 포함하는 것을 특징으로 하는 금속배선 형성방법.And patterning the metal layer using the photoresist pattern as an etch mask. 제4항에서,In claim 4, 상기 금속막은 티타늄막, 티타늄질화막, 알루미늄막, 티타늄막, 티타늄질화막을 차례대로 적층하여 형성하는 것을 특징으로 하는 금속배선 형성방법.The metal film is a metal wiring forming method, characterized in that formed by laminating a titanium film, titanium nitride film, aluminum film, titanium film, titanium nitride film in order. 제4항에서,In claim 4, 상기 티타늄산화막의 두께는 10nm 미만으로 형성되는 것을 특징으로 하는 금속배선 형성방법.The thickness of the titanium oxide film is formed metal wiring method, characterized in that formed less than 10nm.
KR1020050061816A 2005-07-08 2005-07-08 Metal line and method for forming the same KR100663015B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050061816A KR100663015B1 (en) 2005-07-08 2005-07-08 Metal line and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050061816A KR100663015B1 (en) 2005-07-08 2005-07-08 Metal line and method for forming the same

Publications (1)

Publication Number Publication Date
KR100663015B1 true KR100663015B1 (en) 2006-12-28

Family

ID=37815916

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050061816A KR100663015B1 (en) 2005-07-08 2005-07-08 Metal line and method for forming the same

Country Status (1)

Country Link
KR (1) KR100663015B1 (en)

Similar Documents

Publication Publication Date Title
US5710067A (en) Silicon oxime film
KR102108627B1 (en) Pattern forming method
KR20060064650A (en) Techniques for patterning features in semiconductor devices
JP3003657B2 (en) Method for manufacturing semiconductor device
US20020119612A1 (en) Manufacturing method of semiconductor device using mask pattern having high etching resistance
US5369061A (en) Method of producing semiconductor device using a hydrogen-enriched layer
JP2010093264A (en) Method for forming fine pattern of semiconductor element
JP3504247B2 (en) Manufacturing method of semiconductor device
US6258725B1 (en) Method for forming metal line of semiconductor device by (TiA1)N anti-reflective coating layer
KR100293975B1 (en) Dry etching process and a fabrication process of a semiconductor device using such a dry etching process
US5665641A (en) Method to prevent formation of defects during multilayer interconnect processing
JPH0786244A (en) Dry etching method
US6989219B2 (en) Hardmask/barrier layer for dry etching chrome films and improving post develop resist profiles on photomasks
US6806021B2 (en) Method for forming a pattern and method of manufacturing semiconductor device
US20030114012A1 (en) Method for forming pattern using argon fluoride photolithography
US6057240A (en) Aqueous surfactant solution method for stripping metal plasma etch deposited oxidized metal impregnated polymer residue layers from patterned metal layers
KR100663015B1 (en) Metal line and method for forming the same
JP3279016B2 (en) Dry etching method
JPH03174724A (en) Method of forming pattern
JPH0794467A (en) Dry etching method
US6162586A (en) Method for substantially preventing footings in chemically amplified deep ultra violet photoresist layers
JP3185871B2 (en) Method for manufacturing semiconductor device
JPH11194499A (en) Production of semiconductor device
US20040121580A1 (en) Method for fabricating metal line of semiconductor device
US20050272232A1 (en) Method for forming gate electrode of semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111121

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee