KR100651249B1 - A preparation methods of grape seed oil and extract with high quality - Google Patents
A preparation methods of grape seed oil and extract with high quality Download PDFInfo
- Publication number
- KR100651249B1 KR100651249B1 KR1020050028257A KR20050028257A KR100651249B1 KR 100651249 B1 KR100651249 B1 KR 100651249B1 KR 1020050028257 A KR1020050028257 A KR 1020050028257A KR 20050028257 A KR20050028257 A KR 20050028257A KR 100651249 B1 KR100651249 B1 KR 100651249B1
- Authority
- KR
- South Korea
- Prior art keywords
- grape seed
- oil
- extract
- ethanol
- grape
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23D—EDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
- A23D9/00—Other edible oils or fats, e.g. shortenings, cooking oils
- A23D9/007—Other edible oils or fats, e.g. shortenings, cooking oils characterised by ingredients other than fatty acid triglycerides
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23D—EDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
- A23D9/00—Other edible oils or fats, e.g. shortenings, cooking oils
- A23D9/02—Other edible oils or fats, e.g. shortenings, cooking oils characterised by the production or working-up
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/96—Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
- A61K8/97—Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
- A61K8/9783—Angiosperms [Magnoliophyta]
- A61K8/9789—Magnoliopsida [dicotyledons]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Public Health (AREA)
- Polymers & Plastics (AREA)
- Food Science & Technology (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Mycology (AREA)
- Dermatology (AREA)
- Botany (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Birds (AREA)
- Medicines Containing Plant Substances (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
Abstract
본 발명은 항산화성 카테킨화합물을 함유한 고품질의 기능성 포도씨유 및 추출물의 제조방법에 관한 것으로서, 건조 포도씨를 분쇄한 후 전자레인지에서 1분 동안 가열처리한 다음 노르말-헥산으로 탈지하여 포도씨 원유 및 탈지 포도씨박을 각각 얻고, 포도씨 원유는 탈산, 탈색 및 탈취 공정을 차례로 거치면서 정제 포도씨유를 제조하며, 탈지 포도씨박은 에탄올수용액으로 열탕 추출한 다음 여과 및 농축하여 포도씨 에탄올 추출물을 얻고 이것을 다시 이온수지 흡착 크로마토그래피를 이용하여 20% 및 60% 에탄올수용액에 각각 용출되는 추출액을 농축하여 얻어진 포도씨 추출물은 항산화성 카테킨화합물을 다량 함유하고 있어 암, 심장병, 고혈압 및 노화 등의 예방 및 치료에 탁월한 효과가 있다.The present invention relates to a method for producing a high quality functional grape seed oil and extract containing an antioxidant catechin compound, which is dried by pulverizing dried grape seeds for 1 minute in a microwave and then degreased with normal-hexane to remove crude grape oil and skim. Grape seed milk is obtained respectively, and grape seed crude oil is subjected to deoxidation, decoloring, and deodorization in order to produce purified grape seed oil, and skimmed grape seed cake is boiled with ethanol solution, filtered and concentrated to obtain grape seed ethanol extract, which is again subjected to ion resin adsorption chromatography. The grape seed extract obtained by concentrating the extract eluted in 20% and 60% ethanol aqueous solution using a graphography contains a large amount of antioxidant catechin compound, which is excellent in preventing and treating cancer, heart disease, high blood pressure and aging.
포도씨, 포도씨유, 포도씨 추출물, 카테킨화합물Grape Seed, Grape Seed Oil, Grape Seed Extract, Catechin Compound
Description
도 1은 포도씨로부터 고품질의 포도씨유의 제조공정을 도시하고 있다.1 shows a process for producing high quality grape seed oil from grape seeds.
도 2는 포도씨로부터 기능성식품 제조 원료용 고품질의 포도씨 추출물의 제조공정을 도시하고 있다.Figure 2 shows a process for producing a high quality grape seed extract for functional food manufacturing raw materials from grape seeds.
도 3은 포도씨로부터 기능성화장품 제조 원료용 고품질의 포도씨 추출물의 제조공정을 도시하고 있다.Figure 3 shows a process for producing a high quality grape seed extract for the production of functional cosmetics from grape seeds.
본 발명은 고품질의 포도씨유 및 포도씨 추출물의 제조방법에 관한 것이다. 보다 상세하게는, 본 발명은 건조 포도씨를 분쇄, 전자레인지에서의 가열처리, 탈지과정을 거쳐 포도씨 원유와 탈지 포도씨박을 얻고, 포도씨 원유로부터 탈산, 탈색 및 탈취 공정을 거쳐 정제 포도씨유를 제조하고, 탈지 포도씨박으로부터 포도씨 에탄올 추출물을 얻어 이온수지 흡착 크로마토그래피를 실시함으로써 카테킨유도체 함유 고품질의 포도씨 추출물을 제조하는 방법에 관한 것이다.The present invention relates to a process for producing high quality grape seed oil and grape seed extract. More specifically, the present invention is obtained by pulverizing the dried grape seed, heat treatment in a microwave oven, degreasing to obtain the crude grape seed milk and skim grape seed cake, through the deoxidation, decolorization and deodorization process from the crude grape seed oil to produce purified grape seed oil And a method for producing a catechin derivative-containing high quality grape seed extract by obtaining grape seed ethanol extract from skim grape seed cake and performing ion resin adsorption chromatography.
최근 급격한 산업사회의 발전에 따른 환경오염의 가속화와 더불어 식생활 패턴의 서구화로의 변모로 육류 소비가 크게 증가하면서 암을 비롯한 심장병, 고혈압, 동맥경화증, 당뇨병 및 치매 등의 만성적인 퇴행성질환이 크게 증가하고 있다. 따라서 현재 이러한 만성적인 질환을 예방할 수 있는 천연물 유래의 새로운 생리활성물질을 개발하려는 연구가 활발히 진행되고 있으며, 특히 생체의 방어기구를 향상시켜 질병을 방지 및 회복시키거나, 면역기능 향상 및 노화 억제 등의 생체조절기능을 갖고 있는 천연항산화물질(natural antioxidants)에 대한 관심이 크게 고조되고 있다. 항산화물질(antioxidants)은 지방 및 지방을 함유한 식품의 자동산화에의한 산패를 억제해줄 뿐만 아니라 생체내에서 생성되는 활성산소라디컬(1O2, O- 2, H2O2,·OH)에 의한 지질과산화반응을 억제하여 암, 동맥경화증, 염증, 면역저하 및 노화를 예방해주는 생리활성물질로써 크게 각광을 받고 있다. 현재 부틸히드록시아니솔(butylated hydroxyanisole) 및 부틸히드록시톨루엔(butylated hydroxytoluene)와 같은 합성항산화와 α-토코페롤(tocopherol) 및 L-아스코르브산(ascorbic acid)과 같은 천연항산화제가 식품, 화장품 및 의약품 산업에서 널리 사용되고 있으나 합성항산화제가 지니고 있는 독성 및 발암성 등의 안전성이 문제시되면서 현재 보다 안전하고 효과있는 천연항산화제의 개발이 활발히 이루어지고 있다.Recently, due to the rapid development of industrial pollution and the rapid transformation of dietary patterns into Westernization, meat consumption has increased significantly, and chronic degenerative diseases such as cancer, heart disease, hypertension, arteriosclerosis, diabetes, and dementia have greatly increased. Doing. Therefore, researches are being actively conducted to develop new bioactive substances derived from natural products that can prevent such chronic diseases. Especially, by improving the defense mechanism of the living body, preventing and recovering diseases, improving immune function and suppressing aging, etc. There is a great interest in natural antioxidants having bioregulatory functions. Antioxidants not only suppress the rancidity caused by the automatic oxidation of fats and fat-containing foods, but also produce free radicals in vivo ( 1 O 2 , O - 2 , H 2 O 2 , .OH As a physiologically active substance that inhibits lipid peroxidation by), it prevents cancer, arteriosclerosis, inflammation, immunodeficiency and aging. Currently, synthetic antioxidants such as butylated hydroxyanisole and butylated hydroxytoluene and natural antioxidants such as α-tocopherol and L-ascorbic acid are used in the food, cosmetic and pharmaceutical industries. Although widely used in the field of safety, such as the toxicity and carcinogenic properties of synthetic antioxidants has been an issue, the development of safer and more effective natural antioxidants are actively being made.
포도(Vitis vinifera)는 갈대나무목 (Rhamnales) 포도과 (Vitaceae)에 속하는 낙엽성 덩굴식물로서 세계적으로 11속 약 700 여종이 분포되어 있으며, 주로 열대 및 아열대 지역에 자생하며 일부는 온대지방에까지 분포되어 있다. 포도는 2003년 현재 세계에서 거의 남한 크기인 약 7백 4십만 ha에서 5천 8백만톤 가량이 생산 되는 온대 과실 중에서는 가장 많이 재배되고 있는 과실의 하나이다(FAO, 2000). 한편, 2003년도 현재 국내의 포도 생산량은 376,430 MT으로서 감귤 다음으로 생산량이 많은 과실이며, 주로 미국종 (Vitis labrusca L.)인 캠벨얼리(Cambell Early) 품종이 대부분을 차지하고 있으며, 그 다음으로 거봉 및 샤르댕 (Sheridan)과 그 외 이들 상호간의 교잡종 (Vitis labruscana B.)이 재배되고 있다. 국내 포도의 주요 생산지로는 경북의 영천, 경산, 김천, 상주와 충북의 영동 지역이며 그 외 경기, 충남 및 강원지역에서도 재배되고 있다.Grape ( Vitis vinifera ) is a deciduous vine plant belonging to the Rhamnales vine family ( Vitaceae ), and has about 700 species in 11 genera worldwide, mainly native to tropical and subtropical regions, and partly to temperate regions. . Grapes are one of the most cultivated fruits of temperate fruit, producing about 58 million tons in about 4.6 million ha, almost the size of South Korea as of 2003 (FAO, 2000). On the other hand, as of 2003, grape production in Korea was 376,430 MT, which is the second largest fruit after citrus fruits, mainly the Campbell Early varieties, Vitis labrusca L., followed by Geobong and Sha. Sheridan and other hybrids ( Vitis labruscana B.) are being cultivated. Domestic grapes are produced in Yeongcheon, Gyeongsan, Gimcheon, Sangju and Chungbuk in Yeongcheon, Gyeongsangbuk-do, and are also grown in Gyeonggi, Chungnam and Gangwon.
포도는 당, 유기산 및 독특한 향기를 함유하고 있을 뿐만 아니라 안토시아닌 색소, 페놀산, 플라보노이드(flavonols. flavan-3-ols 및 flavanonols) 및 레즈베라트롤(resveratrol) 등의 항암, 항고혈압 및 항산화성 폴리페놀화합물을 함유하고 있어 포도 주스, 포도주 및 포도식초 등의 여러 가공식품의 소비가 크게 증가하고 있다(Renauds, S. et al. Lancet 339: 1523-1526, 1992; Kanner, J. et al. J. Agric Food Chem. 42: 64-69, 1994; Frankel, E.N., J. Agric Food Chem. 43: 890-894, 1995; Tanahashi, H. et al. Am. J. Enol. Vitic. 46: 405-409, 1995).Grapes contain sugars, organic acids and unique scents, as well as anticancer, antihypertensive and antioxidant polyphenols such as anthocyanin pigments, phenolic acids, flavonoids (flavonols. Flavan-3-ols and flavanonols) and resveratrol. The compound contains a significant increase in the consumption of various processed foods, such as grape juice, wine and grape vinegar (Renauds, S. et al . Lancet 339: 1523-1526, 1992; Kanner, J. et al. J. Agric Food Chem. 42: 64-69, 1994; Frankel, EN, J. Agric Food Chem. 43: 890-894, 1995; Tanahashi, H. et al. Am. J. Enol.Vitic. 46: 405-409 , 1995).
한편, 포도씨는 포도 중량의 약 3~5%를 차지하며 지방(9~12%), 단백질(8~12%) 및 헤미셀룰로오스(hemicellulose)와 같은 식이성섬유소(약 45%)를 다량 함유하고 있을 뿐만 아니라 Ca, Mg 및 P과 같은 무기질의 함량이 높다. 또한, 포도씨는 리놀레산과 같은 불포화지방산을 다량 함유하고 있을 뿐 아니라 식물성스테롤, 토코페놀 및 항암, 항고혈압 및 항산화성 카테킨류를 다량 함유하고 있어 기능성식품, 화장품 및 의약품의 소재로써 널리 사용되고 있다(Kinsella, J.E., Food Technol. 28: 58-60, 1974; Kinsella, J.E., Cosme. Toiletries 91: 19-24, 1976; Ricardo da Silva et al. Phytochemistry 30: 1259-1264, 1991).Grape seeds, on the other hand, account for about 3 to 5 percent of the weight of grapes and may contain large amounts of dietary fiber (about 45 percent) such as fat (9 to 12 percent), protein (8 to 12 percent), and hemicellulose. In addition, the content of minerals such as Ca, Mg and P is high. In addition, grape seed contains a large amount of unsaturated fatty acids such as linoleic acid, as well as a large amount of phytosterols, tocophenols and anticancer, antihypertensive and antioxidant catechins and is widely used as a material for functional foods, cosmetics and medicines (Kinsella , JE, Food Technol. 28: 58-60, 1974; Kinsella, JE, Cosme. Toiletries 91: 19-24, 1976; Ricardo da Silva et al . Phytochemistry 30: 1259-1264, 1991).
포도씨유는 기름 특유의 냄새와 맛이 없기 때문에 요리 후 재료의 맛을 깔끔하게 유지할 수 있으며, 발열점이 250℃로 일반 식용유보다 높아 고온에서 요리할 경우 음식이 타지 않는 장점이 있다(에스앤텍 식품뉴스 42호.‘포도씨오일’ 매력 웰빙족 ‘홀딱’, 메트로신문사, 10. 27, 2004). 현재 포도씨유는 압착법 및 용매추출법으로 생산되고 있으나 기름 회수율이 매우 낮아 다른 식물유에 비해 경제성이 떨어져 포도 생산량이 많은 이탈리아, 프랑스 및 호주 등 일부 나라에서만 생산되고 있을 뿐 국내에서는 거의 생산되고 있지 않다. 그러나 최근 포도씨의 여러 가지 생리적 및 약리적 효능이 점차 알려지면서 국내에서 포도즙 및 와인 가공산업이 활성화됨에 따라 여기서 부산물로 대량 얻어지는 포도씨의 효율적인 이용방안이 크게 요구되고 있으며, 특히 한칠레 FTA 협상 타결로 위기에 빠진 국내 포도 재배 농가를 살리고 값싼 수입 포도의 대량 유입에 따른 가격 폭락에 대처하기위해서는 국내산 포도씨를 이용한 고부가가치의 포도씨유 제조기술 개발이 필요한 실정이다.Grape seed oil does not have the smell and taste of oil, so the taste of ingredients can be kept clean after cooking, and the heating point is 250 ℃, which is higher than general cooking oil, and it does not burn food when cooked at high temperature (S & T Food News 42 Ho. 'Grape Seed Oil' Charm of the Well-being Family 'Cho', Metro Newspaper, Oct. 27, 2004). Currently, grape seed oil is produced by pressing and solvent extraction, but the oil recovery rate is very low compared to other vegetable oils, which is economical, and is produced only in some countries such as Italy, France, and Australia, where grape production is high. However, as the various physiological and pharmacological effects of grape seeds have become more recently known, as the grape juice and wine processing industries are activated in Korea, efficient utilization of grape seeds obtained as a by-product is greatly demanded. Especially, the Korea-FTA negotiations resulted in a crisis. It is necessary to develop high value-added grape seed oil manufacturing technology using domestic grape seeds to save the missing domestic grape farmers and cope with the price plunges caused by the influx of cheap imported grapes.
포도씨 추출물에는 5-20%의 카테킨화합물(proanthocyanidin, oligomeric and polymeric polyhydroxyflavan-3-ol units)를 함유하고 있으며, 그 중 대부분은 이량체, 삼량체 및 사양체 등의 올리고메릭 프로시아니딘 및 갈산이 에스테르화된 프로시아니딘 성분이며, 나머지 모노머릭 카테킨[(+)-카테킨 및 (-)-에피카테킨 및 (-)-에피카테킨 갈레이트] 성분으로 구성되어 있다. 그리고 올리고메릭 프로시아니딘 성분 중 55% 이상은 아직까지 확인되지 않은 폴리머릭 프로시아니딘 (more than five monomer units, polymerization degree 2.3-15.1 또는 2.4-16.7) 성분으로 구성되어 있으며, 그 이외에도 미량의 가수분해형 탄닌성분들이 함유되어 있다. 포도씨에 함유되어 있는 이들 카테킨화합물은 항암, 항돌연변이, 항간독, 항고혈압, 항염증, 항균 및 항산화작용 등 여러 가지 중요한 생리적작용(Ricardo, J.M. et al. J. Agric. Food Chem. 39: 1549-1552, 1991; Gali, H.U. et al. Planta Med. 60: 235-239, 1994; Tebib, K., J. Nutr. 124: 2451-2457, 1994; Bagchi, D. et al. Gen. Pharmacol. 30(5): 771-776, 1998; Palma, M. et al. J. Agric. Food Chem. 47: 5044-5048, 1999; Koga, T. et al. J. Agric. Food Chem. 47: 1892-1897, 1999; Yamaguchi, F. et al. J. Agric. Food Chem. 47: 2544-2548, 1999; Zhao, J., Carcinogenesis 20(9): 1737-1745, 1999; Yamakoshi, J. et al. Atherosclerosis 142: 139-149, 1999; Koga, T. et al. J. Agric. Food Chem. 47: 1892-1897, 1999; Castillo, J. et al. J. Agric. Food Chem. 48: 1738-1745, 2000; Shirataki, Y. et al., Anticancer Res. 20: 423-426, 2000; Fitzpatrick, D.F. et al. J. Agric. Food Chem. 48: 6384-6390, 2000; Sen, C.K. and Bagchi, D., Mol. Cell Biochem. 215: 1-7, 2001)을 지니고 있을 뿐만 아니라 항위궤양(Saito, M. et al. J. Agric. Food Chem. 46: 1460-1464, 1998), 피부 미백작용(Yamakoshi J & Tokutake S., Food Style 21 6(12):41-44, 2002), 및 눈 망막 보호작용(Yamakoshi, J. et al. J. Agric. Food Chem. 50: 4983-4988, 2002) 그리고 그 외 장의 유용미생물 증식효과(Tebib, K. et al. Nutrition Res. 16(1): 105-110, 1996)을 지니고 있어 현재 미국, 유럽, 일본, 호주 및 한국 등 국내외적으로 식이성 건강보조식품 및 기능성화장품소재로써 널리 이용되고 있다(Tokutake S & Yamakoshi J, New Food Industry 43(11): 1-9, 2001).Grape seed extract contains 5-20% of catechin compounds (proanthocyanidin, oligomeric and polymeric polyhydroxyflavan-3-ol units), most of which are esterified by oligomeric procyanidins and gallic acid such as dimers, trimers and specification bodies And the remaining monomeric catechins [(+)-catechin and (-)-epicatechin and (-)-epicatechin gallate] components. More than 55% of the oligomeric procyanidins are composed of polymeric procyanidins (more than five monomer units, polymerization degree 2.3-15.1 or 2.4-16.7) which have not yet been identified. It is contained. These catechin compounds contained in grape seeds have several important physiological effects such as anticancer, antimutagenic, antihepatic, antihypertensive, anti-inflammatory, antibacterial and antioxidant activity (Ricardo, JM et al . J. Agric. Food Chem. 39: 1549 -1552, 1991; Gali, HU et al. Planta Med. 60: 235-239, 1994; Tebib, K., J. Nutr. 124: 2451-2457, 1994; Bagchi, D. et al. Gen. Pharmacol. 30 (5): 771-776, 1998; Palma, M. et al. J. Agric.Food Chem. 47: 5044-5048, 1999; Koga, T. et al. J. Agric.Food Chem. 47: 1892 -1897, 1999; Yamaguchi, F. et al . J. Agric. Food Chem. 47: 2544-2548, 1999; Zhao, J., Carcinogenesis 20 (9): 1737-1745, 1999; Yamakoshi, J. et al Atherosclerosis 142: 139-149, 1999; Koga, T. et al. J. Agric. Food Chem. 47: 1892-1897, 1999; Castillo, J. et al. J. Agric. Food Chem. 48: 1738- 1745, 2000; Shirataki, Y. et al. , Anticancer Res. 20: 423-426, 2000; Fitzpatrick, DF et al . J. Agric.Food Chem. 48: 6384-6390, 2000; Sen, CK and Bagchi, D., Mol Cell Biochem 215:. . not 1-7, 2001) And not only as anti-peptic ulcer (Saito, M. et al J. Agric Food Chem 46:... 1460-1464, 1998), skin whitening (Yamakoshi J & Tokutake S., Food Style 21 6 (12): 41 -44, 2002), and eye retinal protective action (Yamakoshi, J. et al . J. Agric. Food Chem. 50: 4983-4988, 2002) and other useful microbial proliferation effects (Tebib, K. et al . Nutrition Res. 16 (1): 105-110, 1996) and are currently available in the United States, Europe, Japan, Australia, It is widely used as a dietary supplement and functional cosmetics in Korea and abroad (Tokutake S & Yamakoshi J, New Food Industry 43 (11): 1-9, 2001).
한편, 포도씨 추출물의 카테킨류은 떫은 맛 및 쓴맛을 지니고 있을 뿐 아니라 가공 및 저장 중 화학적 및 효소적 갈변반응에 의해 쉽게 흑갈색으로 변색되어 품질에 악영향을 미치기 때문에 현재 포도씨 추출물을 이용한 가공식품의 개발은 크게 제한을 받고 있다(Oszmianski, J. et al. J. Food Sci. 50: 1505-1506, 1985; Romeyer, F.M. et al. Phytochemistry 25: 219-221, 1986; Robichaud, J.L. and Noble, A.C., J. Sci. Food Agric. 53: 343-353, 1990). 따라서 포도씨 추출물이 지니고 있는 우수한 생리활성을 유지하면서 나쁜 맛을 개선하고 가공 중 카테킨성분의 품질변화를 최소한으로 줄일 수 있는 새로운 고품질의 포도씨 추출물 제조기술 개발이 필요하다.On the other hand, the catechins of grape seed extract not only have a bitter taste and bitter taste, but also easily change color to blackish brown by chemical and enzymatic browning reaction during processing and storage, thus adversely affecting the quality. (Oszmianski, J. et al . J. Food Sci. 50: 1505-1506, 1985; Romeyer, FM et al . Phytochemistry 25: 219-221, 1986; Robichaud, JL and Noble, AC, J. Sci. Food Agric. 53: 343-353, 1990). Therefore, it is necessary to develop a new high-quality grape seed extract manufacturing technology that can improve the bad taste and minimize the quality change of catechin components during processing while maintaining the excellent physiological activity of the grape seed extract.
현재까지 포도씨 추출물의 제조기술에 관한 연구로서 Ricardo da Silva 등은 (Phytochemistry 30: 1259-1264, 1991; J. Agric. Food Chem. 45: 1156-1160, 1997) 폴리아미드 칼럼크로마토그래피(polyamide 컬럼 chromatography)를 사용하여 포도씨의 메탄올추출물로부터 카테킨 및 프로시아니딘 성분을 순수 분리할 수 있는 방법을 보고한 바가 있으며, Kalhithraka 등(Phytochemical Analysis 6: 265-267, 1995)은 포도씨 페놀화합물의 추출에 필요한 최적 용매조건을 조사한 바가 있다. 또한, Kovacer 등(Contempory Agric. 39: 5-17, 1991), Castillo 등(J. Agric. Food Chem. 48: 1738-1745, 2000) 및 Takashi 등 (J. Agric. Food Chem. 50: 1254-1259, 2002)은 Amberlite XAD-7과 같은 이온수지를 이용하여 포도씨로부터 카테킨 및 프로시아니딘 성분을 효과적으로 분리할 수 있는 방법과 더불어 이와 유사한 연구보고(Kikkoman Co, Japan; 磐田化學工業(주), 일본 공개특허공보 제2001-292731호; Whiprowpdir(주), 일본 공개특허공보 제 2000-125823호; 해태제과(주), 한국공개특허공보 제2000-0037080호)가 많이 수행되어져 왔다. 또한, 포도씨 추출물이 지니고 있는 쓴맛을 개선하고자 탄나아제(tannase)와 같은 효소처리나 효모를 이용한 발효공학 기술개발이 활발히 이루어지고 있다(식품첨가물 공전, 식품의약품안전청, 문영사, 서울, pp 967-968, 2001; 일본특허, 2002-10-0292731). 이와같이 지금까지 포도씨 추출물의 제조기술 개발과 더불어 그를 이용한 기능성 식품 및 화장품의 개발에 관한 연구는 많이 수행되어져 온 반면, 고품질의 포도씨유 제조기술 개발에 관한 연구는 매우 미흡한 실정이다. To date, as a study on the manufacturing technology of grape seed extract, Ricardo da Silva et al. ( Phytochemistry 30: 1259-1264, 1991; J. Agric. Food Chem. 45: 1156-1160, 1997) polyamide column chromatography Has been reported to purely separate catechin and procyanidin components from methanol extracts of grape seeds, and Kalhithraka et al. ( Phytochemical Analysis 6: 265-267, 1995) reported that the optimum solvent conditions for the extraction of phenolic grape seeds were investigated. Has been investigated. See also Kovacer et al. ( Contempory Agric . 39: 5-17, 1991), Castillo et al. ( J. Agric. Food Chem. 48: 1738-1745, 2000) and Takashi et al. ( J. Agric. Food Chem. 50: 1254- 1259, 2002) reported the use of an ionic resin such as Amberlite XAD-7 to effectively separate catechin and procyanidin components from grape seeds, as well as similar research reports (Kikkoman Co, Japan; Yuda Chemical Co., Ltd., Japan Patent Publication). Japanese Unexamined Patent Publication No. 2001-292731; Whiprowpdir Co., Ltd., Japanese Unexamined Patent Publication No. 2000-125823; Haitai Confectionery Co., Ltd., Korean Unexamined Patent Publication No. 2000-0037080). In addition, in order to improve the bitter taste of grape seed extract, fermentation engineering technology has been actively developed using enzyme treatment such as tannase or yeast (Food Additives, Korea Food and Drug Administration, Moonyoungsa, Seoul, pp 967). -968, 2001; Japanese Patent, 2002-10-0292731). As described above, researches on the development of manufacturing technology of grape seed extract and the development of functional foods and cosmetics using the same have been conducted, but research on the development of high quality grape seed oil manufacturing technology is very insufficient.
따라서, 본 발명의 목적은 항암, 항고혈압 및 항노화활성을 지니고 있는 고품질의 포도씨유와 포도씨 추출물을 제조하는 개선된 방법을 제공하고자 한다.Accordingly, it is an object of the present invention to provide an improved method for producing high quality grape seed oil and grape seed extract having anticancer, antihypertensive and anti-aging activity.
본 발명의 상기 목적은 분쇄한 건조 포도씨를 마이크로파 처리한 후 노르말-헥산으로 탈지하여 포도씨 원유와 탈지 포도씨박을 얻고난 후, 포도씨 원유는 탈산, 탈색 및 탈취 공정을 거치면서 정제 포도씨유를 제조하고, 탈지 포도씨박은 건조한 후 에탄올수용액을 가하여 열탕 추출한 후 여과 및 농축하여 포도씨 에탄올 추출물을 얻고난 후, 이온수지 흡착 크로마토그래피를 이용하여 카테킨화합물을 함유한 고품질의 포도씨 추출물을 제조함으로써 달성하였다.The object of the present invention is to microwave the pulverized dry grape seed and then degreased with normal-hexane to obtain grape seed crude oil and skim grape seed cake, the grape seed crude oil is subjected to the process of deoxidation, decoloration and deodorization to produce purified grape seed oil In addition, the skim grape seed cake was dried by adding an ethanol aqueous solution, followed by extraction with hot water, followed by filtration and concentration to obtain a grape seed ethanol extract, and then using ion resin adsorption chromatography to obtain a high quality grape seed extract containing a catechin compound.
이하, 본 발명의 구성을 구체적으로 설명한다. EMBODIMENT OF THE INVENTION Hereinafter, the structure of this invention is demonstrated concretely.
본 발명은 포도씨의 마이크로파 처리단계, 마이크로파 처리에 따른 포도씨유 및 에탄올 추출물 제조 및 수율 측정 단계; 포도씨유의 지방산 조성 함량 측정 단계; 건조 포도씨로부터 정제 포도씨유 제조 단계; 포도씨 추출물의 총카테킨 및 4가지 카테킨 화합물의 함량 측정 단계; 탈지 포도씨박으로부터 카테킨화합물 함유 고품질의 포도씨 추출물을 제조하는 단계로 구성된다.The present invention is a microwave treatment step of grape seed, grape seed oil and ethanol extract preparation and yield measurement step according to the microwave treatment; Measuring fatty acid composition content of grapeseed oil; Preparing purified grape seed oil from dry grape seeds; Measuring the total catechin and four catechin compounds in the grape seed extract; It consists of preparing a high quality grape seed extract containing catechin compound from skim grape seed cake.
본 발명은 건조 포도씨를 분쇄하여 1분간 마이크로파 처리한 후 노르말-헥산으로 탈지하고 얻은 포도씨 원유를 탈검(0.15% 인산), 탈산(5% NaOH 용액) 및 탈취(수증기증류, 220℃, 2시간, 5 mmHg) 공정을 거쳐 포도씨유를 제조하는 단계를 포함하는 고품질의 포도씨유의 제조방법을 제공한다.The present invention is pulverized dry grape seed, microwave treatment for 1 minute, then degreased with normal-hexane, grape grape oil obtained by degumming (0.15% phosphoric acid), deoxidation (5% NaOH solution) and deodorization (steam distillation, 220 ℃, 2 hours, 5 mmHg) provides a process for producing high quality grape seed oil comprising the step of producing grape seed oil.
또한, 본 발명은 건조 포도씨를 분쇄하여 1분간 마이크로파 처리한 후 먼저 노르말-헥산으로 탈지하고 얻은 탈지 포도씨박을 20% 에탄올수용액으로 가열추출한 후 여과 및 농축하여 탈지 포도씨박 에탄올 추출물을 얻고 이것을 다시 이온수지 흡착 크로마토그래피를 이용하여 20% 에탄올수용액으로 용출하여 기능성식품 제조 원료용으로 사용가능한 카테킨유도체 함유 고품질의 포도씨 추출물을 제조하는 방법을 제공한다.In addition, the present invention is pulverized dry grape seed for 1 minute and then microwave treatment, and then first degreasing with normal-hexane degreasing grape seed cake obtained by heating and extracting with 20% ethanol aqueous solution, filtered and concentrated to obtain a degreasing grape seed ethanol extract and ions again The present invention provides a method for preparing a high quality grape seed extract containing a catechin derivative which can be used as a raw material for preparing functional foods by eluting with 20% ethanol aqueous solution using resin adsorption chromatography.
또한, 본 발명은 건조 포도씨를 분쇄하여 1분간 마이크로파 처리한 후 먼저 노르말-헥산으로 탈지하고 얻은 탈지 포도씨박을 80% 에탄올수용액으로 가열추출한 후 여과 및 농축하여 탈지 포도씨박 에탄올 추출물을 얻고 이것을 다시 이온수지 흡착 크로마토그래피를 이용하여 60% 에탄올수용액으로 각각 용출하여 기능성화장품 제조 원료용으로 사용가능한 카테킨유도체 함유 고품질의 포도씨 추출물을 제조하는 방법을 제공한다.In addition, the present invention is pulverized dry grape seed for 1 minute after microwave treatment, first degreasing with normal-hexane degreasing grape seed cake obtained by heating and extracting with 80% ethanol aqueous solution, filtered and concentrated to obtain a degreasing grape seed ethanol extract and this again ions The present invention provides a method for preparing high-quality grape seed extracts containing catechin derivatives which can be used as raw materials for functional cosmetic preparation by eluting with 60% ethanol aqueous solution using resin adsorption chromatography.
이하, 본 발명의 구체적인 구성을 실시예를 들어 상세히 설명하지만 본 발명의 권리범위가 하기 실시예에만 제한되는 것은 아니다.Hereinafter, the specific configuration of the present invention will be described in detail with reference to Examples, but the scope of the present invention is not limited only to the following Examples.
[실시예]EXAMPLE
실시예 1: 포도씨에서 고품질의 포도씨유 제조Example 1 Preparation of High Quality Grape Seed Oil from Grape Seeds
포도씨에서 고품질의 포도씨유를 제조하기 위해 포도씨의 최적 가공처리조건을 확립하기 위해 3가지 열처리(볶음, 찜 및 전자레인지 처리)에 따른 포도씨유 및 추출물의 수율의 변화를 측정한 다음 가열처리에 따른 포도씨유의 지방산 조성 함량 및 포도씨 추출물의 카테킨 함량을 측정하고, 탈검, 탈산 처리에 따른 포도씨유의 수율변화, 수증기증류에 의한 포도씨유의 탈취 처리온도 및 시간에 따른 유지의 수율변화를 측정하였다. 이로부터 확립된 제조공정에 따라 포도씨유를 제조하고 이의 이화학적 품질 특성을 조사하였다. In order to establish high quality grape seed oil from grape seed, the change of yields of grape seed oil and extract were measured by three heat treatments (roasting, steaming and microwave treatment) to establish the optimum processing condition of grape seed. The fatty acid composition of grapeseed oil and the catechin content of grapeseed extract were measured, and the yield change of grapeseed oil by degumming and deoxidation treatment, and the change in the yield of oilseeds with deodorization treatment temperature and time by steam distillation were measured. Grape seed oil was prepared according to the manufacturing process established therefrom and its physicochemical quality characteristics were investigated.
실험예 1: 열처리에 따른 포도씨유 및 추출물의 수율변화Experimental Example 1: Change in yield of grape seed oil and extracts by heat treatment
경북 상주 모동에서 노지 재배한 캠벨얼리 포도로부터 얻어진 포도씨를 볶음기(곡물온도 100℃, 솥온도 200℃, 동광유압, Korea)에 넣고 3분, 5분 및 10분간 볶음(roasting) 처리하거나 포도씨를 분쇄한 후 찜(steaming) 냄비에 넣고 10분, 30분 및 60분간 찜 처리하였다. 그리고 분쇄한 포도씨를 전자레인지(Samsung RE-C200T, frequency 2450 MHz, pulsed variable MW power output from 90 to 700 W by a timer, inner volume 21.8 L, Samsung, Korea)에 넣고 1분, 3분 및 5분간 마이크로파를 처리하였다.Grape seeds obtained from Campbell early grapes grown in Modong, Gyeongbuk, Korea were roasted (grain temperature 100 ℃, pot temperature 200 ℃, Dongkwang hydraulic, Korea) for 3 minutes, 5 minutes and 10 minutes roasting or pulverized grape seeds. After putting in a steaming pot (steaming) was steamed for 10 minutes, 30 minutes and 60 minutes. The pulverized grape seeds are placed in a microwave oven (Samsung RE-C200T, frequency 2450 MHz, pulsed variable MW power output from 90 to 700 W by a timer, inner volume 21.8 L, Samsung, Korea) for 1 minute, 3 minutes, and 5 minutes. Microwaves were processed.
상기의 3가지 열처리에 따른 포도씨유 및 추출물의 수율을 알아보기 위해 건조 포도씨 10g을 클로로포름-메탄올(2:1, v/v) 용액 100mL로 초음파추출기에서 2시간 상온에서 2회 반복 추출한 후 여과 및 감압농축하여 포도씨유를 얻고 다시 노르말-헥산 10mL로 용해시킨 후 여과하여 잔사를 제거한 후 농축하여 부분정제 포도씨유를 얻었다. 상기 단계에서 얻은 포도씨 탈지박을 80% 에탄올수용액 100mL로 열탕하에서 2시간 동안 2회 반복 추출한 후 여과 및 감압농축하여 포도씨 에탄올 추출물을 얻었다. To determine the yield of grape seed oil and extracts according to the three heat treatments, 10 g of dry grape seed was extracted twice with 100 mL of chloroform-methanol (2: 1, v / v) solution at an ultrasonic extractor for 2 hours at room temperature, followed by filtration and Concentrated under reduced pressure, grape seed oil was obtained, and the resultant was dissolved in 10 mL of normal-hexane, filtered to remove the residue, and concentrated to obtain partially purified grape seed oil. The grape seed skim foil obtained in the above step was repeatedly extracted twice with boiling water for 100 hours with 100 mL of 80% ethanol aqueous solution, filtered and concentrated under reduced pressure to obtain a grape seed ethanol extract.
모든 측정치는 3회 반복 측정한 후 평균값±S.D.로 나타내었다.All measurements were expressed as mean ± S.D. After three repeated measurements.
각 항목의 측정치간에 통계학적 유의성 (p<0.05)이 있음.There is statistical significance ( p <0.05) between the measurements of each item.
*대조구에 대한 % 변화 * % Change for control
표 1에 나타난 바와 같이, 찜 및 마이크로파 처리에 의해 포도씨유의 수율은 대조구(비열처리)에 비해 각각 13% 및 6% 증가한 반면, 볶음 처리구에서는 5분까지 약 8% 증가하였으나 10분에는 그 보다 약간 감소하여 약 3% 증가하였다. As shown in Table 1, the yield of grapeseed oil increased by 13% and 6%, respectively, by steaming and microwave treatment, compared to the control (non-heat treatment), while the roasting treatment increased by about 8% up to 5 minutes, but slightly after 10 minutes. Decreased by about 3%.
한편, 포도씨 추출물의 수율을 보면 볶음 처리구에서는 처리시간이 경과됨에 따라 증가하여 10분까지 5% 증가한 반면, 찜 처리구에서는 처리시간이 경과함에 따라 감소하여 1시간까지 19% 감소하였다. 그리고 마이크로파 처리구에서는 처리 1분까지 약 17% 증가하였으나 그 이후 감소하여 처리 5분에는 8% 증가하였다. On the other hand, the yield of the grape seed extract was increased as the treatment time was increased by 5 minutes up to 10 minutes in the roasting treatment, while the steaming treatment decreased by 19 hours and decreased by 19% until the treatment time. The microwave treatment increased about 17% until one minute of treatment, but decreased after that, and increased by 8% at five minutes of treatment.
이와같이 3가지 다른 가열처리 중 마이크로파 처리는 포도씨유 및 추출물의 수율을 동시에 높일 수 있는 가열처리 가공방법임을 알 수 있었다. In this way, the microwave treatment of the three different heat treatment was found to be a heat treatment process that can simultaneously increase the yield of grape seed oil and extract.
실험예 2: 포도씨의 가열처리에 따른 포도씨유의 지방산 조성 함량 측정Experimental Example 2 Measurement of Fatty Acid Composition Content of Grape Seed Oil by Heating Treatment of Grape Seed Oil
건조 포도씨 100g을 분쇄한(20-40 mesh) 후 여기에 0.01% BHT(부틸히드록시톨루엔, Jusei Chem. Co., Ltd. Japan)와 노르말-헥산 500mL를 가하여 30℃에서 3시간 동안 ultrasonic cleaner(Bransonic 5210R-DTH, USA)에서 2회 반복 추출한 후 여과 및 농축하여 포도씨유을 얻었다. 다음, 포도씨유(100mg)를 6% H2SO4 (in MeOH) 10mL로 메틸화시킨 후 GC(Hewlett-Packard 6890 series, USA)를 사용하여 지방산을 분석하였다. 이때 컬럼은 SupelcowaxTM-10을, 컬럼 온도는 100℃(5분간 유지시킨 후 → 4℃/min(승온) → 220℃에서 20분간 유지), 주입 온도는 250℃, 검출기는 FID (Flame Ionized Detector, 260℃) 감지기 그리고 가스운반선으로는 N2 (52.5 mL/min)을 각각 사용하였다. 포도씨의 3가지 다른 가열처리에 따른 포도씨유의 지방산조성 함량 변화를 측정한 결과는 표 2에 나타내었다.After grinding 100 g of dried grape seed (20-40 mesh), 0.01% BHT (butylhydroxytoluene, Jusei Chem. Co., Ltd. Japan) and 500 mL of normal-hexane were added thereto, followed by ultrasonic cleaner (30 hours at 30 ° C). Bransonic 5210R-DTH, USA) was extracted twice, filtered and concentrated to give grape seed oil. Next, grapeseed oil (100 mg) was methylated with 10 mL of 6% H 2 SO 4 (in MeOH), and fatty acids were analyzed using Hewlett-Packard 6890 series, USA (GC). At this time, the column is Supelcowax TM -10, the column temperature is maintained at 100 ℃ (after 5 minutes → 4 ℃ / min (warm temperature) → 220 ℃ 20 minutes), the injection temperature is 250 ℃, the detector is FID (Flame Ionized Detector , 260 ℃) and N 2 (52.5 mL / min) were used for the gas carrier. The results of measuring the fatty acid composition of grape seed oil according to three different heat treatments of grape seeds are shown in Table 2.
모든 측정치는 3회 반복 측정한 후 평균값±S.D.로 나타내었다.All measurements were expressed as mean ± S.D. After three repeated measurements.
(+)-각 항목의 측정치간에 통계학적 유의성 (p<0.05)이 있음.(+)-There is statistical significance ( p <0.05) between measurements of each item.
표 2에 나타난 바와 같이, 포도씨유의 지방산조성을 보면 미리스트산 (0.1%), 팔미트산 (10.2%), 팔미톨레인산 (0.2%), 스테아르산 (2.0%), 올레산 (22.5%), 리놀레산 (64.0%), 및 리놀렌산 (0.4%)로 구성되어 있었으며, 3가지 열처리 (볶음, 찜 및 마이크로파)에 따른 포도씨유의 지방산조성 함량 변화는 거의 없음을 알 수 있었다. As shown in Table 2, the fatty acid composition of grape seed oil shows myristic acid (0.1%), palmitic acid (10.2%), palmitoleic acid (0.2%), stearic acid (2.0%), oleic acid (22.5%), It was composed of linoleic acid (64.0%) and linolenic acid (0.4%), it can be seen that there is little change in the fatty acid composition content of grape seed oil by three heat treatments (roasting, steaming and microwave).
실험예 3: 포도씨 추출물의 총카테킨 및 4가지 카테킨 조성 함량 측정Experimental Example 3: Determination of total catechin and four catechin composition contents of grape seed extract
포도씨 추출물의 총카테킨 함량은 식품공전(식품의약품 안전청, 문영사, pp The total catechin content of the grape seed extract was determined by the Food Code (KFDA, Moon Youngsa, pp.
330-331, 2000)에 따라 바닐린비색법에 따라 측정하였으며, 아울러 4가지 카테킨 조성 함량은 최 등(한국식품과학회지, 35: 576-585, 2003)의 방법에 따라 HPLC에 의해 측정하였다. 3가지 가열처리에 따른 포도씨의 총카테킨 함량 변화를 측정한 결과는 표 3에 나타내었다. 330-331, 2000) was measured according to vanillin colorimetric method, and four catechin composition contents were measured by HPLC according to the method of Choi et al. (Korean Food Science Society, 35: 576-585, 2003). Table 3 shows the results of measuring the total catechin content of grape seeds according to the three heat treatments.
모든 측정치는 3회 반복 측정한 후 평균값±S.D.로 나타내었다.All measurements were expressed as mean ± S.D. After three repeated measurements.
각 항목의 측정치간에 통계학적 유의성 (p<0.05)이 있음.There is statistical significance ( p <0.05) between the measurements of each item.
*대조구에 대한 % 변화 * % Change for control
표 3에서 보는 바와같이, 3가지 열처리 중 마이크로파 처리를 제외하고 볶음 및 찜 처리에 따라 포도씨의 총카테킨 함량은 크게 감소하였다. 그러나 마이크로파 처리 1분 동안 총카테킨 함량은 대조구에 비해 약 3% 증가하였으나 그 이후 시간이 경과함에 따라 함량이 크게 감소하였다. 이와같이 포도씨의 볶음 및 찜 처리에 비해마이크로파 처리는 포도씨의 주된 생리활성물질인 총카테킨의 추출 수율을 향상시킬 수 있음을 알 수 있었다. As shown in Table 3, the total catechin content of grape seeds was significantly reduced by roasting and steaming, except for microwave treatment during the three heat treatments. However, the total catechin content was increased by 3% compared to the control during 1 minute of microwave treatment, but the content decreased significantly with time. In this way, compared with the roasting and steaming of grape seeds, it can be seen that microwave treatment can improve the extraction yield of total catechin, the main bioactive substance of grape seeds.
또한, 3가지 열처리에 따른 포도씨의 4가지 카테킨 조성 함량 변화를 측정한 결과는 표 4에 나타내었다.In addition, the results of measuring the change in the content of four catechin composition of grape seeds according to the three heat treatments are shown in Table 4.
모든 측정치는 3회 반복 측정한 후 평균값±S.D.로 나타내었다.All measurements were expressed as mean ± S.D. After three repeated measurements.
각 항목의 측정치간에 통계학적 유의성 (p<0.05)이 있음.There is statistical significance ( p <0.05) between the measurements of each item.
*카테킨 + 프로시아니딘 B2 + (-)-에피카테킨 + (-)-에피카테킨 갈레이트 - catechin procyanidin B 2 + + (-) - epicatechin + (-) - epicatechin gallate
표 4에서 보는 바와같이, 볶음 및 찜 처리 동안 4가지 카테킨 성분의 함량은 처리시간이 경과함에 따라 대조구에 비해 크게 감소한 반면, 마이크로파 처리구에서는 4가지 카테킨 성분 (프로시아니딘 B2를 제외하고)의 함량은 1분까지는 다소 증가한 후 그 이후 감소하였다. 이와같이 마이크로파 처리는 볶음 및 찜 처리에 비해 포도씨의 주된 생리활성물질인 총카테킨 및 4가지 카테킨성분의 추출 수율을 향상시킬 수 있음을 알 수 있었다.As shown in Table 4, the contents of the four catechin components during the roasting and the steaming treatment decreased significantly compared to the control as the treatment time progressed, whereas the contents of the four catechin components (except procyanidine B 2 ) in the microwave treatment group It increased slightly until 1 minute and then decreased. In this way, the microwave treatment was found to improve the extraction yield of total catechin and four catechin components, which are the main bioactive substances of grape seeds, compared to the roasting and steaming treatment.
실험예 4: 탈검처리에 따른 포도씨유 수율의 변화 측정Experimental Example 4: Measurement of grape seed oil yield change by degumming treatment
헥산으로 추출하여 얻어진 포도씨 원유에 함유된 인지질 및 수지를 제거하기위한 최적 탈검 처리조건을 설정하기위해 인산 처리농도에(이때 온도 85~95℃) 따른 포도씨 원유 수율의 변화를 측정한 결과는 표 5에 나타내었다.Obtained by extraction with hexane In order to set the optimum degumming treatment conditions for removing the phospholipids and resins contained in the crude grape seed crude oil, the results of the measurement of the grape seed crude oil yield according to the phosphate concentration (the temperature of 85-95 ° C) are shown in Table 5.
표 5에서 보는 바와같이, 인산 처리농도를 0.05%-0.2%까지 증가시키면서 포도씨 원유를 탈검처리한 후 원심분리하여 얻어진 포도씨유의 수율을 측정한 결과 인산 농도가 증가할수록 기름 수율은 다소 감소하였으며, 특히 0.2% 농도에서는 다소 크게 감소하였다. 따라서 포도씨 원유의 탈검 처리시 최적 인산 농도는 0.2% 이하에서 실시하는 것이 바람직함을 알 수 있었다.As shown in Table 5, the yield of grape seed oil obtained by centrifugation after degumming the grape seed oil while increasing the phosphate concentration up to 0.05% -0.2% showed that the oil yield decreased slightly as the phosphate concentration increased. At 0.2% concentration, the decrease was somewhat large. Therefore, it was found that the optimum phosphoric acid concentration at the time of degumming treatment of grape seed crude oil is preferably performed at 0.2% or less.
실험예 5: 탈산처리에 따른 포도씨유의 수율, 산가 및 과산화물가의 변화 측정Experimental Example 5 Measurement of Changes in Yield, Acid Value and Peroxide Value of Grape Seed Oil by Deoxidation Treatment
헥산으로 추출하여 얻어진 포도씨 원유에 함유된 유리지방산을 제거하기위한 최적 탈산처리조건을 설정하기위해 NaOH 농도별 및 처리량에 따른 포도씨 원유의 수율, 산가 및 과산화물가의 변화를 측정한 결과는 표 6 및 표 7에 각각 나타내었다. 이때 산가(acid value, AV) 및 과산화물가(peroxide value, POV)의 측정은 식품공전시험법(식품의약품안전청, 문영사, 서울, 2003)에 따라 각각 실시하였다.In order to set the optimum deoxidation condition for removing free fatty acid contained in grape seed crude oil extracted by hexane, the results of measuring the yield, acid value and peroxide value of grape seed crude oil according to NaOH concentration and throughput were measured. 7 is shown respectively. At this time, the acid value (AV) and peroxide value (POV) were measured according to the Food Code Test Method (Food and Drug Administration, Moonyoungsa, Seoul, 2003).
표 6에서 보는 바와같이, NaOH 농도를 1%-10%까지 증가시키면서 포도씨 원유를 탈산처리한 결과 NaOH 농도가 증가할수록 기름 수율은 감소하였으며, 특히 10% NaOH 용액에서는 크게 감소하였다. 다음, 헥산으로 추출한 포도씨 원유의 산가 및 과산화물가는 각각 4.81 및 18.72 이었으나 NaOH 처리농도를 1%에서 5%까지 증가할수록 산가 및 과산화물가는 각각 감소하여 5% NaOH 처리시 각각 2.24 및 15.44로 낮아졌다. 그러나 10% NaOH 처리시에는 산가 및 과산화물가는 각각 1.72 및 14.15로 5% NaOH 처리구에 비해 다소 낮아졌으나 기름 수율은 대조구에 비해 48.4%로 크게 낮아졌다. 따라서 포도씨유의 수율 및 화학적시험(산가 및 과산화물가) 결과를 미루어 볼때 5% NaOH 처리가 포도씨 원유의 탈산처리의 최적 농도임을 알 수 있었다.As shown in Table 6, as the NaOH concentration was increased to 1% -10%, the oil yield decreased as the NaOH concentration increased, especially in the 10% NaOH solution. Next, the acid and peroxide values of the grape seed crude oil extracted with hexane were 4.81 and 18.72, respectively, but as the NaOH concentration increased from 1% to 5%, the acid and peroxide values decreased to 2.24 and 15.44, respectively. However, in 10% NaOH treatment, the acid value and peroxide value were 1.72 and 14.15, respectively, slightly lower than those of the 5% NaOH treatment, but the oil yield was significantly lower to 48.4% than the control. Therefore, the results of the grape seed oil yield and chemical test (acid value and peroxide value) showed that 5% NaOH treatment was the optimal concentration for deoxidation of crude oil of grape seed.
한편, 표 7에서 보는 바와같이, 5% NaOH 처리량을 10mL에서 70mL까지 증가할수록 산가 및 과산화물가는 동시에 감소하여 5% NaOH 70mL 처리시 각각 1.74 및 15.05로 낮아졌다. 그러나 5% NaOH 용액을 100mL 처리시에는 산가 및 과산화물가는 70 mL 처리시 보다 다소 낮아졌으나 기름 수율은 대조구에 비해 49.2%로 크게 낮아졌다. 따라서 포도씨유의 수율 및 화학적시험(산가 및 과산화물가) 결과를 미루어 볼 때 포도씨 원유의 탈산처리시 5% NaOH 용액의 사용량은 70mL가 가장 적절함을 알 수 있었다.On the other hand, as shown in Table 7, the increase in 5% NaOH throughput from 10mL to 70mL decreased the acid value and peroxide value at the same time lowered to 1.74 and 15.05 when treated with 5% NaOH 70mL respectively. However, the acid value and peroxide value of 100 mL of 5% NaOH solution were slightly lower than that of 70 mL, but the oil yield was significantly lower than that of the control (49.2%). Therefore, from the yield and chemical tests (acid value and peroxide value) of grape seed oil, it was found that the most suitable amount of 5% NaOH solution for the deoxidation of grape seed oil was 70mL.
실험예 6: 수증기증류에 의한 포도씨유의 탈취 처리온도에 따른 유지의 수율, 산가 및 과산화물가의 변화 측정Experimental Example 6 Measurement of Changes in Oil Yield, Acid Value and Peroxide Value According to Deodorization Treatment Temperature of Grape Seed Oil by Steam Distillation
앞서 탈검 및 탈산 처리된 포도씨 원유에 미량으로 함유된 노르말-헥산, 유리지방산 뿐만 아니라 이미 및 이취 등을 제거하기위한 최적 탈취조건을 설정하기위해 수증기증류 정치를 이용하여 온도별(220~250℃, 압력 3~5 mmHg 이하, 2시간) 포도씨 원유의 수율, 산가 및 과산화물가의 변화를 측정한 결과는 표 8에 나타내었다.previously Degumming and In order to set the optimum deodorization condition to remove not only normal-hexane and free fatty acid contained in trace amount of deoxidized grape seed crude oil, but also odor and odor, steam distillation stationary was used for each temperature (220 ~ 250 ℃, pressure 3 ~ 5 mmHg or less, 2 hours) The results of measuring the changes in yield, acid value and peroxide value of grape seed crude oil are shown in Table 8.
표 8에서 보는 바와 같이, 탈취 처리전의 포도씨 원유의 산가 및 과산화물가는 각각 1.74 및 15.05 이었으나 탈취 처리 온도가 증가할수록 포도씨유의 수율은 점차 감소하였으며, 특히 230℃에서 다소 크게 감소하였다. 그리고 산가 및 과산화물가는 동시에 감소하여 처리 220℃까지 각각 0.87 및 12.02으로 낮아졌다. 그러나 처리 230℃에서 포도씨유의 산가 및 과산화물가는 처리 220℃보다 크게 차이가 나지 않는 반면, 기름 수율은 다소 크게 낮아졌다. 따라서 수증기증류에 의한 부분 정제한 포도씨유의 탈취 처리온도는 220℃가 가장 적절함을 알 수 있었다.As shown in Table 8, the acid value and peroxide value of the grape seed crude oil before deodorization treatment were 1.74 and 15.05, respectively, but the yield of grape seed oil gradually decreased with increasing the deodorization treatment temperature, especially at 230 ° C. And the acid value and peroxide value decreased simultaneously and lowered to 0.87 and 12.02, respectively, up to treatment 220 ° C. However, the acid value and peroxide value of grapeseed oil at treatment 230 ° C. did not differ significantly from treatment 220 ° C., while the oil yield was somewhat lower. Therefore, the deodorization treatment temperature of partially purified grape seed oil by steam distillation was found to be the most appropriate.
실험예 7: 수증기증류에 의한 포도씨유의 탈취 처리시간에 따른 유지의 수율, 산가 및 과산화물가의 변화 측정Experimental Example 7 Measurement of Changes in Oil Yield, Acid Value and Peroxide Value According to Deodorization Treatment Time of Grape Seed Oil by Steam Distillation
최적 탈취 조건을 설정하기위해 수증기증류(온도; 220℃, 압력: 3~5 mmHg 이하) 시간별 (1~5 시간) 포도씨 원유의 수율, 산가 및 과산화물가의 변화를 측정한 결과는 표 9에 나타내었다.Steam distillation (temperature; 220 ℃, pressure: 3 ~ 5 mmHg) to change the yield, acid value and peroxide value of grape seed crude oil by time (1-5 hours) to set the optimum deodorization condition are shown in Table 9. .
표 9에서 보는 바와 같이, 탈취 처리전의 포도씨 원유의 산가 및 과산화물가는 각각 1.74 및 15.05 이었으나 탈취 처리시간이 경과할수록 산가 및 과산화물가는 동시에 감소하여 처리 2시간까지 각각 0.64 및 12.43으로 낮아졌다. 그러나 처리 2시간 이후 포도씨유의 산가 및 과산화물가는 처리 2시간 보다 크게 차이가 나지 않는 반면, 기름 수율은 다소 크게 낮아졌다. 따라서 수증기증류에 의한 부분 정제한 포도씨유의 탈취 처리시간은 2시간이 가장 적절함을 알 수 있었다.As shown in Table 9, the acid value and peroxide value of the grape seed crude oil before deodorization treatment were 1.74 and 15.05, respectively, but as the deodorization treatment time elapsed, the acid value and the peroxide value decreased simultaneously and lowered to 0.64 and 12.43, respectively, up to 2 hours of treatment. However, the acid value and peroxide value of grapeseed oil after 2 hours of treatment were not significantly different than 2 hours of treatment, while the oil yield was slightly lower. Therefore, the deodorization treatment time of the partially purified grape seed oil by steam distillation was found to be 2 hours.
제조예 1: 건조 포도씨로부터 정제 포도씨유 제조Preparation Example 1 Preparation of Purified Grape Seed Oil from Dry Grape Seeds
상기로부터 확립된 포도씨 원유 정제공정을 바탕으로 포도씨로부터 고품질의 포도씨유 제조공정을 도 1에 나타내었으며, 이를 상세히 설명하자면,Based on the grape seed crude oil refining process established above, a high quality grape seed oil manufacturing process is shown in FIG. 1, which will be described in detail.
건조 포도씨(1kg, 수분 함량 10%)을 분쇄기로 30~50 mesh로 분쇄한 다음 전자레인지에서 1분간 마이크로파 처리한 후 방냉하고 여기에 노르말-헥산(5kg)을 가하여 환류냉각기가 부착된 추출장치에서 70~80℃로 가열하면서 2시간 기름을 추출한 후 여과하여 헥산추출액과 포도씨 탈지박을 각각 얻었다. 다음, 위의 추출과정을 2회 반복 실시한 후 얻어진 헥산추출액을 40℃ 이하에서 감압농축하여 포도씨 원유(80~85g, 산가: 4.90, 과산화물가: 20.42)를 얻었다. 다음, 포도씨 원유를 미리 85~95℃로 가온한 수욕상에서 5분간 교반한 후 여기에 0.1% 인산(포도씨유 100g 에 대해)을 가하여 고속으로 3분간 믹서하여 탈검처리 후 원심분리하여(5,000 rpm, 20분) 얻어진 상등액에 다시 동량의 5% NaOH 용액 15mL를 가하여 3분간 교반하면서 탈산처리한 후 방냉하고 다시 원심분리하여 상층의 기름추출액을 얻었다. 여기에 활성백토와 활성탄을 2:1로 혼합한 과립 5g을 넣고 90~100℃에서 감압(50 mmHg 이하)하에서 1시간 교반하면서 탈색처리한 후 감압여과하여 포도씨유를 얻었다. 다음, 마지막으로 포도씨유를 탈취하기위해 수증기증류 장치를 이용하여 220~230℃, 감압(3~5 mmHg 이하)하에서 2시간 동안 탈취하여 기름에 존재하는 미량의 노르말-헥산과 이미 및 이취를 완전히 제거한 후 최종적으로 정제 포도씨유(55~65g)을 조제하였다.Dry grape seed (1kg, water content 10%) was crushed into 30 ~ 50 mesh using a grinder, and then microwaved for 1 minute in a microwave oven, allowed to cool, and was then added to normal-hexane (5kg) in an extractor equipped with a reflux condenser. Oil was extracted for 2 hours while heating to 70 ~ 80 ℃ and filtered to obtain hexane extract and grape seed skim foil, respectively. Next, the hexane extract obtained after performing the above extraction process twice was concentrated under reduced pressure at 40 ℃ or less to obtain grape seed crude oil (80 ~ 85g, acid value: 4.90, peroxide value: 20.42). Next, the grape seed crude oil was stirred for 5 minutes in a water bath warmed to 85 to 95 ° C. in advance, and then 0.1% phosphoric acid (to 100 g of grape seed oil) was added thereto, followed by mixing at high speed for 3 minutes, followed by centrifugation (5,000 rpm, 20 minutes) 15 mL of the same amount of 5% NaOH solution was added to the obtained supernatant, deoxidized with stirring for 3 minutes, allowed to cool, and centrifuged again to obtain an oil extract of the upper layer. 5 g of the granules mixed with activated clay and activated carbon at 2: 1 were added thereto, followed by decolorization treatment under reduced pressure (50 mmHg or less) for 1 hour at 90 to 100 ° C, followed by filtration under reduced pressure to obtain grapeseed oil. Finally, to deodorize the grapeseed oil, using a steam distillation apparatus to deodorize at 220-230 ° C. for 2 hours under reduced pressure (3-5 mmHg or less) to completely remove the traces of normal-hexane, imitate and off-flavor present in the oil. After removal, finally purified grape seed oil (55 ~ 65g) was prepared.
실험예 8: 포도씨유의 이화학적 품질 특성Experimental Example 8: Physicochemical Properties of Grape Seed Oil
상기 제조예에서 제조된 포도씨유의 이화학적 품질 특성, 즉 포도씨유 성상, 리놀레산 및 카테친 함량, 산가, 과산화물가 및 대장균 유무 등을 조사한 결과는 표 10에 나타내었다.The results of the physicochemical quality characteristics of grape seed oil prepared in the preparation example, that is, grape seed oil properties, linoleic acid and catechin content, acid value, peroxide value and presence of E. coli are shown in Table 10.
표 10에서 보는 바와 같이, 정제 포도씨유는 고유의 연한 노란색과 향미를 가지고 있으며, 이미이취가 없었다. 그리고 포도씨유의 리놀레산 함량은 69.5(mol%) 이었으며, 카테킨 함량은 323.56 mg%, 산가 및 과산화물가는 각각 0.2 및 4.5 그리고 대장균은 음성으로 나타났다. 이와같이 정제된 포도씨유의 이화학적 품질특성은 현행 식품공전에서 정해진 포도씨유 식품 규격에 적합함을 알 수 있었다.As shown in Table 10, refined grapeseed oil has an inherent pale yellow color and flavor and has no off-flavor. The linoleic acid content of grapeseed oil was 69.5 (mol%), the catechin content was 323.56 mg%, the acid value and peroxide value were 0.2 and 4.5, and the E. coli was negative. The physicochemical quality characteristics of the refined grape seed oil were found to be in compliance with the grape seed oil food standards specified in the current Food Code.
실시예 2: 포도씨로부터 고품질의 포도씨 추출물의 제조Example 2: Preparation of High Quality Grape Seed Extract from Grape Seeds
포도씨로부터 기능성식품 또는 기능성화장품 원료 제조용으로 사용가능한 고품질의 포도씨 추출물을 제조하고, 이들의 카테킨 함량을 비교하였다.Grape seed extracts of high quality which can be used for the preparation of functional foods or functional cosmetic raw materials from grape seeds were prepared and their catechin contents were compared.
제조예 1: 포도씨로부터 기능성식품 원료 제조용 고품질의 포도씨 추출물의 제조Preparation Example 1 Preparation of High Quality Grape Seed Extract for Preparation of Functional Food Ingredients from Grape Seed
포도씨의 주된 카테킨화합물인 프로시아니딘 성분을 함유한 20% 에탄올 추출물과 그 정제분획의 제조공정은 도 2에 나타내었다. 이를 상세히 설명하자면, 건조 포도씨(1kg)로부터 얻어진 탈지 포도씨박을 열풍건조기(50~60℃, 6~12 시간)에서 건조한 후 (이때 포도씨박 무게는 860g) 여기에 20% 주정에탄올수용액(10L)을 가하여 70~80℃에서 3시간 동안 2회 반복하여 가열추출한 후 여과 및 감압농축하여 포도씨박 20% 에탄올 추출물(80.5g)을 얻었다. 다음, 이 중 5.0g을 취하여(이때 나머지 75.5g도 다음 정제과정을 연속적으로 처리함) 30mL 증류수로 현탁시킨 후 구연산을 이용하여 현탁액의 pH를 3.0으로 조정한 다음 미리 증류수로 평형화시켜 놓은 이온수지 흡착 크라마토그래피 (4cm×40cm)에 충진시킨 후 먼저 증류수(2.0L)로 추출물에 함유되어 있는 유기산, 아미노산 및 단백질 등을 제거시킨 다음 20% 에탄올수용액(4.0L)로 용출시킨 후 감압농축하여 카테킨유도체(카테킨 소량체 및 다량체 프로시아니딘)를 함유한 20% 에탄올 추출물(0.2g, 수율: 322 mg% 건조 포도씨)을 얻었다.20% ethanol extract containing the procyanidin component, which is the main catechin compound of grape seeds, and a process for preparing the purified fraction are shown in FIG. To explain this in detail, the skim grape seed cake obtained from dried grape seeds (1 kg) was dried in a hot air dryer (50-60 ° C., 6-12 hours) (the grape seed cake weight was 860 g) and 20% alcohol ethanol solution (10 L) After adding and heating repeatedly repeated 3 times at 70 ~ 80 ℃ for 3 hours, filtered and concentrated under reduced pressure to obtain a grape seed cake 20% ethanol extract (80.5g). Next, take 5.0g of this (at this time, the remaining 75.5g is continuously treated with the next purification process), suspended in 30mL distilled water, adjust the pH of the suspension to 3.0 using citric acid, and equilibrate with distilled water in advance. After filling with adsorption chromatography (4cm × 40cm), distilled water (2.0L) was used to remove organic acids, amino acids and proteins contained in the extract, and then eluted with 20% ethanol aqueous solution (4.0L). A 20% ethanol extract (0.2 g, yield: 322 mg% dry grape seed) containing a catechin derivative (catechin minor and multimer procyanidins) was obtained.
제조예 2: 포도씨로부터 고품질의 기능성 화장품 제조 원료용 포도씨 추출물의 제조Preparation Example 2 Preparation of Grape Seed Extract for Raw Material of High Quality Functional Cosmetics from Grape Seed
포도씨의 카테킨화합물 중 단량체 카테킨[(+)-카테킨, (-)-에피카테킨, (-)-에피카테킨갈레이트]과 이량체 카테킨(프로시아니딘 B2)성분을 주로 함유한 80% 에탄올 추출물과 그 정제분획의 제조공정은 도 3에 나타내었다.80% ethanol extract mainly containing monomeric catechins ((+)-catechin, (-)-epicatechin, (-)-epicatechin gallate) and dimer catechin (procyanidin B 2 ) in grape seed catechin compounds and purified fractions The manufacturing process of is shown in FIG.
상기 제조예 1에서 얻어진 건조 탈지 포도씨박(860g)에 80% 주정에탄올수용액(10L)을 가하여 50~60℃에서 3시간 동안 2회 반복하여 가열추출한 후 여과 및 감압농축하여 포도씨박 80% 에탄올 추출물(85.5g)을 얻었다. 이 중 5.0g을 취하여(이때 나머지 80.5g도 다음 정제과정을 연속적으로 처리함) 30mL 20% 에탄올수용액으로 현탁시킨 후 미리 20% 에탄올수용액으로 평형화시켜 놓은 이온수지 흡착 크라마토그래피(4cm×40cm)에 충진시킨 다음 20% 에탄올수용액(1.0L) 및 60% 에탄올수용액(4.0L)으로 각각 용출시킨 후 이 중 단량체 카테킨과 이량체 프로시아니딘(이량체 프로시아니딘s)를 함유한 60% 에탄올 추출물(0.38g, 646 mg%/건조 포도씨)을 얻었다.80% ethanol aqueous solution (10L) was added to the dried skim grape seed cake (860 g) obtained in Preparation Example 1, followed by repeated heating and extraction twice at 50 to 60 ° C. for 3 hours, followed by filtration and concentration under reduced pressure. (85.5 g) was obtained. Take 5.0g of this (the remaining 80.5g is also treated with the following purification process in succession), suspended in 30mL 20% ethanol solution and equilibrated with 20% ethanol aqueous solution (4cm × 40cm). And then eluted with 20% ethanol aqueous solution (1.0 L) and 60% ethanol aqueous solution (4.0 L), respectively, followed by 60% ethanol extract (0.38 g) containing monomer catechin and dimer procyanidins (dimer procyanidins). , 646 mg% / dry grape seed).
실험예 1: 탈지 포도씨박의 20% 및 80% 에탄올 조추출물의 카테킨 함량 비교Experimental Example 1: Comparison of catechin content of 20% and 80% ethanol crude extracts of skim grape seed cake
상기에서 제조된 탈지 포도씨박 20% 에탄올 조추출물과 80% 에탄올 조추출물의 총카테킨 및 4가지 카테킨성분의 함량을 비교한 결과는 표 11 및 표 12에 나타내었다.The results of comparing the content of the total catechin and the four catechin components of the 20% ethanol crude extract and 80% ethanol crude extract of skim grape seed prepared above are shown in Tables 11 and 12.
모든 측정치는 3회 반복 측정한 후 평균값±S.D.로 나타내었다.All measurements were expressed as mean ± S.D. After three repeated measurements.
각 항목의 측정치간에 통계학적 유의성 (p<0.05)이 있음.There is statistical significance ( p <0.05) between the measurements of each item.
표 11에서 보는 바와 같이, 탈지 포도씨박의 20% 에탄올 조추출물 및 80% 에탄올 조추출물의 수율은 각각 8.05% 및 8.50% 로서 80% 에탄올 조추출물의 수율이 20% 에탄올 조추출물 보다 다소 높았으며, 총카테킨의 함량은 20% 에탄올 조추출물이 49.44%(건조 포도씨 추출물, 3.83% 건조 포도씨)이었으며, 80% 에탄올 조추출물은 76.50%(건조 포도씨 추출물, 6.58% 건조 포도씨)로서 20% 에탄올 조추출물에 비해 약 2배 높았다.As shown in Table 11, the yields of 20% ethanol crude extract and 80% ethanol crude extract of skim grape seed cake were 8.05% and 8.50%, respectively, and the yield of 80% ethanol crude extract was somewhat higher than that of 20% ethanol crude extract. Total catechin content was 49.44% (dry grape seed extract, 3.83% dry grape seed) in 20% ethanol crude extract, and 80.ethanol crude extract was 76.50% (dry grape seed extract, 6.58% dry grape seed) in 20% ethanol crude extract. About two times higher.
표 12에서 보는 바와 같이, 20% 에탄올 조추출물의 4가지 주된 카테킨성분의 함량을 보면 (+)-카테킨 1.060%, 프로시아니딘 B2 0.063%, (-)-에피카테킨 0.596% 및 (-)-에피카테킨 갈레이트의 0.025%이었으나, 80% 에탄올 조추출물의 함량은 (+)-카테킨 0.859%, 프로시아니딘 B2 0.017%, (-)-에피카테킨 0.872% 및 (-)-에피카테킨 갈레이트 0.042%로서 (+)-카테킨 과 프로시아니딘 B2의 함량은 20% 에탄올 조추출물이 80% 에탄올 조추출물 보다 높았으나 (-)-에피카테킨 및 (-)-에피카테킨 갈레이트 함량은 80% 에탄올 조추출물이 20% 에탄올 조추출물 보다 높았다. 그러나 포도씨의 주된 생리활성물질인 4가지 카테킨 성분의 총함량은 80% 에탄올 조추출물(1.744% 탈지 포도씨박)이 20% 에탄올 조추출물(1.789% 탈지 포도씨박) 보다 다소 높음을 알 수 있었다.As shown in Table 12, the contents of the four main catechin components of the 20% ethanol crude extract were (+)-catechin 1.060%, procyanidin B 2 0.063%, (-)-epicatechin 0.596% and (-)-epicatechin gal. The content of 80% ethanol crude extract was 0.825% of (+)-catechin 0.859%, procyanidin B 2 0.017%, 0.872% of (-)-epicatechin and 0.042% of (-)-epicatechin gallate (+) The contents of catechin and procyanidin B 2 were 20% ethanol crude extract higher than 80% ethanol crude extract, while the contents of (-)-epicatechin and (-)-epicatechin gallate were higher than 80% ethanol crude extract 20% ethanol crude extract. . However, the total content of the four catechin components, the main bioactive substance of grape seed, was 80% ethanol crude extract (1.744% skim grape seed cake) rather than 20% ethanol crude extract (1.789% skim grape seed cake).
실험예 2: 20% 에탄올분획과 80% 에탄올분획의 카테킨 함량 비교Experimental Example 2: Comparison of catechin content between 20% ethanol fraction and 80% ethanol fraction
이온수지 흡착 크로마토그래피로 분리된 20% 에탄올 조추출물로부터 분리된 20% 에탄올분획과 80% 에탄올 조추출물로부터 분리된 60% 에탄올분획의 총카테킨 및 4가지 카테킨성분의 함량을 비교한 결과는 표 13 및 표 14에 각각 나타내었다.The results of comparing the contents of the total catechins and the four catechins of the 20% ethanol fraction separated from the 20% ethanol crude extract separated by ion resin adsorption chromatography and the 60% ethanol fraction separated from the 80% ethanol crude extract are shown in Table 13. And Table 14, respectively.
표 13에서 보는 바와 같이, 이온수지 흡착 크로마토그래피에 의해 20% 에탄올 조추출물로부터 분리된 20% 에탄올분획의 수율은 약 0.39%로서 80% 에탄올 조추출물로부터 분리된 60% 에탄올분획의 2.65% 보다 약 7배 낮았으며, 총카테킨 함량은 20% 에탄올분획이 1.41%(건조 포도씨)이고, 60% 에탄올분획는 3.17%로서 60% 에탄올분획이 20% 에탄올분획보다 약 2배 높았다.As shown in Table 13, the yield of the 20% ethanol fraction separated from the 20% ethanol crude extract by ion resin adsorption chromatography was about 0.39%, which is about 2.65% of the 60% ethanol fraction separated from the 80% ethanol crude extract. The total catechin content was 1.41% (dry grape seed) in 20% ethanol fraction, 3.17% in 60% ethanol fraction and about 2 times higher in 60% ethanol fraction than 20% ethanol fraction.
표 14에서 보는 바와 같이, 이온수지 흡착 크로마토그래피에 의해 20% 에탄올 조추출물로부터 분리된 20% 에탄올분획의 4가지 주된 카테킨성분의 함량을 보면 (+)-카테킨 7.161%, 프로시아니딘 B2 0.856%, (-)-에피카테킨 2.954% 및 (-)-에피카테킨 갈레이트의 0.123%이었다. 반면, 80% 에탄올 조추출물로부터 분리된 60% 에탄올분획의 4가지 카테킨성분의 함량은 (+)-카테킨 10.893%, 프로시아니딘 B2 1.55%, (-)-에피카테킨 9.546% 및 (-)-에피카테킨 갈레이트 0.231%로서 20% 에탄올분획보다 높았다. 이와같이 이온수지 흡착 크로마토그래피에 의해 80% 에탄올 조추출물로부터 분리된 60% 에탄올분획이 20% 에탄올 조추출물로부터 분리된 20% 에탄올분획 보다 포도씨의 주된 생리활성물질인 카테킨류의 함량이 높음을 알 수 있었다.As shown in Table 14, the contents of the four main catechin components of the 20% ethanol fraction separated from the 20% ethanol crude extract by ion resin adsorption chromatography were (+)-catechin 7.161%, procyanidin B 2 0.856%, 2.954% of (-)-epicatechin and 0.123% of (-)-epicatechin gallate. In contrast, the contents of the four catechin components of the 60% ethanol fraction separated from the 80% ethanol crude extract were 10.893% of (+)-catechin, 1.55% of procyanidin B 2 , 9.546% of (-)-epicatechin and (-)-epicatechin gal. The rate was 0.231%, higher than the 20% ethanol fraction. As such, the 60% ethanol fraction separated from the 80% ethanol crude extract by ion resin adsorption chromatography was found to have higher content of catechins, the main bioactive substance of grape seeds, than the 20% ethanol fraction separated from the 20% ethanol crude extract. there was.
실험예 3: 이온수지 흡착 크로마토그래피에 의해 분리된 20% 에탄올분획과 60% 에탄올분획의 이화학적 품질 특성Experimental Example 3: Physicochemical Quality Characteristics of 20% Ethanol Fraction and 60% Ethanol Fraction Isolated by Ion Resin Adsorption Chromatography
탈지 포도씨박의 20% 에탄올 및 80% 에탄올 추출물을 이온수지 흡착 크로마토그래피에 의해 각각 분리된 20% 에탄올분획과 60% 에탄올분획의 용해성, pH, 당도, 산도, 색도 및 맛 등의 여러 이화학적 품질특성을 비교한 결과는 표 15에 나타내었다. Various physicochemical qualities, such as solubility, pH, sugar content, acidity, color and taste of 20% ethanol fraction and 60% ethanol fraction separated by ion-resistance chromatography, respectively The results of comparing the characteristics are shown in Table 15.
표 15에서 보는 바와 같이, 20% 에탄올분획물은 수용성이나 60% 에탄올분획물은 비수용성(알코올)을 지니고 있으며, pH는 각각 6.43 및 6.58이고, 당도는 각각 22.6 및 20.2이며, 산도는 각각 1.61 및 1.40로 비슷하였다. 그리고 20% 에탄올분획물의 색도 (L=88.78, a=2.87 및 b=19.02)는 연한 갈색인 반면, 60% 에탄올분획물의 색도 (L=74.19, a=15.16 및 b=23.50)는 진한 갈색을 나타내었으며, 그리고 20% 에탄올분획물은 약한 떫은 맛과 단맛을 지니고 있는 반면, 60% 에탄올분획물은 강한 쓴맛을 지니고 있었다. 이와같이 20% 및 60% 에탄올분획물의 이화학적 특성으로 보아 20% 에탄올분획물은 주스 및 드링크 등의 기능성 식품(음료)의 원료로 적합한 반면, 60% 에탄올분획물은 기능성 화장품 원료로 적합함을 알 수 있었다.As shown in Table 15, the 20% ethanol fraction is water soluble but the 60% ethanol fraction is water-insoluble (alcohol), pH is 6.43 and 6.58, sugars are 22.6 and 20.2, respectively, and acidity is 1.61 and 1.40, respectively. Was similar. The chromaticity of the 20% ethanol fractions ( L = 88.78, a = 2.87 and b = 19.02) is light brown, while the chromaticity of the 60% ethanol fractions ( L = 74.19, a = 15.16 and b = 23.50) is dark brown. And 20% ethanol fraction had a mild astringent taste and sweet taste, while 60% ethanol fraction had a strong bitter taste. The physicochemical properties of the 20% and 60% ethanol fractions indicated that the 20% ethanol fraction was suitable as a raw material for functional foods (drinks) such as juices and drinks, while the 60% ethanol fraction was suitable as a functional cosmetic raw material. .
이상의 결과로부터 포도씨로부터 고품질의 포도씨유 및 추출물을 제조하기위해 먼저 포도씨의 열처리에 따른 여러 기능성성분의 변화를 측정한 후 그를 토대로 포도씨의 최적 가공 처리방법으로 마이크로파 열처리를 설정하였으며, 아울러 마이크로파 처리된 포도씨를 노르말-헥산으로 추출하여 포도씨 원유와 탈지박을 각각 얻은 후 다시 포도씨 원유는 탈검, 탈산 및 탈취 공정으로 거치면서 정제 포도씨유를 제조하였으며, 또한 포도씨박은 에탄올수용액으로 추출한 후 pH를 조정하고 이온수지 흡착 크로마토그래피를 이용하여 고품질의 포도씨 추출물의 제조기술을 개발하였으며, 이들 포도씨유 및 추출물은 항암, 항고혈압, 항산화 및 항노화성 카테킨 성분을 다량 함유하고 있어 암, 심장병, 고혈압 및 노화를 예방할 수 있는 기능성 건강식품 및 소재로써 각광을 받을 것으로 기대된다.From the above results, in order to manufacture high quality grape seed oil and extracts from grape seeds, the changes of various functional components according to the heat treatment of the grape seeds were first measured, and then microwave heat treatment was set as the optimum processing method of the grape seeds based thereon. Was extracted with normal-hexane to obtain grape seed crude oil and skim foil, respectively, and again grape seed crude oil was subjected to degumming, deoxidation and deodorization process to prepare purified grape seed oil. Development of high quality grape seed extract using adsorption chromatography. These grape seed oils and extracts contain high amounts of anti-cancer, antihypertensive, antioxidant and anti-aging catechins, which can prevent cancer, heart disease, hypertension and aging. Functional health food and It is expected to be in the limelight as material.
상기 실시예와 실험예를 통하여 설명한 바와 같이, 본 발명은 포도씨로부터 고품질의 포도씨유 및 추출물의 제조방법에 관한 것으로, 건조 포도씨를 분쇄하고 마이크로파 처리한 후 노르말-헥산으로 탈지하여 여과 및 농축하여 포도씨 원유와 포도씨박을 각각 얻고, 포도씨 원유는 탈검, 탈산, 및 탈취 공정을 차례로 거치면서 고품질의 정제 포도씨유로 제조하고, 탈지 포도씨박은 에탄올수용액으로 열탕 추출하고 여과 및 농축한 후 이것을 다시 이온수지 흡착 크로마토그래피를 이용하여 20% 및 60% 에탄올수용액에 용출되는 카테킨 함유 고품질의 포도씨 추출물을 제조함으로써 개선된 포도씨유 및 포도씨 추출물의 제조방법을 제공하는 뛰어난 효과가 있다. 또한, 본 발명에서 제조된 고품질의 포도씨유는 식품공전규격에 적합하기에 기능성식품으로 판매할 수 있을 뿐만 아니라 포도씨 추출물은 암, 심장병, 고혈압 및 노화를 예방할 수 있는 기능성식품, 화장품 및 의약품의 신소재로써의 유효성분으로 사용될 수 있어 기능성식품산업상 매우 유용한 발명이다.As described through the above Examples and Experimental Examples, the present invention relates to a method for producing high quality grape seed oil and extract from grape seeds, pulverized dry grape seed, and then degreased with normal-hexane, filtered and concentrated grape seed. Crude oil and grapeseed gourd are obtained, and grapeseed crude oil is made of high-quality purified grapeseed oil through degumming, deoxidation, and deodorization in turn, and skimmed grapeseed gourd is extracted by boiling water with ethanol solution, filtered and concentrated, and then ion resin adsorption chromatography By using graphy to prepare a catechin-containing high quality grape seed extract eluting in 20% and 60% ethanol aqueous solution has an excellent effect of providing an improved method of producing grape seed oil and grape seed extract. In addition, high-quality grape seed oil manufactured in the present invention can be sold as a functional food to meet the food standards, as well as grape seed extract is a new material of functional food, cosmetics and medicines that can prevent cancer, heart disease, high blood pressure and aging It can be used as an active ingredient as a very useful invention in the functional food industry.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050028257A KR100651249B1 (en) | 2005-04-04 | 2005-04-04 | A preparation methods of grape seed oil and extract with high quality |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050028257A KR100651249B1 (en) | 2005-04-04 | 2005-04-04 | A preparation methods of grape seed oil and extract with high quality |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20060110018A KR20060110018A (en) | 2006-10-24 |
KR100651249B1 true KR100651249B1 (en) | 2007-05-10 |
Family
ID=37616003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020050028257A KR100651249B1 (en) | 2005-04-04 | 2005-04-04 | A preparation methods of grape seed oil and extract with high quality |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100651249B1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100173028A1 (en) * | 2007-09-04 | 2010-07-08 | Jun-Ki Min | Process for preparing vitis vinifera pip extract and pharmaceutical composition for preventing or treating rheumatoid arthritis comprising the same |
KR101023215B1 (en) * | 2008-02-27 | 2011-03-18 | 옥천농업협동조합 | How to extract procandine from grape seeds |
KR101096574B1 (en) * | 2008-12-12 | 2011-12-20 | 에이치 엘 지노믹스(주) | Pharmaceutical composition for preventing or treating osteoporosis comprising Vitis vinifera pip extract |
KR101099021B1 (en) * | 2009-04-24 | 2011-12-28 | 에이치 엘 지노믹스(주) | Pharmaceutical composition for preventing or treating osteoarthritis comprising Vitis vinifera pip extract |
KR101721747B1 (en) * | 2015-02-06 | 2017-03-31 | 경상남도 | Purification and Conservation extension method of Zanthoxylum schinifolium oil |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60100507A (en) * | 1983-11-07 | 1985-06-04 | Takasago Corp | Oil and fat for cosmetic use |
JPS644602A (en) * | 1987-06-26 | 1989-01-09 | Niochiyou | Extraction of pectin by means of microwave irradiation |
JPH1132678A (en) | 1997-07-15 | 1999-02-09 | Riyookoku Shoji Kk | Production of tea leaf product reduced in viable cell number |
KR19990030352A (en) * | 1998-11-17 | 1999-04-26 | 이종환 | Method for preparing grape seed extract with natural antioxidant function |
KR19990085941A (en) * | 1998-05-23 | 1999-12-15 | 서경배 | Whitening cosmetic composition containing grape extract |
KR20050087605A (en) * | 2004-02-27 | 2005-08-31 | 중모포도영농조합법인 | High quality grape granule tea containing antioxidative anthocyanins and catechins and method for preparation thereof |
-
2005
- 2005-04-04 KR KR1020050028257A patent/KR100651249B1/en active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60100507A (en) * | 1983-11-07 | 1985-06-04 | Takasago Corp | Oil and fat for cosmetic use |
JPS644602A (en) * | 1987-06-26 | 1989-01-09 | Niochiyou | Extraction of pectin by means of microwave irradiation |
JPH1132678A (en) | 1997-07-15 | 1999-02-09 | Riyookoku Shoji Kk | Production of tea leaf product reduced in viable cell number |
KR19990085941A (en) * | 1998-05-23 | 1999-12-15 | 서경배 | Whitening cosmetic composition containing grape extract |
KR19990030352A (en) * | 1998-11-17 | 1999-04-26 | 이종환 | Method for preparing grape seed extract with natural antioxidant function |
KR20050087605A (en) * | 2004-02-27 | 2005-08-31 | 중모포도영농조합법인 | High quality grape granule tea containing antioxidative anthocyanins and catechins and method for preparation thereof |
Non-Patent Citations (2)
Title |
---|
60100507 |
논문 |
Also Published As
Publication number | Publication date |
---|---|
KR20060110018A (en) | 2006-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Peschel et al. | High antioxidant potential of pressing residues from evening primrose in comparison to other oilseed cakes and plant antioxidants | |
Cai et al. | Recent progress in the thermal treatment of oilseeds and oil oxidative stability: A review | |
KR101737572B1 (en) | And method of manufacturing fruit mixture and maxture pharmacognosy | |
Lazze et al. | Grape waste extract obtained by supercritical fluid extraction contains bioactive antioxidant molecules and induces antiproliferative effects in human colon adenocarcinoma cells | |
Silva et al. | Chemical characterization of passion fruit (Passiflora edulis f. flavicarpa) seeds | |
Hussein et al. | Physico-chemical characteristics, fatty acid, composition of grape seed oil and phenolic compounds of whole seeds, seeds and leaves of red grape in Libya | |
KR100651249B1 (en) | A preparation methods of grape seed oil and extract with high quality | |
KR101763480B1 (en) | vinegar manufacturing method of using roasted coffee ground residue extracts | |
KR102269270B1 (en) | Method for producing extracts of sweet potato with enhanced antioxidative activity | |
KR100512328B1 (en) | Method for manufacturing lacquer juice using fermentation with koji molds and lacquer juice produced using the same | |
KR20130053071A (en) | High-quality seasoned laver extended its distribution period using onion juice | |
KR100543809B1 (en) | High quality grape granule tea containing antioxidative anthocyanins and catechins and method for preparation thereof | |
KR102585796B1 (en) | Method for producing oil and skim meal by solid/liquid extraction means | |
KR101971857B1 (en) | Method for producing functional cabbage juice comprising medicinal herb | |
KR101996466B1 (en) | Method for producing healthful pear juice comprising green tea concentrate | |
CN113632909B (en) | Plant-based antioxidant composition and application thereof | |
KR20110066269A (en) | Method for manufacturing cheonggukjang containing red ginseng, and cheonggukjang produced thereby | |
KR20100063673A (en) | Food composition comprising extract of nelumbo nucifera leaf, seed, and olive leaf | |
KR20140147471A (en) | Preparation method for Schisandra chinensis seed oil | |
KR100682622B1 (en) | A preparation method of grape seed oil and tea with high quality using organically grown grapesVitis vinifera L. | |
KR20100088851A (en) | A method for preparing rice nectar with c. maxima duch | |
KR102599866B1 (en) | Manufacturing Method of Chestnut inner Shell Tea | |
KR20130020440A (en) | A production method of grape juice having the extraction process of grape seeds | |
KR102623612B1 (en) | Method for producing functional-fermented soybean product using environment-friendly rice bran and plant resources | |
KR20110096939A (en) | Food products comprising bokbunja processed by far infrared ray and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20121106 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20131216 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20141118 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20151113 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20170220 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20171101 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20190221 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20191209 Year of fee payment: 14 |