KR100661275B1 - Method for producing industrial polyethylene naphthalate - Google Patents

Method for producing industrial polyethylene naphthalate Download PDF

Info

Publication number
KR100661275B1
KR100661275B1 KR1020000084767A KR20000084767A KR100661275B1 KR 100661275 B1 KR100661275 B1 KR 100661275B1 KR 1020000084767 A KR1020000084767 A KR 1020000084767A KR 20000084767 A KR20000084767 A KR 20000084767A KR 100661275 B1 KR100661275 B1 KR 100661275B1
Authority
KR
South Korea
Prior art keywords
polycondensation reaction
polyethylene naphthalate
producing
polymer
catalyst
Prior art date
Application number
KR1020000084767A
Other languages
Korean (ko)
Other versions
KR20020055550A (en
Inventor
심동석
김영조
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020000084767A priority Critical patent/KR100661275B1/en
Publication of KR20020055550A publication Critical patent/KR20020055550A/en
Application granted granted Critical
Publication of KR100661275B1 publication Critical patent/KR100661275B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/185Acids containing aromatic rings containing two or more aromatic rings
    • C08G63/187Acids containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings
    • C08G63/189Acids containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings containing a naphthalene ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings

Abstract

본 발명은 나프탈렌 디카복실레이트(NDC)와 디올을 에스테르 교환반응 및 중축합 반응시켜 폴리에틸렌 나프탈레이트를 제조함에 있어서, 에스테르 교환반응시 NDC의 무게에 대하여 30~100ppm의 에스테르 교환 반응촉매를 사용하고, 중축합 반응시 100~500ppm의 중축합 반응촉매를 사용하며, 열안정제 20~300ppm을 중축합 반응전에 첨가하고 결정화 단계를 190∼250℃에서 2단계 이상을 거쳐 행하는 것을 특징으로 하는 산업용 폴리에틸렌 나프탈레이트 중합물의 제조방법에 관한 것이다.The present invention, in the production of polyethylene naphthalate by transesterification and polycondensation reaction of naphthalene dicarboxylate (NDC) and diol, using a transesterification catalyst of 30 ~ 100ppm relative to the weight of NDC during the transesterification reaction, In case of polycondensation reaction, 100 ~ 500ppm polycondensation reaction catalyst is used, and 20 ~ 300ppm of heat stabilizer is added before polycondensation reaction and the crystallization step is carried out through two or more steps at 190 ~ 250 ° C. It relates to a method for producing a polymer.

본 발명에 의하여 안정적이고 균일한 폴리에틸렌 나프탈레이트 중합물을 제조하여 우수한 기계적 특성 및 열안정성을 갖는 산업용 폴리에틸렌 나프탈레이트 섬유를 제조할 수 있다.According to the present invention, a stable and uniform polyethylene naphthalate polymer may be prepared to prepare an industrial polyethylene naphthalate fiber having excellent mechanical properties and thermal stability.

나프탈렌 디카복실레이트, 폴리에틸렌 나프탈레이트 섬유Naphthalene Dicarboxylate, Polyethylene Naphthalate Fiber

Description

산업용 폴리에틸렌나프탈레이트(PEN) 중합물의 제조방법{Method for producing industrial polyethylene naphthalate}Method for producing industrial polyethylene naphthalate

본 발명은 폴리에틸렌 나프탈레이트 중합물과 고상 중합하여 산업용 사에 적합한 고점도 칩(chip)을 제조하는 방법에 관한 것으로, 더욱 상세하게는 주쇄에 강직한 분자 사슬을 가지므로 인해 용융 점도와 점성이 높고 축 중합반응시 중합물 내부의 미반응물과 가스를 제거하기 어려우며 고상중합시 융착 발생이 야기되는 폴리에틸렌 나프탈레이트 중합물에 있어서, 이를 보완하기 위해 용융중합 단계에서 촉매 함량과 중축합 반응방법, 고상중합 단계에서 고상중합 온도와 결정화 방법 등을 개선함으로서 점도가 높으면서도 균일한 산업용 폴리에틸렌 나프탈레이트 중합물을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a high viscosity chip suitable for industrial use by solid phase polymerization with a polyethylene naphthalate polymer, and more particularly, because it has a rigid molecular chain in the main chain, high melt viscosity and viscosity and axial polymerization In the polyethylene naphthalate polymer, which is difficult to remove the unreacted material and gas inside the polymer during the reaction and causes fusion during the solid phase polymerization, in order to compensate for this, the catalyst content in the melt polymerization step, the polycondensation reaction method, and the solid phase polymerization in the solid phase polymerization step By improving the temperature, crystallization method and the like, the present invention relates to a method for producing an industrial polyethylene naphthalate polymer having a high viscosity and uniformity.

폴리에틸렌 테레프탈레이트(PET)는 1953년 미국에서 최초로 섬유용으로 상업화가 시작되면서 전 세계적으로 급속하게 성장하였다. 폴리에틸렌 테레프탈레이트(PET)는 기계적 물성, 내열성, 화학적 안정성 등이 양호하여 많은 분야에서 사용되고 있으며 특히 섬유용, 이축연신필름, 시트, 음료용 병 등에 매우 큰 수요를 차지하고 있다. Polyethylene terephthalate (PET) grew rapidly around the world in 1953, when it was first commercialized for textile use in the United States. Polyethylene terephthalate (PET) is used in many fields due to its good mechanical properties, heat resistance, chemical stability, and the like. In particular, polyethylene terephthalate (PET) has a great demand for textiles, biaxially oriented films, sheets, and beverage bottles.                         

최근 이러한 PET 수지는 제품의 경량화, 고성능화, 고내열성 등이 요구되면서 상기 요구 물성을 보완해줄 폴리에틸렌 나프탈레이트(PEN)으로 대체되고 있다.Recently, such PET resins are being replaced with polyethylene naphthalate (PEN), which is required to reduce the weight, high performance, and high heat resistance.

PEN은 PET의 벤젠 환 대신에 강직한 구조를 갖는 나프탈레이트 환 구조를 도입하므로써 기존의 PET와 구조적으로 매우 유사하면서도 유리전이 온도 및 내열성, 인장강도, 크리프 저항 등의 기계적 물성이 PET에 비해 매우 우수하며, 기체 차단성은 PET에 비해 5배 이상 뛰어나기 때문에 고강도 박막필름, 불투과성 병(barrier bottle), 내열용기 등에 적극 사용되고 있다. 특히 이러한 PEN의 성질은 고강도, 고내열성, 내약품성 등을 요구하는 벨트나 호스용 보강재로 적합하며, 타이어 코드용으로 최적의 물성을 발현할 수 있다. 기존의 타이어 코드 소재로는 PET, 나일론, 레이온, 아리미드계 섬유등이 주요 소재로 사용되었으나, 레이온과 아라미드계는 환경문제를 야기하고 높은 제조비용이 소용되는 단점이 있고, PET와 나일론은 고온에서 강도와 형태 안정성에 문제가 있었다. 이에 비해 PEN은 높은 강도와 내열성, 낮은 열수축률 등을 나타내고 있어서 기존의 고성능 경주용 타이어 코드 소재로부터 시작하여 많은 산업용 자재를 대체할 것으로 기대되고 있다.PEN adopts a rigid structure of naphthalate ring instead of benzene ring of PET, which is very similar in structure to existing PET, but has excellent mechanical properties such as glass transition temperature, heat resistance, tensile strength and creep resistance. In addition, gas barrier properties are more than five times superior to PET, and thus, they are actively used in high strength thin film films, barrier bottles, heat-resistant containers, and the like. In particular, the properties of the PEN is suitable as a reinforcing material for belts and hoses requiring high strength, high heat resistance, chemical resistance, and the like, and can exhibit optimal physical properties for tire cords. Conventional tire cord materials include PET, nylon, rayon, and arimid-based fibers, but rayon and aramid have environmental disadvantages and high manufacturing costs, and PET and nylon have high temperature. There was a problem with strength and form stability. In contrast, PEN exhibits high strength, heat resistance, and low heat shrinkage, and is expected to replace many industrial materials, starting with the existing high performance race tire cord material.

PEN의 제조는 제조설비와 기술이 PET 제조기술과 상당한 공통점을 지니고 있기 때문에 2000년대의 PET 대체 소재로 여러 산업분야에서 두각을 나타낼 것이 확실시되지만, PEN의 합성기술 및 제반물성, 그리고 용융 중합분야 등에 대하여 전반적인 기초연구가 뒤떨어진 것이 사실이다.PEN's manufacturing has a lot in common with PET manufacturing technology because its manufacturing facilities and technologies have a lot in common with PET manufacturing technology, but it is certain that it will stand out in many industries as a substitute for PET in the 2000s, but PEN's synthesis technology, physical properties, and melt polymerization It is true that the basic basic research is inferior.

이러한 PEN 중합물을 제조하기 위한 종래의 기술로는 일본특허공개 평6-56975호, 평6-293825호, 평7-82465호 및 평8-169940호, 미국특허 제5,350829호, 제4,963644호 및 제5,294,695호가 있다.Conventional techniques for producing such PEN polymers include Japanese Patent Laid-Open Nos. Hei 6-56975, Hei 6-293825, Hei 7-82465 and Hei 8-169940, U.S. Patent Nos. 5,350829, 4, 963644 and 5,294,695.

일본특허공개 평6-56975호에는 에틸렌 나프탈레이트를 기본 단위로 하는 폴리에스터로서 카복실기 말단농도가 40당량/106gr 이하이고, 또한 디에틸렌 글리콜의 함량이 1.3wt% 이하인 PEN 조성물을 제조하는 방법이 기술되어 있으며 이때 만들어진 중합물은 필름, 섬유의 생산성이 좋아지고 내가수분해성 등 내구성이 우수한 PEN 필름이나 섬유를 얻을 수 있다. 일본특허공개 평6-293825호 및 평7-82465호에는 반응 촉매량을 조절하여 뛰어난 투명성, 열 안정성, 표면 평탄성 및 컬(curl) 해소성을 겸비한 PEN 중합물을 제조하는 방법이 기재되어 있다.Japanese Patent Application Laid-open No. Hei 6-56975 is a polyester based on ethylene naphthalate, which has a carboxyl terminal concentration of 40 equivalents / 10 6 gr or less and a diethylene glycol content of 1.3 wt% or less for producing a PEN composition. The method is described, and the polymer produced can obtain PEN films or fibers which are excellent in productivity of films and fibers and have excellent durability such as hydrolysis resistance. Japanese Patent Laid-Open Nos. Hei 6-293825 and Hei 7-82465 describe a method for producing PEN polymers having excellent transparency, thermal stability, surface flatness and curl resolution by adjusting the amount of reaction catalyst.

일본특허공개 평8-169940호에는 나프탈렌 디카복실레이트(NDC)와 디올(diol)을 에스테르 교환반응 및 중축합 반응을 시켜 PEN을 제조함에 있어서, 에스테르 교환반응시 NDC의 중량에 대하여 0.1 ∼ 0.5wt%의 에스테르 교환반응 촉매를 사용하고, 상기 중축합 반응시 NDC의 0 ∼0.4wt%의 중축합 반응촉매를 사용하는 것을 특징으로 하며, 에스테르 교환반응 촉매로는 Mn, K, Li, Ca, Mg, Zn, Al 및 Cd 화합물중 적어도 1개 사용하며 중축합 촉매로 Sb, Ge, Co, Ti, Su, Al, Pb, Mn, Ca 화합물중 적어도 1개를 사용하는 것을 특징으로 하는 PEN의 제조방법이 기재되어 있다.Japanese Patent Application Laid-Open No. Hei 8-169940 has a transesterification reaction and a polycondensation reaction of naphthalene dicarboxylate (NDC) and diol (diol) in the production of PEN, 0.1 to 0.5wt by weight of NDC during the transesterification reaction % Transesterification catalyst is used, and the polycondensation reaction is characterized by using a polycondensation reaction catalyst of 0 ~ 0.4wt% of NDC, Mn, K, Li, Ca, Mg as the transesterification catalyst At least one of Zn, Al and Cd compounds and at least one of Sb, Ge, Co, Ti, Su, Al, Pb, Mn and Ca compounds as polycondensation catalysts. This is described.

미국특허 제5,350,829호에는, 알킬렌 카보네이트로 코팅된 PEN 펠릿(pellet)을 코팅되지 않은 PEN 펠릿보다 낮은 온도에서 더 빨리 결정화시키는 방법이 기재되어 있으며, 이 방법을 적용하면 고상 중합시 융착 발생이 감소한다고 되어 있다. 미국특허 제4,963,644호에는, 무정형 PEN 프레폴리머(prepolymer)를 고상중합하는 방법으로 1단계에서 불활성 가스 또는 진공상태에서 80 ∼ 140℃로 15분에서 10시간동안 가열하고 2단계에서는 150 ∼ 260℃에서 1분 ∼ 4시간 동안 결정화를 진행하였으며 3단계에서는 240∼ 260℃에서 고상중합을 실시하여 고점도의 PEN 폴리머를 제조하는 방법이 기재되어 있다.U.S. Patent No. 5,350,829 describes a method for crystallizing PEN pellets coated with alkylene carbonate at lower temperatures than uncoated PEN pellets, which reduces the occurrence of fusion during solid phase polymerization. It is said. U.S. Patent No. 4,963,644 discloses a method for solid-phase polymerization of an amorphous PEN prepolymer in an inert gas or vacuum state in a first step at 80 to 140 DEG C for 15 minutes to 10 hours and in a second step at 150 to 260 DEG C. Crystallization was performed for 1 minute to 4 hours, and in the third step, a method of preparing a high viscosity PEN polymer by performing solid phase polymerization at 240 to 260 ° C is described.

또한 미국특허 제5,294,695호에는, NDC와 에틸렌 글리콜(EG)을 2단계로 반응 시켜 고점도의 PEN을 제조하는 방법으로 1단계는 500 ∼ 30Torr, 2단계는 10 ∼ 0.1Torr 압력에서 축중합물을 중합물의 고유 점도가 0.4 ∼1.0dl/g이 되게 조절하고 중축합 촉매는 Sb, Li, Ge, Ti, Zn, Pb, Fe, Mn, Mg, Al, Ca 등 금속화합물 중 하나를 사용하는 것이 기술되어 있다.In addition, U.S. Patent No. 5,294,695 discloses a method for producing high viscosity PEN by reacting NDC and ethylene glycol (EG) in two stages. The intrinsic viscosity is adjusted to 0.4-1.0 dl / g, and the polycondensation catalyst is described using one of metal compounds such as Sb, Li, Ge, Ti, Zn, Pb, Fe, Mn, Mg, Al and Ca. .

본 발명은 용융 중합시 촉매 함량과 기존 중합시 발생하는 칩(chip)내 기포와 고상 중합시 발생하는 불순물(dust)을 최소화하고 PEN 특성상 고상중합시 발현하는 융착제거 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a fusion removal method for minimizing catalyst content during melt polymerization, bubbles in chips generated during conventional polymerization, and impurities generated during solid phase polymerization, and during solid phase polymerization due to PEN characteristics. .

본 발명은 NDC(Naphthalene dicarboxylate)와 디올을 에스테르 교환반응 및 중축합 반응 시켜 PEN을 제조함에 있어서, 에스테르 교환반응시 NDC의 무게에 대하여 30~100ppm의 에스테르 교환반응 촉매를 사용하고, 중축합 반응시 100~500ppm의 중축합 반응 촉매를 사용하고, 열안정제 20~300ppm을 중축합 반응전에 첨가하고, 결정화 단계를 190℃에서 250℃ 사이에 2단계 이상을 거쳐 행하는 것으로 구성되어 있다.In the present invention, in the preparation of PEN by transesterification and polycondensation reaction of NDC (Naphthalene dicarboxylate) and diol, using a transesterification catalyst of 30 ~ 100ppm relative to the weight of NDC during the transesterification reaction, The polycondensation reaction catalyst of 100-500 ppm is used, 20-300 ppm of heat stabilizers are added before a polycondensation reaction, and a crystallization step is performed through two or more steps between 190 degreeC and 250 degreeC.

NDC 단위가 90mol% 이상을 함유하고, 고유점도가 0.3 ∼ 0.6dl/g인 PEN 용융중합물을 0.6dl/g 이상의 고점도의 칩을 제조함에 있어서, 고상 중합시 발생하는 융착을 최소화하기 위해 결정화 단계를 기존과 달리 2단계로 실시하는 방법과 PEN 중합물 특성상 용융 중합시 미반응물의 제거가 용이하지 않아 고상중합시 불순물(dust)로 작용하므로 중축합 중합시 반응기의 L/D(길이/직경)를 기존 1.5에서 최소 0.3∼1.2 이하로 하여 중합물의 표면적을 크게 하여 미반응물의 추출을 용이하게 하여 고상중합 후 불순물을 최소화하였다. 또한 노즐형태(Nozzle type)를 원형에서 타원형으로 교체하여 칩내 기포를 현저하게 제거하였다.In the manufacture of PEN melt polymers containing 90 mol% or more of NDC unit and having intrinsic viscosity of 0.3 to 0.6 dl / g and high viscosity chips of 0.6 dl / g or more, a crystallization step is performed to minimize fusion caused during solid phase polymerization. Unlike the existing method, it is not easy to remove unreacted materials during melt polymerization due to the two-step method and the characteristics of PEN polymer, which acts as an impurity during solid phase polymerization. At 1.5 to at least 0.3 to 1.2, the surface area of the polymer was increased to facilitate extraction of the unreacted material, thereby minimizing impurities after solid phase polymerization. In addition, the nozzle type (nozzle type) was changed from circular to elliptical to significantly remove bubbles in the chip.

이하에서 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

PEN 중합물을 제조시 용융 중합 온도가 높기 때문에 열안정제를 사용하였으며 에스테르화 반응촉매와 열안정제의 비가 어느 적절한 범위안에 포함되지 않으면 고상 중합시 열화에 의한 중합물의 색조의 변화가 심하게 발생한다. 이를 보완하기 위해 에스테르화 반응촉매와 열안정제의 비를 0.7 ∼ 2.0 수준으로 유지하고 중합하여 고상중합시 열화를 방지할 수 있었다. 이때 에스테르화 반응촉매로 Mn, K, Li, Ca, Mg, Zn, Al 및 Cd 화합물중 적어도 1개 사용하였으며 열안정제로 포르세이트계중 하나를 사용하였다.The thermal stabilizer was used because the melt polymerization temperature was high during the preparation of the PEN polymer. When the ratio of the esterification catalyst and the thermal stabilizer is not included in any suitable range, the color tone of the polymer due to deterioration during the solid phase polymerization is severely generated. In order to compensate for this, the ratio of the esterification catalyst and the heat stabilizer was maintained at a level of 0.7 to 2.0 and was polymerized to prevent deterioration during the solid phase polymerization. At this time, at least one of Mn, K, Li, Ca, Mg, Zn, Al, and Cd compounds was used as the esterification catalyst, and one of the formate was used as the heat stabilizer.

용융중합시 중합물의 점도가 높기 때문에 중축합 반응시 발생하는 가스 및 미반응물을 제거하기 위해 반응기의 L/D(길이/직경)를 기존 1.5에서 최소 0.3 ∼ 1.2 수준으로 제작하여 중축합 반응을 실시하였다. 그 결과 고상 중합후 미반응물 들이 응집하여 생성된 불순물발생이 기존에는 500ppm 이상에서 200ppm 이하로 줄어들었다.Due to the high viscosity of the polymer during melt polymerization, the polycondensation reaction is carried out by making the L / D (length / diameter) of the reactor at a minimum level of 0.3 to 1.2 from 1.5 to remove gas and unreacted substances generated during the polycondensation reaction. It was. As a result, the impurities generated by the aggregation of unreacted materials after the solid state polymerization were reduced from more than 500 ppm to less than 200 ppm.

또한, 용융 중합물의 점도가 높아 축 중합반응중 발생한 가스가 배출시 중합물의 내부에 존재하여 방사공정에 좋지 않은 결과를 가져온다. 이를 제거하기 위해 노즐을 원형에서 타원형으로 변경하였고 연수 온도를 20~100℃ 유지하여 배출하였다. 그 결과 중합물 내부의 기포를 90% 이상에서 0.1% 이하로 줄일 수 있었다. 타원형 노즐은 장축/단축을 1.0~3.5로 제작하여 사용하였다.In addition, the viscosity of the molten polymer is high, the gas generated during the axial polymerization reaction is present in the interior of the polymer when discharged, resulting in a bad spinning process. To remove this, the nozzle was changed from circular to elliptical and discharged by maintaining the soft water temperature at 20 to 100 ° C. As a result, the bubbles in the polymer can be reduced from 90% to more than 0.1%. Oval nozzle was used to produce a long axis / short axis of 1.0 ~ 3.5.

PEN 중합물은 점성이 PET에 비하여 월등하기 때문에 고상 중합시 점착(sticking)을 자주 유발한다. 고상 중합시 이를 보완하기 위해 건조를 130℃에서 4시간 이상, 1차 결정화를 200℃에서 1시간 이상 실시하고 2차 결정화를 220℃ 이상에서 2시간 이상 실시하였다. 고상 중합을 240℃ 이상에서 10시간 이상 실시하였다. 그결과 기존 융착이 10% 수준에서 1.0% 미만으로 낮아졌으며 고상 중합 시간도 약 6시간 정도 단축 효과를 보았다. 이와 같이 안정적이고 균일한 PEN 중합물을 제조하여 우수한 기계적 물성 및 열안정성을 가지는 산업용 PEN 섬유를 제조할 수 있다.PEN polymers often cause sticking during solid phase polymerization because of their superior viscosity compared to PET. In order to compensate for the solid phase polymerization, drying was performed at 130 ° C. for at least 4 hours, primary crystallization at 200 ° C. for at least 1 hour, and secondary crystallization at 220 ° C. or higher for 2 hours. Solid phase polymerization was performed at 240 degreeC or more for 10 hours or more. As a result, the existing fusion was lowered from 10% to less than 1.0%, and the solid state polymerization time was also reduced by about 6 hours. Thus, by producing a stable and uniform PEN polymer, it is possible to produce an industrial PEN fiber having excellent mechanical properties and thermal stability.

이하, 실시예에 의하여 본 발명을 상세하게 설명하지만, 본 발명은 이에 국한되는 것이 아님을 물론이다.Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto.

<실시예 1><Example 1>

나프탈렌 디카복실레이트(NDC)와 에틸렌 글리콜을 1:2.1의 비율로 혼합한 후 190℃ 이상에서 4시간 이상 충분히 녹인후 에스테르화 반응을 시작하였다. 에스테 르화 반응에서는 촉매로 Mn을 NDC 무게에 대하여 65ppm를 사용하였고 190℃에서 240℃까지 3시간 동안 반응시켰다.Naphthalene dicarboxylate (NDC) and ethylene glycol were mixed at a ratio of 1: 2.1, and then sufficiently dissolved at 190 ° C. or higher for at least 4 hours, and then esterification was started. In the esterification reaction, 65 ppm of Mn was used as the catalyst for the NDC weight and reacted for 3 hours from 190 ° C to 240 ° C.

중축합 전반응에 열안정제로 트리메틸렌 포르세이트(TMP)를 NDC 무게에 대하여 47ppm를 첨가하였고, 중축합 촉매로 Sb2O3 화합물을 280ppm 사용하였고, 반응온도는 240∼ 290℃에서 실시하였다. 점도를 올리기 위해 건조를 130℃에서 8시간, 1차 결정화를 200℃에서 2시간, 2차 결정화를 245℃에서 6시간 실시하였으며, 고상 중합을 254℃에서 17시간 실시하였다. 그 결과는 하기 표 1과 같다.For the polycondensation pre-reaction, trimester formate (TMP) was added as a thermal stabilizer to 47 ppm with respect to the NDC weight, 280 ppm of the Sb 2 O 3 compound was used as the polycondensation catalyst, and the reaction temperature was performed at 240 to 290 ° C. To raise the viscosity, drying was carried out at 130 ° C. for 8 hours, primary crystallization at 200 ° C. for 2 hours, secondary crystallization at 245 ° C. for 6 hours, and solid phase polymerization was carried out at 254 ° C. for 17 hours. The results are shown in Table 1 below.

<비교예 1>Comparative Example 1

열안정제를 NDC 무게에 대하여 40ppm, 에스테르화 촉매를 90ppm 사용하였다는 것을 제외하고는 상기 실시예 1과 동일하게 행하였다. 그 결과는 하기 표 1과 같다.The thermal stabilizer was carried out in the same manner as in Example 1 except that 40 ppm of the NDC weight and 90 ppm of the esterification catalyst were used. The results are shown in Table 1 below.

표 1                                Table 1

Figure 112000540019777-pat00001
Figure 112000540019777-pat00001

<실시예 2><Example 2>

중축합 반응조의 L/D를 1.5에서 0.5, 노즐을 원형에서 장축/단축의 비가 3인 타원형을 사용했으며, 배출시 연수 온도를 37℃로 유지하였다는 것을 제외하고는 실시예 1과 동일하게 행하였다. 그 결과는 하기 표 2와 같다.The same procedure as in Example 1 was used except that the polycondensation reactor had an L / D of 1.5 to 0.5 and a nozzle having a circular to long axis / short axis ratio of 3, and the soft water temperature was maintained at 37 ° C. during discharge. It was. The results are shown in Table 2 below.

<비교예 2><Comparative Example 2>

중축합 반응조의 L/D를 1.5, 노즐을 원형으로 사용했으며, 연수 온도를 18℃로 유지하였다는 것을 제외하고는 실시예 2와 동일하게 행하였다. 그 결과는 하기 표 2와 같다.L / D of the polycondensation reactor was used in the same manner as in Example 2 except that 1.5, a nozzle was used in a circular shape, and the softening temperature was maintained at 18 ° C. The results are shown in Table 2 below.

표 2                                TABLE 2

Figure 112000540019777-pat00002
Figure 112000540019777-pat00002

<실시예 3><Example 3>

상기 실시예 1과 동일하며, 그 결과는 하기 표 3과 같다.The same as in Example 1, the results are shown in Table 3.

<비교예 3><Comparative Example 3>

용융 중합물을 130℃에서 8시간 건조, 200℃에서 2시간 예비 결정화, 258℃에서 29시간 고상 중합을 실시하였다는 것을 제외하고는 상기 비교예 1과 동일하며, 그 결과는 하기 표 3과 같다.The molten polymer was dried for 8 hours at 130 ° C., precrystallized at 200 ° C. for 2 hours, and subjected to solid phase polymerization at 258 ° C. for 29 hours, and the result was as shown in Table 3 below.

표 3                                TABLE 3

Figure 112000540019777-pat00003
Figure 112000540019777-pat00003

본 발명에 의하여, 안정적이고 균일한 폴리에틸렌 나프탈레이트 중합물을 제 조하여 우수한 기계적 물성과 열안정성을 갖는 산업용 폴리에틸렌 나프탈레이트 섬유를 제조할 수 있음은 물론, 중축합 중합시 반응기의 L/D(길이/직경)를 기존 1.5에서 최소 0.3∼1.2 이하로 하여 미반응물의 추출이 용이하게 중합물의 표면적을 크게하여 고상중합후 불순물 발생을 최소화 하므로서 롤러를 자주 청소하여야만 하는 불편을 해소할 수 있다.According to the present invention, it is possible to produce a stable and uniform polyethylene naphthalate polymer to produce an industrial polyethylene naphthalate fiber having excellent mechanical properties and thermal stability, as well as the L / D of the reactor during polycondensation polymerization (length / Diameter) to 1.5 to 1.2 or less in the existing 1.5 to easily extract the unreacted material to increase the surface area of the polymer to minimize the generation of impurities after the solid-phase polymerization can eliminate the inconvenience of having to clean the rollers frequently.

Claims (4)

나프탈렌 디카복실레이트와 디올을 에스테를 교환반응 및 중축합 반응시켜 폴리에틸렌 나프탈레이트 중합물을 제조하는 방법에 있어서, 에스테르 교환 반응시 나프탈렌 디카복실레이트의 무게에 대하여 30~100ppm의 에스테르 교환반응 촉매를 사용하고, 중축합 반응시 100~500ppm의 중축합 반응촉매를 사용하고, 열안정제 20~300ppm을 중축합 반응전에 첨가하며, 에스테르화 반응촉매와 열안정제의 비는 0.7~2.0으로 하여 결정화 단계를 190℃에서 250℃ 사이에 2단계 이상을 거쳐 행하는 것을 특징으로 하는 고점도의 산업용 폴리에틸렌 나프탈레이트 중합물을 제조하는 방법.In the process for producing polyethylene naphthalate polymer by exchanging ester and polycondensation reaction of naphthalene dicarboxylate and diol, using a transesterification catalyst of 30 to 100 ppm relative to the weight of naphthalene dicarboxylate during the transesterification reaction In case of polycondensation reaction, 100 ~ 500ppm polycondensation reaction catalyst is used, 20 ~ 300ppm thermal stabilizer is added before polycondensation reaction, and the ratio of esterification reaction catalyst and heat stabilizer is 0.7 ~ 2.0 and crystallization step is 190 ℃. Process for producing a high viscosity industrial polyethylene naphthalate polymer, characterized in that carried out in two or more steps between 250 ℃. 제 1 항에 있어서, 중축합 반응시 중축합 반응조의 L/D(길이/직경)를 0.3∼1.2로 하는 것을 특징으로 하는 고점도의 산업용 폴리에틸렌 나프탈레이트 중합물을 제조하는 방법.The method for producing a high viscosity industrial polyethylene naphthalate polymer according to claim 1, wherein the polycondensation reaction has an L / D (length / diameter) of 0.3 to 1.2 in the polycondensation reaction tank. 제 2 항에 있어서, 중축합 반응조의 중합물 배출구 노즐의 장축/단축 비를 1.0~3.5로 하고 연수온도를 20~100℃로 하는 것을 특징으로 하는 고점도의 산업용 폴리에틸렌 나프탈레이트 중합물을 제조하는 방법.The method of producing a high viscosity industrial polyethylene naphthalate polymer according to claim 2, wherein the long axis / short axis ratio of the polymer outlet nozzle of the polycondensation reaction tank is 1.0 to 3.5 and the soft water temperature is 20 to 100 ° C. 삭제delete
KR1020000084767A 2000-12-28 2000-12-28 Method for producing industrial polyethylene naphthalate KR100661275B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000084767A KR100661275B1 (en) 2000-12-28 2000-12-28 Method for producing industrial polyethylene naphthalate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000084767A KR100661275B1 (en) 2000-12-28 2000-12-28 Method for producing industrial polyethylene naphthalate

Publications (2)

Publication Number Publication Date
KR20020055550A KR20020055550A (en) 2002-07-09
KR100661275B1 true KR100661275B1 (en) 2006-12-26

Family

ID=27688089

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000084767A KR100661275B1 (en) 2000-12-28 2000-12-28 Method for producing industrial polyethylene naphthalate

Country Status (1)

Country Link
KR (1) KR100661275B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102611943B1 (en) * 2023-06-05 2023-12-13 주식회사 신칸머신 Pet chip regeneration method capable of enhancing intrinsic viscosity and purity and regeneration apparatus using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100537246B1 (en) * 2003-03-07 2005-12-19 주식회사 효성 Process for preparation of polyethylenenaphthalate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960004391A (en) * 1994-07-28 1996-02-23 안시환 Production method of polyester
KR19980068303A (en) * 1997-02-17 1998-10-15 한형수 Process for producing polyethylene naphthalate resin
KR0181939B1 (en) * 1989-09-18 1999-05-15 카알 에이취.크루코우 Process for crystallization of polyethylene naphthalate
KR20000056625A (en) * 1999-02-24 2000-09-15 박호군 Process for the preparation of polyethylene naphthalate based polymers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0181939B1 (en) * 1989-09-18 1999-05-15 카알 에이취.크루코우 Process for crystallization of polyethylene naphthalate
KR960004391A (en) * 1994-07-28 1996-02-23 안시환 Production method of polyester
KR19980068303A (en) * 1997-02-17 1998-10-15 한형수 Process for producing polyethylene naphthalate resin
KR20000056625A (en) * 1999-02-24 2000-09-15 박호군 Process for the preparation of polyethylene naphthalate based polymers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102611943B1 (en) * 2023-06-05 2023-12-13 주식회사 신칸머신 Pet chip regeneration method capable of enhancing intrinsic viscosity and purity and regeneration apparatus using the same

Also Published As

Publication number Publication date
KR20020055550A (en) 2002-07-09

Similar Documents

Publication Publication Date Title
EP1147249B1 (en) Polyester container and method for making same
TW201731908A (en) Polyester resin, preparation method thereof and resin article formed therefrom
AU2005294576B2 (en) Process for producing polytrimethylene terephthalate
JP2005015797A (en) Copolyester resin and molded product using it
KR100661275B1 (en) Method for producing industrial polyethylene naphthalate
US6441125B2 (en) Preparation of a copolyether ester
KR101551633B1 (en) Polyether Ester Elastomer and Manufacturing Method therof
JP4048955B2 (en) Polyester and its production method
JP2010031175A (en) Copolyester and production method thereof
KR100556336B1 (en) Process for preparing a polyethylene naphtalate polymer for the yarn of the industrial use
JP3717447B2 (en) Polytrimethylene terephthalate composition
KR100607087B1 (en) The method of acceleration of solid polymerization ratio of polyethylenenaphthalate
KR100575391B1 (en) A polyethylenenaphthalate solid-polymerized having low density
KR100609553B1 (en) Method for preparing polyethylenenaphthalate
KR100663255B1 (en) Solid polymerization using ethylene glycol in polyethylenenaphthalate
KR20210067082A (en) Polyester with improved transparency and thermal properties and manufacturing method the same
JP2006028362A (en) Production method for high polymerization degree polyester
KR0120833B1 (en) Method for manufacturing polyester
KR20070072036A (en) Process for preparing polyethylenenaphthalate fiber
JPH05202176A (en) Polyether ester-based elastic body
JP4188145B2 (en) Method for producing polybutylene terephthalate resin
CN116113654A (en) Polyester resin and method for producing polyester resin
JP2004352991A (en) Easily dyeable polyester copolymer produced by terephthalic acid technique, its fiber and its producing method
KR100537246B1 (en) Process for preparation of polyethylenenaphthalate
JPS6210529B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120619

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131105

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141105

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee