KR100662003B1 - Manufacturing method of titanium oxide film - Google Patents

Manufacturing method of titanium oxide film Download PDF

Info

Publication number
KR100662003B1
KR100662003B1 KR1020040061819A KR20040061819A KR100662003B1 KR 100662003 B1 KR100662003 B1 KR 100662003B1 KR 1020040061819 A KR1020040061819 A KR 1020040061819A KR 20040061819 A KR20040061819 A KR 20040061819A KR 100662003 B1 KR100662003 B1 KR 100662003B1
Authority
KR
South Korea
Prior art keywords
titanium oxide
oxide film
titanium
precursor
chamber
Prior art date
Application number
KR1020040061819A
Other languages
Korean (ko)
Other versions
KR20060013044A (en
Inventor
김도형
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR1020040061819A priority Critical patent/KR100662003B1/en
Publication of KR20060013044A publication Critical patent/KR20060013044A/en
Application granted granted Critical
Publication of KR100662003B1 publication Critical patent/KR100662003B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 화학기상증착법을 이용하여 광촉매용 티타늄 산화막(TiOx)을 형성하는 방법에 관한 것이다. 본 발명에 따르면 화학기상증착용 챔버 내부로 기판을 제공하고, 챔버에 부착된 버블러에 준비된 전구체에 기화용 가스를 주입하여 전구체를 기체 상태로 만들어 챔버 내로 공급하고, 기체상태의 전구체와 반응가스를 반응시켜 기판에 C와 N이 인-시츄로 도핑된 TiOx를 증착한다. 이때 사용되는 전구체는 TDMAT(tetrakis dimethylamido Titanium), TDEAT(tetrakis diethylamido Titanium), TEMAT(tetrakis ethylmethylamido Titanium) 중에서 선택된 하나인 것을 특징으로 한다. 이에 따라, 화학기상증착법으로 티타늄 산화막을 형성함과 동시에 인-시츄 방법으로 C, N 등을 티타늄 산화막에 도핑시켜 가시광선 영역에서도 광학활성도가 우수한 티타늄 산화막을 얻을 수 있다. The present invention relates to a method of forming a titanium oxide film (TiOx) for photocatalyst using chemical vapor deposition. According to the present invention, a substrate is provided in a chamber for chemical vapor deposition, a vaporization gas is injected into a precursor prepared in a bubbler attached to the chamber, the precursor is made into a gaseous state, and the precursor is supplied into the chamber. React to deposit TiOx doped with C and N in-situ on the substrate. At this time, the precursor used is characterized in that one selected from tetrakis dimethylamido Titanium (TDMAT), tetrakis diethylamido Titanium (TDEAT), tetrakis ethylmethylamido Titanium (TEMAT). Accordingly, the titanium oxide film is formed by chemical vapor deposition, and at the same time, the titanium oxide film is doped with C and N by an in-situ method to obtain a titanium oxide film having excellent optical activity even in the visible light region.

광촉매, 티타늄 산화막, 인-시츄, 가시광선, 광활성Photocatalyst, titanium oxide, in-situ, visible light, photoactive

Description

티타늄 산화막 제조방법{MANUFACTURING METHOD OF TITANIUM OXIDE FILM}Titanium oxide film manufacturing method {MANUFACTURING METHOD OF TITANIUM OXIDE FILM}

도 1은 본 발명에 따른 티타늄 산화막의 제조공정 순서도1 is a flow chart of the manufacturing process of the titanium oxide film according to the present invention

도 2a는 종래기술에 따라 제조된 티타늄 산화막의 AES 결과Figure 2a is an AES result of titanium oxide film prepared according to the prior art

도 2b는 본 발명에 따라 제조된 티타늄 산화막의 AES 결과2b is an AES result of the titanium oxide film prepared according to the present invention

본 발명은 화학기상증착법을 이용하여 광촉매용 티타늄 산화막(TiOx)을 형성하는 방법에 관한 것으로, 보다 상세하게는 소스 물질인 전구체로 TDMAT(tetrakis dimethylamido Titanium), TDEAT(tetrakis diethylamido Titanium) 또는 TEMAT(tetrakis ethylmethylamido Titanium)을 사용하여 C와 N이 도핑된 티타늄 산화막을 인-시츄(in-situ)로 제조하는 방법에 관한 것이다.The present invention relates to a method for forming a titanium oxide film (TiOx) for photocatalyst using chemical vapor deposition, and more particularly, as a precursor material, TDMAT (tetrakis dimethylamido Titanium), TDEAT (tetrakis diethylamido Titanium) or TEMAT (tetrakis). It relates to a method for producing C and N doped titanium oxide film in-situ using ethylmethylamido Titanium.

일반적으로 광촉매용 티타늄 산화막은 화학증착법, 졸-겔법, 스퍼터링을 포함한 물리증착법을 이용하여 제조된다. 이들 중 화학증착법을 이용할 경우 도포성이 우수한 박막을 얻을 수 있어 많이 사용되고 있다. 티타늄 산화막의 화학증착법에 사용되는 전구체는 TiCl4, TiI4, 그 외 Ti 계열의 알콕사이드가 있으며, 반응가 스로는 산화제인 물, 산소, 공기, 오존 등이 사용된다. In general, a titanium oxide film for photocatalysts is manufactured using a chemical vapor deposition method, a sol-gel method, and a physical vapor deposition method including sputtering. Among them, when the chemical vapor deposition method is used, it is possible to obtain a thin film having excellent coating properties. Precursors used in the chemical vapor deposition method of the titanium oxide film include TiCl 4 , TiI 4 , and other Ti-based alkoxides. Reaction gases include oxygen, water, oxygen, air, and ozone.

티타늄 산화막을 광학촉매로 사용하기 위해서는 광촉매의 활성도가 우수한 아나타제 구조를 얻기 위하여 열처리를 해야 한다. 그러나 이러한 열처리 과정을 거쳐 만들어진 티타늄 산화막도, 화학량적인(stoichiometric) 순수한 TiO2인 경우 UV 영역에서만 광촉매의 활성이 이루어지기 때문에 상용화에 큰 걸림돌되고 있다. In order to use the titanium oxide film as an optical catalyst, heat treatment is required to obtain an anatase structure having excellent photocatalytic activity. However, the titanium oxide film formed through such a heat treatment process is a major obstacle to commercialization because the photocatalytic activity is performed only in the UV region in the case of stoichiometric pure TiO 2 .

이에 따라, 가시광선에서도 활성 가능한 광촉매의 특성을 얻기 위하여 다양한 방법들이 시도되고 있으며, TiO2에 불순물을 도핑하여 가시광선 영역에서의 광학활성을 높이는 방법이 이들 중 하나이다.Accordingly, various methods have been attempted to obtain characteristics of photocatalysts that can be activated in visible light, and one of them is a method of increasing optical activity in the visible light region by doping TiO 2 with impurities.

Justicia 등은 이질 물질을 TiO2에 도핑하여 광촉매 활성을 극대화하는 대신 의도적으로 TiO2를산소 결핍인 상태(TiOx(x<2))로 만들었다. 파장에 따른 흡수율(absorption coefficient) 결과를 일반적인 TiO2와 비교하면 TiOx의 흡수 곡선이 가시광선 영역에서 증가하는 것을 확인할 수 있었다.(I. Justicia et al, Adv. Mater., 14, p1399 October 2) Shahed 그룹에서는 탄소를 태우는 방법으로 TiO2에 탄소를 도핑하는 공정을 연구하였으며, 탄소가 도핑된 CM(chemicaly modified) TiO2는 535nm(2.32eV) 이하의 파장에서 광흡수가 일어남을 발표하였다. 또한, Shahed 그룹에서는 S이 도핑된 TiO2를 제조한 후 메틸렌블루 분해속도로 광촉매의 활성을 평가하였는데 UV 파장에서는 순수 TiO2가 더 좋은 활성을 보였으나 440nm보다 더 긴 파장에서는 S이 도핑된 TiO2만이 활성을 보였다.(T. Ohno et al. Chem. Lett., 32,p364 (2003)) Asahi 그룹에서는 C, N, F, P, S을 TiO2에 도핑시켜 이중 N 도핑이 가장 효과적이며, 메틸렌블루의 분해 속도로 측정된 광촉매 활성정도 평가에 따르면 N 도핑된 TiO2는 500nm 이하에서도 활성됨을 발표한 바 있다. (R. Asahi et al, Science, 293, p269 (2001))Justicia et al. Intentionally made TiO 2 oxygen-deficient (TiOx (x <2)) instead of maximizing photocatalytic activity by doping the heterogeneous material into TiO 2 . Comparing the results of absorption coefficient with wavelength compared with general TiO 2 , it was confirmed that the absorption curve of TiOx increased in the visible region (I. Justicia et al, Adv. Mater., 14, p1399 October 2). The Shahed group studied carbon doping in TiO 2 by burning carbon, and reported that carbon-doped chemically modified (CM) TiO 2 produced light absorption at wavelengths below 535 nm (2.32 eV). In addition, the Shahed group evaluated the photocatalytic activity of m-doped TiO 2 after S-doped TiO 2 was prepared. Pure TiO 2 showed better activity at UV wavelengths, but S-doped TiO at longer wavelengths than 440 nm. Only 2 showed activity (T. Ohno et al. Chem. Lett., 32, p364 (2003)). In the Asahi group, double N doping was most effective by doping C, N, F, P, S to TiO 2 . According to the evaluation of photocatalytic activity measured by the decomposition rate of methylene blue, N-doped TiO 2 was found to be active even below 500 nm. (R. Asahi et al, Science, 293, p269 (2001))

그러나, 이들 종래의 방법에 따르면, 그 제조 방법이 인-시츄로 이루어지지 않고 엑-시츄(ex-situ)로 이루어지는 이유 즉, TiO2 막 증착 후 도핑 단계를 거치는 2단계로 구성이 되어 있기 때문에 제조 공정이 매우 복잡한 문제가 있었다.However, according to these conventional methods, the manufacturing method is not made in-situ but is made of ex-situ, that is, since it is composed of two steps of going through the doping step after the TiO 2 film deposition. The manufacturing process had a very complicated problem.

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로, 화학기상증착법(chemical vapor deposition)을 이용한 인-시츄 방법으로 C, N 등을 TiO2에 도핑시킴에 따라 가시광선 영역에서도 광학 활성도가 우수한 티타늄 산화막을 얻을 수 있는 티타늄 산화막의 제조방법을 제공하기 위한 것이다.The present invention has been made to solve the problems of the prior art as described above, in the in-situ method using chemical vapor deposition (chemical vapor deposition) by doping C, N and the like in TiO 2 in the visible light region optical An object of the present invention is to provide a method for producing a titanium oxide film which can obtain a titanium oxide film having excellent activity.

본 발명의 다른 목적은 부가적인 공정이 없이 C, N 등의 불순물이 인-시츄로 도핑된 티타늄 산화막의 광촉매를 제공하기 위한 것이다.Another object of the present invention is to provide a photocatalyst of a titanium oxide film doped in-situ with impurities such as C and N without additional processes.

상기의 목적을 달성하기 위한 본 발명에 따른 티타늄 산화막의 제조방법은, 화학기상증착법을 이용하여 티타늄 산화막을 형성하는 티타늄 산화막 형성방법에 있어서, 화학기상증착용 챔버 내부로 기판을 제공하는 단계; 상기 챔버에 부착된 버블러에 준비된 전구체에 He, Ar, N2, H2 및 이들의 혼합가스 중에서 선택된 어느 하나의 기화용 가스를 제공하여 상기 전구체를 기체 상태로 만들어 상기 챔버 내로 공급하는 단계; 상기 챔버 내로 O2,O3, H2O, H2O2, He, Ar, N2, H2, NH3 및 이들의 혼합가스 중에서 선택된 어느 하나의 반응가스를 공급하는 단계; 및 상기 기체상태의 전구체와 반응가스를 반응시켜 상기 기판에 C와 N이 인시츄로 도핑된 티타늄 산화막을 증착하는 단계를 포함하고; 상기 전구체는 TDMAT(tetrakis dimethylamido Titanium), TDEAT(tetrakis diethylamido Titanium), TEMAT(tetrakis ethylmethylamido Titanium) 중에서 선택된 하나인 것을 특징으로 한다.Method for producing a titanium oxide film according to the present invention for achieving the above object, in the method of forming a titanium oxide film using a chemical vapor deposition method, comprising the steps of: providing a substrate in the chamber for chemical vapor deposition; Supplying any one vaporizing gas selected from He, Ar, N 2 , H 2, and a mixed gas thereof to a precursor prepared in a bubbler attached to the chamber to make the precursor into a gaseous state and supply it into the chamber; Supplying one of the reaction gases selected from among O 2 , O 3 , H 2 O, H 2 O 2 , He, Ar, N 2 , H 2 , NH 3, and a mixture thereof into the chamber; And depositing a titanium oxide film doped with C and N in situ on the substrate by reacting the gaseous precursor with a reaction gas; The precursor is characterized in that one selected from tetrakis dimethylamido Titanium (TDMAT), tetrakis diethylamido Titanium (TDEAT), tetrakis ethylmethylamido Titanium (TEMAT).

본 발명의 이와 같은 방법에 따르면, 화학기상증착법(chemical vapor deposition)으로 티타늄 산화막을 형성함과 동시에 인-시츄 방법으로 C, N 등을 TiO2에 도핑시킴에 따라 가시광선 영역에서도 광학활성도가 우수한 티타늄 산화막을 얻을 수 있다. According to the method of the present invention, the titanium oxide film is formed by chemical vapor deposition, and the doping of C, N, and the like into TiO 2 by the in-situ method provides excellent optical activity even in the visible region. A titanium oxide film can be obtained.

상기 반응가스는 O2, O3, H2O, H2O2, He, Ar, N2, H2 및 NH3 및 이들의 혼합가스 중에서 선택된 것이며, 바람직하게는 반응가스를 플라즈마를 이용하여 활성화시킨다. The reaction gas is selected from O 2 , O 3 , H 2 O, H 2 O 2 , He, Ar, N 2 , H 2 and NH 3, and a mixture thereof, and preferably, the reaction gas is plasma Activate it.

또한, 증착단계에서 기판의 온도는 25∼800℃이고, 챔버의 압력은 0.001∼760Torr이며, 버블러에 준비된 전구체의 온도는 25∼200℃인 것을 특징으로 한다. 화학기상증착법은 열 CVD 또는 플라즈마 CVD 방식이다.In addition, the substrate temperature in the deposition step is 25 ~ 800 ℃, the pressure of the chamber is 0.001 ~ 760 Torr, characterized in that the temperature of the precursor prepared in the bubbler is 25 ~ 200 ℃. Chemical vapor deposition is thermal CVD or plasma CVD.

또한 증착된 TiOx 막을 열처리하여 결정성을 증대시키는 단계를 더 포함하는 것을 특징으로 한다. 열처리 온도는 250-850℃이며, 열처리 분위기의 가스는 O2,O3, H2O, H2O2, He, Ar, N2, H2 및 NH3, 및 이들의 혼합가스 중 어느 하나인 것을 특징으로 한다.The method may further include increasing the crystallinity by heat-treating the deposited TiOx film. The heat treatment temperature is 250-850 ℃, the gas of the heat treatment atmosphere is one of O 2 , O 3 , H 2 O, H 2 O 2 , He, Ar, N 2 , H 2 and NH 3 , and a mixture of these It is characterized by that.

이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예의 티타늄 산화막의 제조방법에 대하여 설명한다. 본 실시 예는 본 발명의 권리범위를 한정하는 것이 아니고, 단지 예시로 제시된 것이다.Hereinafter, a method of manufacturing a titanium oxide film according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings. This embodiment is not intended to limit the scope of the invention, but is presented by way of example only.

본 발명에 따른 티타늄 산화막은 화학기상증착법으로 제조되며, 제조 공정의 순서는 도 1과 같다. The titanium oxide film according to the present invention is manufactured by chemical vapor deposition, and the manufacturing process is as shown in FIG. 1.

먼저, 제1 단계(S11)로 화학기상증착을 위한 챔버가 장착된 MOCVD(Metal Organic Chemical Vapor Deposition) 증착장치를 준비하고 챔버의 내부에 박막 형성용 기판을 놓는다. 챔버 내부의 기판 배면 또는 그 주위에는 기판을 가열하기 위한 가열장치가 배치되며, 바람직하게는 가열장치는 열선으로 구성된 히터이다.First, in a first step S11, a MOCVD deposition apparatus equipped with a chamber for chemical vapor deposition is prepared, and a substrate for forming a thin film is placed inside the chamber. A heating device for heating the substrate is disposed on or behind the substrate inside the chamber, and the heating device is preferably a heater composed of a hot wire.

제2 단계로(S12) CVD 챔버에 부착된 버블러에 CVD 소스 물질의 전구체를 담아 준비하고, 버블러에 기화용 가스를 공급하여 전구체를 기체 상태로 만들어 CVD 챔버 내로 공급한다. 전구체는 TDMAT(tetrakis dimethylamido Titanium), TDEAT(tetrakis diethylamido Titanium), TEMAT(tetrakis ethylmethylamido Titanium) 중 하나가 사용되며, 버블러 내부의 온도가 25∼200℃로 되도록 가열하여 전구체가 상기의 온도로 항온을 유지하도록 한다. 한편, 버블러에 공급되는 기화용 가스는 He, Ar, N2, H2 및 이들의 혼합가스이다. In a second step (S12), a precursor of the CVD source material is prepared by preparing a bubbler attached to the CVD chamber, and the vaporizing gas is supplied to the bubbler to make the precursor into a gaseous state and then supplied into the CVD chamber. Precursor is one of tetrakis dimethylamido Titanium (TDMAT), tetrakis diethylamido Titanium (TDEAT), and tetrakis ethylmethylamido Titanium (TEMAT). Keep it. On the other hand, the gas for vaporization is supplied to the bubbler is He, Ar, N 2, H 2, and their mixture gas.

제3 단계(S13)로 전술한 버블러에서 기화된 기체 상태의 전구체를 반응가스 를 반응시켜 기판 상에 티타늄 산화막을 증착한다. 반응가스는 O2, O3, H2O, H2O2, He, Ar, N2, H2, NH3 및 이들의 혼합가스 중에서 선택된 것이다. 바람직하게는 이들 반응가스를 플라즈마를 이용하여 활성화시키면 보다 효과적으로 반응하게 된다. 기판은 25∼800℃가 유지되도록 가열하며, 챔버 내부의 압력은 0.001∼760Torr이 되도록 한다. In the third step S13, a titanium oxide film is deposited on the substrate by reacting the gaseous precursor in the gaseous state in the bubbler with the reaction gas. The reaction gas is selected from O 2 , O 3 , H 2 O, H 2 O 2 , He, Ar, N 2 , H 2 , NH 3, and mixtures thereof. Preferably, when these reaction gases are activated by using plasma, they react more effectively. The substrate is heated to maintain 25-800 ° C. and the pressure inside the chamber is 0.001-760 Torr.

또한, CVD 반응을 유도하는 에너지 원으로는 열 혹은 플라즈마이며, 이에 따른 장치는 열(thermal) CVD 혹은 플라즈마 CVD이다. In addition, the energy source that induces the CVD reaction is heat or plasma, and thus the apparatus is thermal CVD or plasma CVD.

이에 따라 기판 위에 증착된 티타늄 산화막은 C와 N이 도핑된 TiOx(x<2.0) 즉, TiOxCyNz으로 인-시츄 방식으로 불순물이 도핑된 티타늄 산화막을 얻는 것이 가능하다. Accordingly, it is possible to obtain a titanium oxide film doped with impurities in an in-situ manner with TiOx (x <2.0) doped with C and N, that is, TiOxCyNz.

이렇게 제조된 티타늄 산화막은 경우에 따라서는 열처리(어닐링)하여 결정성을 증대시켜야 한다.(제4 단계(S14)) 특히, 티타늄 산화막이 저온에서 증착된 경우, 결정성이 좋지 않으므로 이를 해결하기 위하여 추가하는 것이다. 열처리 온도는 100℃ 이상이며 바람직하게는 250-850℃이다. 열처리 분위기는 O2,O3, H2 O, H2O2, He, Ar, N2, H2 , NH3 및 이들의 혼합가스이다. In this case, the titanium oxide film thus prepared must be heat-treated (annealed) in some cases to increase crystallinity. To add. Heat treatment temperature is 100 degreeC or more, Preferably it is 250-850 degreeC. The heat treatment atmosphere is O 2 , O 3 , H 2 O, H 2 O 2 , He, Ar, N 2 , H 2 , NH 3, and a mixed gas thereof.

도 2는 종래 기술 및 본 발명에 따라 제조된 티타늄 산화막의 Auger Electron Spectroscopy(AES) 결과이다. 도 2a는 종래기술의 AES이고 도 2b는 본 발명의 AES 결과이다. 종래 기술에서는 C, N이 관찰되지 않으나, 본 발명에서는 TiOx 박막이 형성된 부분에 C, N 등이 관찰되고 있다. 이에 따라 C, N이 인-시츄 로 성장되어 있음을 알 수 있다. 즉, 별도의 부가적인 도핑 공정을 추가하지 않아도 C와 N이 도핑된 티타늄 산화막을 얻을 수 있다.Figure 2 is a Auger Electron Spectroscopy (AES) results of the titanium oxide film prepared according to the prior art and the present invention. 2A is a prior art AES and FIG. 2B is an AES result of the present invention. In the prior art, C and N are not observed. In the present invention, C and N are observed in the TiOx thin film. Accordingly, it can be seen that C and N are grown in-situ. That is, it is possible to obtain a titanium oxide film doped with C and N without adding an additional doping process.

이상에서 상세히 설명한 바와 같이, 본 발명에 따르면 화학기상증착법으로 티타늄 산화막을 형성함과 동시에 인-시츄 방법으로 C, N 등을 TiO2에 도핑시킴에 따라 질소와 탄소의 불순물 주입을 위한 부가적인 공정이 없이도 가시광선 영역에서도 광학활성도가 우수한 티타늄 산화막을 얻을 수 있다. As described in detail above, according to the present invention, an additional process for implanting impurities of nitrogen and carbon by forming a titanium oxide film by chemical vapor deposition and simultaneously doping C, N, and the like into TiO 2 by an in-situ method Without this, a titanium oxide film having excellent optical activity in the visible light region can be obtained.

앞에서 설명되고 도면에 도시된 본 발명의 실시예는 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안 된다. 본 발명의 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 변경하는 것이 가능하므로, 개량 및 변경은 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호 범위에 속하게 될 것이다.Embodiments of the present invention described above and illustrated in the drawings should not be construed as limiting the technical spirit of the present invention. Those skilled in the art of the present invention can change and change the technical spirit of the present invention in various forms, and the improvement and modification are within the protection scope of the present invention as long as it is obvious to those skilled in the art. Will belong.

Claims (11)

화학기상증착법을 이용하여 티타늄 산화막을 형성하는 티타늄 산화막 형성방법에 있어서,In the titanium oxide film forming method of forming a titanium oxide film using chemical vapor deposition, (a) 화학기상증착용 챔버 내부로 기판을 제공하는 단계; (a) providing a substrate into a chemical vapor deposition chamber; (b) 상기 챔버에 부착된 버블러에 준비된 전구체에 He, Ar, N2, H2 및 이들의 혼합가스 중에서 선택된 어느 하나의 기화용 가스를 제공하여 상기 전구체를 기체 상태로 만들어 상기 챔버 내로 공급하는 단계; 및(b) providing a vaporizing gas selected from He, Ar, N 2 , H 2, and a mixed gas thereof to a precursor prepared in a bubbler attached to the chamber to make the precursor into a gaseous state and supply it into the chamber; Doing; And (c) 상기 챔버 내로 O2,O3, H2O, H2O2, He, Ar, N2, H2, NH3 및 이들의 혼합가스 중에서 선택된 어느 하나의 반응가스를 공급하는 단계; 및(c) supplying a reaction gas selected from among O 2 , O 3 , H 2 O, H 2 O 2 , He, Ar, N 2 , H 2 , NH 3, and a mixture thereof to the chamber; And (d) 상기 기체상태의 전구체와 반응가스를 반응시켜 상기 기판에 C와 N이 인시츄로 도핑된 티타늄 산화막을 증착하는 단계를 포함하고;(d) reacting the gaseous precursor with a reaction gas to deposit a titanium oxide film doped with C and N in situ on the substrate; 상기 전구체는 TDMAT(tetrakis dimethylamido Titanium), TDEAT(tetrakis diethylamido Titanium) 및 TEMAT(tetrakis ethylmethylamido Titanium) 중에서 선택된 하나인 것을 특징으로 하는 티타늄 산화막 형성방법.The precursor is a titanium oxide film forming method characterized in that the one selected from TDMAT (tetrakis dimethylamido Titanium), TDEAT (tetrakis diethylamido Titanium) and TEMAT (tetrakis ethylmethylamido Titanium). 삭제delete 제1항에 있어서, The method of claim 1, 상기 반응가스를 플라즈마를 이용하여 활성화시킨 것 특징으로 하는 티타늄 산화막 형성방법. The method of claim 1, wherein the reaction gas is activated by using a plasma. 삭제delete 제1항에 있어서, The method of claim 1, (d) 단계에서 기판의 온도는 25∼800℃이고, 챔버의 압력은 0.001∼760Torr인 것을 특징으로 하는 티타늄 산화막 형성방법.In step (d), the temperature of the substrate is 25 to 800 ℃, the chamber pressure is 0.001 to 760 Torr, characterized in that the titanium oxide film forming method. 제1항에 있어서, The method of claim 1, 상기 버블러에 준비된 전구체의 온도는 25∼200℃인 것을 특징으로 하는 티타늄 산화막 형성방법.Titanium oxide film forming method characterized in that the temperature of the precursor prepared in the bubbler is 25 ~ 200 ℃. 제1항에 있어서, The method of claim 1, 상기 화학기상증착법은 열 CVD 또는 플라즈마 CVD 방식인 것을 특징으로 하는 티타늄 산화막 형성방법.The chemical vapor deposition method is a titanium oxide film forming method characterized in that the thermal CVD or plasma CVD method. 제1항에 있어서,The method of claim 1, (d) 단계에서 증착된 티타늄 산화막을 열처리하여 결정성을 증대시키는 단계를 더 포함하는 것을 특징으로 하는 티타늄 산화막 형성방법.The method of claim 1, further comprising the step of heat-treating the titanium oxide film deposited in step (d) to increase crystallinity. 제8항에 있어서, The method of claim 8, 상기 열처리 온도는 250∼850℃인 것을 특징으로 하는 티타늄 산화막 형성방법.The heat treatment temperature is 250 to 850 ℃ titanium oxide film forming method characterized in that. 제8항에 있어서, The method of claim 8, 상기 열처리 분위기는 O2,O3, H2O, H2O2, He, Ar, N2, H2, NH3 및 이들의 혼합가스 중 어느 하나인 것을 특징으로 하는 티타늄 산화막 형성방법.The heat treatment atmosphere is any one of O 2 , O 3 , H 2 O, H 2 O 2 , He, Ar, N 2 , H 2 , NH 3 and a mixture thereof. 제1항 내지 제10항 중 어느 한 항의 방법에 의해 제조된 것을 특징으로 하는 티타늄 산화막 광촉매.A titanium oxide photocatalyst produced by the method of any one of claims 1 to 10.
KR1020040061819A 2004-08-05 2004-08-05 Manufacturing method of titanium oxide film KR100662003B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040061819A KR100662003B1 (en) 2004-08-05 2004-08-05 Manufacturing method of titanium oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040061819A KR100662003B1 (en) 2004-08-05 2004-08-05 Manufacturing method of titanium oxide film

Publications (2)

Publication Number Publication Date
KR20060013044A KR20060013044A (en) 2006-02-09
KR100662003B1 true KR100662003B1 (en) 2006-12-27

Family

ID=37122523

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040061819A KR100662003B1 (en) 2004-08-05 2004-08-05 Manufacturing method of titanium oxide film

Country Status (1)

Country Link
KR (1) KR100662003B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101030252B1 (en) 2010-10-20 2011-04-22 한국과학기술연구원 Apparatus for fabricating nano-catalyst
KR101597585B1 (en) 2014-08-18 2016-02-25 전남대학교산학협력단 Manafacturing method of photoactive titanium oxide

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100757707B1 (en) * 2006-04-14 2007-09-13 주식회사 아토 Method of depositing titanium oxide film using gas separation type showerhead
KR101154379B1 (en) * 2009-12-02 2012-06-15 성균관대학교산학협력단 Oxide titanium nano structure with ultrahydrophilic surface modification by oxygen plasma and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6313035B1 (en) * 1996-05-31 2001-11-06 Micron Technology, Inc. Chemical vapor deposition using organometallic precursors
KR20030062049A (en) * 2002-01-16 2003-07-23 한국야금 주식회사 Method to improve wear resistance and toughness of coated cutting tools

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6313035B1 (en) * 1996-05-31 2001-11-06 Micron Technology, Inc. Chemical vapor deposition using organometallic precursors
KR20030062049A (en) * 2002-01-16 2003-07-23 한국야금 주식회사 Method to improve wear resistance and toughness of coated cutting tools

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1020030062049 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101030252B1 (en) 2010-10-20 2011-04-22 한국과학기술연구원 Apparatus for fabricating nano-catalyst
KR101597585B1 (en) 2014-08-18 2016-02-25 전남대학교산학협력단 Manafacturing method of photoactive titanium oxide

Also Published As

Publication number Publication date
KR20060013044A (en) 2006-02-09

Similar Documents

Publication Publication Date Title
Vehkamäki et al. Growth of SrTiO3 and BaTiO3 thin films by atomic layer deposition
US6861351B2 (en) Low-resistance contact to silicon having a titanium silicide interface and an amorphous titanium carbonitride barrier layer
KR100468847B1 (en) Chemical vapor deposition method using alcohols for forming metal-oxide thin film
US8592294B2 (en) High temperature atomic layer deposition of dielectric oxides
Lim et al. Characteristics of TiOx films prepared by chemical vapor deposition using tetrakis-dimethyl-amido-titanium and water
CN108126681A (en) For enhancing titanium dioxide(TiO2)The nucleating layer of the photocatalytic activity of coating
KR102404960B1 (en) Novel formulation for deposition of silicon-doped hafnium oxide as ferroelectric material
US20090297696A1 (en) Methods for forming conductive titanium oxide thin films
Malm et al. Atomic layer deposition of WO3 thin films using W (CO) 6 and O3 precursors
JPH09504500A (en) Chemical vapor deposition process for making superlattice materials
CN105143504B (en) MOCVD layer growing method including subsequent multistage purification step
JPH05206062A (en) Method for improved low-pressure chemical vapor deposition for deposition of titanium nitride thin film provided with stable and low electric conductivity
US7211513B2 (en) Process for chemical vapor desposition of a nitrogen-doped titanium oxide coating
US20040180493A1 (en) Semiconductor capacitors having tantalum oxide layers and methods for manufacturing the same
KR100662003B1 (en) Manufacturing method of titanium oxide film
US20060088660A1 (en) Methods of depositing lead containing oxides films
KR100474565B1 (en) Method and apparatus for supplying a source gas
Kim et al. Atomic layer deposition of titanium dioxide films using a metal organic precursor (C12H23N3Ti) and H2O (DI water)
EP1479790B1 (en) Cvd deposition of hf and zr containing oxynitride films
KR101597585B1 (en) Manafacturing method of photoactive titanium oxide
KR100662006B1 (en) Manufacturing method of titanium oxide using chemical vapour deposition
JPH09246214A (en) Thin film formation, semiconductor device and manufacture thereof
Niskanen Radical enhanced atomic layer deposition of metals and oxides
JPH11307520A (en) Organic metal vapor growth method, its equipment, and forming method of semiconductor film of capacitor for dram
JP3176069B2 (en) Method of forming titanium monophosphide layer and use thereof

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121114

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131108

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150420

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151012

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20161212

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20171211

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20181210

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20191210

Year of fee payment: 14