KR100645546B1 - Crack reducing method of mass concrete for mat foundation considering the combined addition of limestone powder and chemical admixture - Google Patents

Crack reducing method of mass concrete for mat foundation considering the combined addition of limestone powder and chemical admixture Download PDF

Info

Publication number
KR100645546B1
KR100645546B1 KR1020060009487A KR20060009487A KR100645546B1 KR 100645546 B1 KR100645546 B1 KR 100645546B1 KR 1020060009487 A KR1020060009487 A KR 1020060009487A KR 20060009487 A KR20060009487 A KR 20060009487A KR 100645546 B1 KR100645546 B1 KR 100645546B1
Authority
KR
South Korea
Prior art keywords
weight
reducing agent
water reducing
admixture
concrete
Prior art date
Application number
KR1020060009487A
Other languages
Korean (ko)
Inventor
오선교
한천구
신동안
전충근
한민철
종 김
Original Assignee
(주) 선엔지니어링종합건축사사무소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 선엔지니어링종합건축사사무소 filed Critical (주) 선엔지니어링종합건축사사무소
Priority to KR1020060009487A priority Critical patent/KR100645546B1/en
Application granted granted Critical
Publication of KR100645546B1 publication Critical patent/KR100645546B1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/01Flat foundations
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/26Carbonates
    • C04B14/28Carbonates of calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2300/00Materials
    • E02D2300/0079Granulates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • General Engineering & Computer Science (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

A method of reducing crack of foundation mass concrete according to the configuration combination of limestone granule and chemical admixture is provided to reduce the crack repair cost and the hardening time by lowering the maximum temperature of the mass concrete and completely controlling the hydration heat crack according to the pouring of the mixing concrete with the limestone granule and the common portland cement. A method of reducing crack of foundation mass concrete according to the configuration combination of limestone granule and chemical admixture divides upper and lower layers by evenly dividing the section height of the mass concrete, pours the common portland cement at the upper layer, mixes a first admixture comprising a delaying AE water reducing agent or a delaying high AE water reducing agent of 0.01~1.5 weight% for the weight of the common portland cement, pours the mixing concrete mixed with the limestone granule and the common portland cement of 5~40 weight% for the weight of the common portland cement at the lower layer, mixes a second admixture comprising the both water reducing agents of 0.01~1.5 weight% for the weight of the mixing cement, and reduces the hydration heating value difference of the upper and lower layers by the combination of the admixture.

Description

석회석미분말과 화학 혼화제 형태 조합에 따른 기초매스콘크리트의 균열저감방법{Crack Reducing Method of Mass Concrete for Mat Foundation Considering the Combined Addition of Limestone Powder and Chemical Admixture}Crack Reducing Method of Mass Concrete for Mat Foundation Considering the Combined Addition of Limestone Powder and Chemical Admixture}

도 1은 본 발명에 따른 기초 매스콘크리트의 균열저감방법의 개념을 보여주기 위한 도면이다. 1 is a view for showing the concept of the crack reduction method of the basic mass concrete according to the present invention.

도 2는 본 발명에 따른 기초 매스콘크리트 구조체의 온도이력을 보여주기 위한 그래프이다.2 is a graph showing the temperature history of the basic mass concrete structure according to the present invention.

본 발명은 석회석미분말과 화학 혼화제 형태 조합에 따른 기초매스콘크리트의 균열저감방법에 관한 것으로 특히, 침하균열 방지 등의 이유에서 2층 이상으로 나누어 타설하고 있는 건축기초 매스콘크리트 시공시에 하부콘크리트의 타설 시점과 상부 콘크리트의 타설 시점의 차이로 인하여 발생되는 상하부 콘크리트의 온도차에 의한 인장균열을 방지하기 위하여 상하부 콘크리트에 각기 다른 화학 혼화제를 첨가하여 상하부콘크리트 사이의 발열량차를 축소시켜 온도차이를 없애고, 온도균열을 제어하기 위한 석회석미분말과 화학 혼화제 형태 조합에 따른 기초매스콘크 리트의 균열저감방법에 관한 것이다. The present invention relates to a method for reducing the cracking of basic mass concrete according to the combination of limestone fine powder and chemical admixture, and in particular, the casting of the lower concrete during the construction of building foundation mass concrete, which is poured in two or more layers for the purpose of preventing settlement cracking. In order to prevent the tensile cracking caused by the temperature difference between the upper and lower concrete caused by the difference between the timing and the time of placing the upper concrete, different chemical admixtures are added to the upper and lower concrete to reduce the heat difference between the upper and lower concrete to eliminate the temperature difference. The present invention relates to a method for reducing cracking of basic mass concrete according to a combination of limestone fine powder and chemical admixture to control cracking.

일반적으로, 도심지 건축물은 지가의 상승과 건설기술의 발달로 대형화, 고층화 및 고심도화 되어감에 따라 건축기초 매트콘크리트의 경우, 매스콘크리트로의 시공이 불가피한 실정이다. 그런데 두께가 800mm이상인 매스콘크리트는 수화열에 의해 발생되는 온도응력에 적절하게 대처하지 못하면 균열발생 등 콘크리트의 품질저하를 유발하게 된다.In general, the construction of matt concrete is inevitable due to the increase in land prices and the development of construction technology, which leads to the increase in size, height, and depth. However, mass concrete with a thickness of more than 800 mm causes quality degradation of concrete, such as cracks, if it does not adequately cope with temperature stress caused by hydration heat.

현재, 우리나라 건축기초 매스콘크리트 시공은 침하균열 방지 등의 이유에서 2층 이상으로 나누어 타설하고 있는데, 상부와 하부의 타설시간차는 현장에 따라 약간 다르기는 하지만, 보통 4~12시간 정도이다. 따라서, 하부콘크리트의 수화발열이 활성화 되는 시점에 상부콘크리트가 타설되므로 이때부터 상하부 콘크리트의 온도차는 매우 커지게 되어 최초 타설 후 약 10시간 이후부터 상부표면부에 수화열에 의한 인장응력이 발생되어, 결국 인장균열로 나타난다.Currently, the building foundation mass concrete construction in Korea is divided into two or more floors for the purpose of preventing settlement cracks. The time difference between the upper and lower parts varies depending on the site, but it is usually about 4 to 12 hours. Therefore, since the upper concrete is placed at the time when the hydration heat of the lower concrete is activated, the temperature difference of the upper and lower concrete becomes very large from this time, and the tensile stress is generated by the heat of hydration on the upper surface part after about 10 hours after the initial casting. It appears as a tensile crack.

이와 같은 문제를 해결하기 위한 기존의 방법으로는 하기의 <표 1>과 같이 제안되고 있다.Existing methods for solving such a problem have been proposed as shown in Table 1 below.

<표 1> 종래의 매스 콘크리트 타설시 균열방지 및 제어대책<Table 1> Crack Prevention and Control Measures in Conventional Mass Concrete Placement

대 책Measures 구체적인 대책Concrete measures 배 합Combination 발열량의 저감Reduction of calorific value 저발열형 시멘트의 사용Use of low heat cement 시멘트량의 저감Reduction of Cement 양질의 혼화재료 사용Use of high quality mixed materials 슬럼프를 작게 할 것Make the slump smaller 골재치수를 크게 할 것Increase aggregate size 양질의 골재 사용Use of fine aggregate 강도 판정시기의 연장Extension of the strength judgment period 시 공City ball 온도변화의 최소화Minimization of temperature change 양생온도의 제어Curing temperature control 보온(시트, 단열재)가열 양생 실시Insulation (Sheet, Insulation) Heating Curing 거푸집 존치기간 조절Formwork period adjustment 콘크리트의 타설시간 간격 조절Adjusting the spacing time of concrete 초지연제 사용에 의한 lift별 응결시간 조절Control of setting time for each lift by using super delay agent 시공시 온도상승을 저감할 것Reduce the temperature rise during construction 재료의 쿨링Cooling of materials 계획온도를 엄격히 관리할 것 Strictly control planned temperature 설 계design 설계상의 배려Design consideration 균열유발줄눈의 설치Installation of crack-induced joints 철근으로 균열을 분산시킴Disperses cracks with rebar 별도의 방수 보강Separate waterproof reinforcement

즉, 종래의 매스콘크리트 타설시 시간차이를 두고 타설한 상하부 콘크리트간 온도차이에 의하여 발생되는 균열을 방지하기 위하여 양생온도를 제어하거나, 시트 단열재등 보온 가열 양생 실시, 거푸집 존치기간 조절 및 콘크리트의 타설시간 간격 조절등으로 물리적인 변화를 주는 방법이 일반적으로 사용되었으나, 상하층 콘크리트간 혼화재 변수를 변화주어 분리타설하는 방법은 없는 것이 현실이다.That is, in order to prevent cracking caused by the temperature difference between the upper and lower concrete placed with a time difference when placing conventional concrete, the curing temperature is controlled or thermal insulation curing such as sheet insulation material is adjusted, the length of the mold surviving period and concrete casting The physical change method such as time interval adjustment is generally used, but there is no way to separate and place the admixture variable between upper and lower concrete.

본 발명은 이러한 종래의 문제점을 해소하기 위하여 발명된 것으로, 건물기초 매스콘크리트에서 하부층 콘크리트는 수화발열량이 적은 석회석미분말(이하 "LSP"라함)를 치환 사용함으로써 수화발열량을 낮추고, AE감수제, 고성능 AE감수제의 지연 형태의 사용으로 응결지연시킴과 동시에 전체적인 수화열을 저감시켜 최고온도를 낮추며, 상부층 콘크리트는 하부층 콘크리트보다 발열량이 큰 보통포틀랜드시멘트(이하 "OPC"라 칭함)와 AE감수제, 고성능 AE감수제의 촉진 형태를 사용한 콘크리트를 부어넣기 함으로써 상하부 콘크리트의 수화 발열시점을 일치시켜, 궁극적 으로는 상하부 콘크리트 사이의 발열량차를 축소시켜 온도차이를 없애고, 온도균열을 제어하기 위한 석회석미분말과 화학 혼화제 형태 조합에 따른 기초매스콘크리트의 균열저감방법을 제공하는 데 그 목적이 있다. The present invention has been invented to solve such a conventional problem, the lower-layer concrete in the building-based mass concrete lowers the hydration calorific value by replacing the limestone fine powder (hereinafter referred to as "LSP") with low amount of hydration heat, AE water reducing agent, high performance AE The use of delayed form of water reducing agent delays condensation and reduces the heat of hydration at the same time, and lowers the maximum temperature.The upper layer concrete is composed of ordinary portland cement (hereinafter referred to as "OPC"), which generates more heat than lower layer concrete, AE water reducing agent, and high performance AE water reducing agent. Pour concrete using accelerated form to match the heating time of hydration of upper and lower concrete, and ultimately reduce the calorific value difference between upper and lower concrete to eliminate the temperature difference, and to combine the limestone powder and chemical admixture type to control temperature cracking. Crack Reduction Method of Foundation Mass Concrete The purpose is to provide.

이와 같은 목적을 수행하기 위한 본 발명은, The present invention for performing such an object,

매스콘크리트의 단면높이를 균등히 분할하여 상부층과 하부층을 구분하고, 상부층에는 보통포틀랜드시멘트만을 타설하면서, 투입되는 보통포틀랜드시멘트의 중량 대비 0.01~1.5중량%의 지연형 AE감수제 또는 지연형 고성능AE감수제로 구성되는 제 1 혼화제를 혼합하고, 하부층에는 보통포틀랜드시멘트의 중량 대비 5~40중량%의 석회석미분말(LSP)과 보통포틀랜드시멘트를 혼합한 혼합콘크리트를 타설하면서, 혼합콘크리트의 중량 대비 0.01~1.5중량%의 지연형 AE감수제 또는 지연형 고성능AE감수제로 구성되는 제 2 혼화제를 혼합하여 응결시간을 달리하는 혼화제의 조합에 의하여 상부층 및 하부층의 수화발열량차를 축소시키는 석회석미분말과 화학 혼화제 형태 조합에 따른 매스콘크리트의 균열저감방법을 제공한다. The cross section height of the mass concrete is divided equally to separate the upper and lower layers, and only the upper portland cement is placed on the upper layer, and the delayed AE water reducer or delayed high performance AE water reducing agent is 0.01 ~ 1.5 wt% based on the weight of the ordinary portland cement. The first admixture is mixed, and the lower layer is poured 0.01 ~ 1.5 weight to the weight of the mixed concrete while placing 5 ~ 40% by weight of limestone fine powder (LSP) and the mixed concrete of ordinary portland cement, compared to the weight of the ordinary portland cement By mixing the second admixture composed of% delayed AE water reducing agent or delayed high performance AE water reducing agent and varying the setting time, the limestone fine powder and the chemical admixture type combination which reduces the calorific value of hydration of upper layer and lower layer Provides a method for reducing cracks in mass concrete.

이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하면 다음과 같다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

첨부된 도 1은 본 발명에 따른 기초 매스콘크리트의 균열저감방법의 개념을 보여주기 위한 도면이고, 도 2는 본 발명에 따른 기초 매스콘크리트 구조체의 온도이력을 보여주기 위한 그래프이다.1 is a view illustrating a concept of a method for reducing cracking of basic mass concrete according to the present invention, and FIG. 2 is a graph illustrating a temperature history of the basic mass concrete structure according to the present invention.

본 발명에 따른 석회석미분말과 화학 혼화제 형태 조합에 따른 기초매스콘크 리트의 균열저감방법은 매스콘크리트에서 타설층 높이를 상하부층으로 균등히 분할하고, 하부층 콘크리트의 경우는 콘크리트 배합사항에서 보통포틀랜드시멘트(OPC)에 대한 중량%로서 석회석미분말(LSP) 5~40%를 치환 사용하고, 상부층 콘크리트의 경우는 보통포틀랜드시멘트(OPC)만을 사용한다. 또한, 상하부층 간의 응결시간은 AE감수제 및 고성능 AE감수제의 형태를 조정 사용하여 상·하부 콘크리트 간의 수화발열량차를 축소시켜 온도균열을 제어한다.The method of reducing the cracks of the basic mass concrete according to the combination of the limestone fine powder and the chemical admixture according to the present invention divides the height of the pouring layer evenly into the upper and lower layers in the mass concrete, and in the case of the lower layer concrete, the ordinary portland cement (OPC) Limestone fine powder (LSP) 5 to 40% is used as a weight% of the weight), and in the case of upper layer concrete, only ordinary portland cement (OPC) is used. In addition, the condensation time between the upper and lower layers controls the temperature cracking by reducing the hydration calorific difference between the upper and lower concrete by adjusting the form of the AE reducing agent and the high performance AE reducing agent.

〈실시예 1〉<Example 1>

매스콘크리트를 타설할 때, 매스콘크리트의 단면높이를 균등히 분할하여 상부층과 하부층을 구분하고, 상부층에는 보통포틀랜드시멘트만을 타설하면서, 투입되는 보통포틀랜드시멘트의 중량 대비 0.01~1.5중량%의 지연형 AE감수제 또는 지연형 고성능AE감수제로 구성되는 제 1 혼화제를 혼합한다. 또한, 하부층에는 보통포틀랜드시멘트의 중량 대비 5~40중량%의 석회석미분말(LSP)과 보통포틀랜드시멘트를 혼합한 혼합콘크리트를 타설하면서, 투입되는 보통포틀랜드시멘트와 석회석미분말을 혼합한 혼합콘크리트의 중량 대비 0.01~1.5중량%의 지연형 AE감수제 또는 지연형 고성능AE감수제로 구성되는 제 2 혼화제를 혼합한다. When placing mass concrete, the cross-sectional height of the mass concrete is divided equally to distinguish the upper and lower layers, and only the upper portland cement is placed on the upper layer, and the delayed AE water reducing agent of 0.01 to 1.5% by weight to the weight of the ordinary portland cement is added. Or a first admixture composed of a delayed high performance AE reducing agent. In addition, the lower layer is placed 5 to 40% by weight of the limestone fine powder (LSP) and the mixed concrete mixed with the ordinary portland cement, while the ordinary portland cement and limestone fine powder mixed with the mixed concrete A second admixture composed of 0.01 to 1.5% by weight of the delayed AE sensitizer or the delayed high performance AE sensitizer is mixed.

<실시예 2><Example 2>

본 발명의 제 2 실시예에서는 제 1 실시예의 방법에서 제 1 혼화제를 상부층에 투입되는 보통포틀랜드시멘트의 중량 대비 0.01~1.5중량%의 표준형 AE감수제 또는 표준형 고성능 AE감수제로 구성하며, 제 2 혼화제를 하부층에는 투입되는 보통포틀랜드시멘트와 석회석미분말을 혼합한 혼합콘크리트의 중량 대비 0.01~1.5중량% 의 지연형 AE감수제 또는 지연형 고성능 AE감수제로 구성한다. In the second embodiment of the present invention, in the method of the first embodiment, the first admixture is composed of a standard AE water reducing agent or a standard high performance AE water reducing agent in an amount of 0.01 to 1.5% by weight based on the weight of the ordinary portland cement added to the upper layer. The lower layer is composed of a delayed AE water reducer or a delayed high performance AE water reducer of 0.01 to 1.5% by weight, based on the weight of the mixed concrete mixed with ordinary Portland cement and limestone fine powder.

<실시예 3><Example 3>

본 발명의 제 3 실시예에서는 제 1 실시예의 방법에서 제 1 혼화제를 상부층에 투입되는 보통포틀랜드시멘트의 중량 대비 0.01~1.5중량%의 촉진형 AE감수제 또는 촉진형 고성능 AE감수제로 구성하며, 제 2 혼화제를 하부층에는 투입되는 보통포틀랜드시멘트와 석회석미분말을 혼합한 혼합콘크리트의 중량 대비 0.01~1.5중량%의 지연형 AE감수제 또는 지연형 고성능 AE감수제로 구성한다. In the third embodiment of the present invention, the first admixture in the method of the first embodiment comprises 0.01 to 1.5% by weight of the promoted AE water reducing agent or the accelerated high performance AE water reducing agent, based on the weight of the ordinary portland cement added to the upper layer. The admixture is composed of a delayed AE water reducer or a delayed high performance AE water reducer in an amount of 0.01 to 1.5% by weight based on the weight of the mixed concrete mixed with ordinary portland cement and limestone fine powder.

<실시예 4><Example 4>

본 발명의 제 4 실시예에서는 제 1 실시예의 방법에서 제 1 혼화제를 상부층에 투입되는 보통포틀랜드시멘트의 중량 대비 0.01~1.5중량%의 촉진형 AE감수제 또는 촉진형 고성능 AE감수제로 구성하며, 제 2 혼화제를 하부층에는 투입되는 보통포틀랜드시멘트와 석회석미분말을 혼합한 혼합콘크리트의 중량 대비 0.01~1.5중량%의 표준형 AE감수제 또는 표준형 고성능 AE감수제로 구성한다. In the fourth embodiment of the present invention, the first admixture in the method of the first embodiment comprises 0.01 to 1.5% by weight of the accelerated AE sensitizer or the accelerated high performance AE sensitizer relative to the weight of the ordinary portland cement added to the upper layer. In the lower layer, the admixture is composed of a standard AE water reducing agent or a standard high performance AE water reducing agent in an amount of 0.01 to 1.5% by weight based on the weight of the mixed concrete in which ordinary portland cement and limestone fine powder are added.

본 발명에 따른 석회석미분말과 화학 혼화제 형태 조합에 따른 기초매스콘크리트의 균열저감방법을 도 1을 참조하여 설명하면, 도 1에서 종래의 공법(A)인 경우는 보통 콘크리트를 상하부간 시간차를 두고 일체 타설함에 따라 높은 수화열의 발생과 초기재령에서부터 상하부콘크리트 간의 온도차로 인해 온도균열이 발생하게 된다. Referring to Figure 1 illustrates the crack reduction method of the basic mass concrete according to the combination of the limestone fine powder and the chemical admixture according to the present invention, in the case of the conventional method (A) in FIG. As it is poured, temperature cracking occurs due to the generation of high heat of hydration and the temperature difference between the early age and the upper and lower concrete.

그러나 본 발명에 의한 공법(B)은 석회석미분말(LSP)를 이용하여 콘크리트 하부층의 발열량을 줄여 줌으로서 상하부 온도를 일체화 하여 온도균열을 제어하는 공법으로, 즉 상하부 콘크리트 사이의 발열량차를 축소시킴으로서 온도균열을 제어 할 수 있다.However, the method (B) according to the present invention is a method of controlling the temperature cracking by integrating the upper and lower temperatures by reducing the calorific value of the lower concrete layer by using limestone fine powder (LSP), that is, by reducing the calorific value difference between the upper and lower concretes. Can control the crack

도 2는 실제 건설현장에서 측정한 본 발명에 따른 구조체의 온도이력을 나타낸 것이다. 도 2에서, 종래의 공법(A)은 보통 콘크리트를 상하부간 시간차를 두고 일체 타설한 것이고, 본 발명에 따른 공법(A)의 경우에는 하부층을 보통포틀랜드시멘트의 중량 대비 20중량%의 석회석미분말과 보통포틀랜드시멘트를 혼합콘크리트를 타설하고, 상부층는 보통포틀랜드시멘트만을 사용하여 타설한 것이다. Figure 2 shows the temperature history of the structure according to the invention measured at the actual construction site. In Figure 2, the conventional method (A) is usually cast concrete integrally with a time difference between the upper and lower parts, in the case of the method (A) according to the present invention, the lower layer and the limestone powder of 20% by weight relative to the weight of ordinary Portland cement and Ordinary portland cement was poured with mixed concrete, and the upper layer was poured using only ordinary portland cement.

도 2에서 종래의 공법(A)인 경우는 보통 콘크리트를 상하부간 시간차를 두고 일체 타설함에 따라 높은 수화열의 발생과 초기재령에서부터 상하부콘크리트 간의 온도차가 발생하였으나, 본 발명에 따른 공법(B)의 경우에는 상부층 및 하부층이 동시 수화발열함으로써 온도균열이 발생하지 않았다. In the case of the conventional construction method (A) in FIG. 2, the high temperature of hydration heat and the temperature difference between the upper and lower concretes are generated as the concrete is integrally placed with time difference between the upper and lower parts, but in the case of the construction method (B) according to the present invention. In the upper layer and the lower layer, simultaneous hydration and heat generation did not occur.

본 발명에 따른 석회석미분말과 화학 혼화제 형태 조합에 따른 기초매스콘크리트의 균열저감방법은 환경적인 측면에서 산업부산물인 석회석미분말(LSP)를 효과적으로 사용함으로써 환경부하를 줄이고, 보통포틀랜드시멘트(OPC)의 사용량을 축소시킴에 따라 지구온난화 현상를 줄일 수 있으며, 경제적인 측면에서는 가격이 비싼 보통포틀랜드시멘트(OPC)의 사용량을 줄여줌에 따라 경제성도 확보할 수 있다. The method of reducing the cracks of the basic mass concrete according to the combination of the limestone fine powder and the chemical admixture according to the present invention reduces the environmental load by effectively using the limestone fine powder (LSP) which is an industrial by-product from the environmental point of view, and uses the ordinary portland cement (OPC). By reducing the global economy, global warming can be reduced, and economically, the economy can also be secured by reducing the use of expensive ordinary Portland cement (OPC).

또한, 본 발명에 따른 공법의 경우 상부콘크리트가 조기에 강도를 발현하므로 신속히 후속작업을 진행 할 수 있어 타 공법에 비해 공기를 단축시킬 수 있다.In addition, in the case of the method according to the present invention, since the upper concrete expresses strength early, the subsequent work can be quickly performed, thereby reducing the air compared to other methods.

상술한 바와 같이, 본 발명에 따른 석회석미분말과 화학 혼화제 형태 조합에 따른 기초매스콘크리트의 균열저감방법은 매스콘크리트의 수화열에 의한 최고온도를 낮추고 수화열 균열을 완벽하게 제어함에 따라 콘크리트의 양호한 품질 확보로 균열 보수비용을 절감하고 내구성을 확보할 수 있으며, 산업부산물의 효과적인 사용으로 보통포틀랜드시멘트(OPC) 사용량을 절감함으로써 환경부하를 줄일 수 있어 지구온난화 등 환경문제에도 큰 효과를 얻을 수 있고, 상부콘크리트의 빠른 강도 발현으로 양생기간을 단축시켜 공기단축에 효과적이다.As described above, the method for reducing the cracking of the basic mass concrete according to the combination of the limestone fine powder and the chemical admixture according to the present invention is to lower the maximum temperature by the heat of hydration of the mass concrete and to control the cracks of the heat of hydration to ensure the good quality of the concrete. It can reduce crack repair cost and secure durability, and reduce the environmental load by reducing the use of ordinary Portland cement (OPC) through effective use of industrial by-products, which can have a great effect on environmental problems such as global warming, and upper concrete It is effective for shortening the curing period by shortening the curing period by expressing the strength of fast.

이상에서 본 발명의 바람직한 실시예를 상세히 설명하였으나, 본 발명은 이에 한정되는 것이 아니며 본 발명의 기술적 사상의 범위내에서 당업자에 의해 그 개량이나 변형이 가능하다.Although the preferred embodiment of the present invention has been described in detail above, the present invention is not limited thereto and may be improved or modified by those skilled in the art within the scope of the technical idea of the present invention.

Claims (4)

매스콘크리트의 단면높이를 균등히 분할하여 상부층과 하부층을 구분하고, 상부층에는 보통포틀랜드시멘트만을 타설하면서, 투입되는 상기 보통포틀랜드시멘트의 중량 대비 0.01~1.5중량%의 지연형 AE감수제 또는 지연형 고성능AE감수제로 구성되는 제 1 혼화제를 혼합하고, 하부층에는 보통포틀랜드시멘트의 중량 대비 5~40중량%의 석회석미분말(LSP)과 상기 보통포틀랜드시멘트를 혼합한 혼합콘크리트를 타설하면서, 상기 혼합콘크리트의 중량 대비 0.01~1.5중량%의 지연형 AE감수제 또는 지연형 고성능AE감수제로 구성되는 제 2 혼화제를 혼합하여 응결시간을 달리하는 혼화제의 조합에 의하여 상부층 및 하부층의 수화발열량차를 축소시키는 석회석미분말과 화학 혼화제 형태 조합에 따른 매스콘크리트의 균열저감방법.The cross-sectional height of the mass concrete is divided equally to separate the upper and lower layers, and only the upper portland cement is poured into the upper layer, while the delayed AE water reducing agent or delayed high performance AE water reducing agent is 0.01 to 1.5% by weight based on the weight of the ordinary portland cement. Mixing the first admixture consisting of, and in the lower layer is poured 5 to 40% by weight of limestone fine powder (LSP) and the mixed concrete mixed with the ordinary portland cement, 0.01 to the weight of the mixed concrete Limestone fine powder and chemical admixture form to reduce the difference in hydration calorific value of the upper and lower layers by combining a second admixture composed of ~ 1.5% by weight of delayed AE water reducing agent or delayed high performance AE water reducing agent Reduction of cracking of mass concrete by combination 제 1 항에 있어서, 상기 제 1 혼화제를 상부층에 투입되는 상기 보통포틀랜드시멘트의 중량 대비 0.01~1.5중량%의 표준형 AE감수제 또는 표준형 고성능 AE감수제로 구성하며, 상기 제 2 혼화제는 하부층에는 투입되는 상기 보통포틀랜드시멘트와 석회석미분말을 혼합한 혼합콘크리트의 중량 대비 0.01~1.5중량%의 지연형 AE감수제 또는 지연형 고성능 AE감수제로 구성하는 것을 특징으로 하는 석회석미분말과 화학 혼화제 형태 조합에 따른 매스콘크리트의 균열저감방법. According to claim 1, wherein the first admixture is composed of a standard AE water reducing agent or a standard high performance AE water reducing agent of 0.01 to 1.5% by weight relative to the weight of the ordinary portland cement to the upper layer, wherein the second admixture is added to the lower layer Cracking of the mass concrete according to the combination of limestone fine powder and chemical admixture form, comprising 0.01 to 1.5% by weight of delayed AE water reducing agent or delayed high performance AE water reducing agent compared to the weight of mixed concrete mixed with ordinary portland cement and limestone fine powder Reduction Method. 제 1 항에 있어서, 상기 제 1 혼화제를 상부층에 투입되는 상기 보통포틀랜 드시멘트의 중량 대비 0.01~1.5중량%의 촉진형 AE감수제 또는 촉진형 고성능 AE감수제로 구성하며, 상기 제 2 혼화제는 하부층에는 투입되는 상기 보통포틀랜드시멘트와 석회석미분말을 혼합한 혼합콘크리트의 중량 대비 0.01~1.5중량%의 지연형 AE감수제 또는 지연형 고성능 AE감수제로 구성하는 것을 특징으로 하는 석회석미분말과 화학 혼화제 형태 조합에 따른 매스콘크리트의 균열저감방법. According to claim 1, wherein the first admixture is composed of 0.01 to 1.5% by weight of the accelerated AE water reducing agent or accelerated high performance AE water reducing agent relative to the weight of the ordinary port cement cement to the upper layer, the second admixture is the lower layer According to the combination of limestone fine powder and chemical admixture form, characterized in that composed of 0.01 to 1.5% by weight of delayed AE water reducing agent or delayed high performance AE water reducing agent compared to the weight of the mixed concrete mixed with the ordinary portland cement and limestone fine powder Reduction of cracks in mass concrete. 제 1 항에 있어서, 상기 제 1 혼화제를 상부층에 투입되는 상기 보통포틀랜드시멘트의 중량 대비 0.01~1.5중량%의 촉진형 AE감수제 또는 촉진형 고성능 AE감수제로 구성하며, 상기 제 2 혼화제는 하부층에는 투입되는 상기 보통포틀랜드시멘트와 석회석미분말을 혼합한 혼합콘크리트의 중량 대비 0.01~1.5중량% 표준형 AE감수제 또는 표준형 고성능 AE감수제로 구성하는 것을 특징으로 하는 석회석미분말과 화학 혼화제 형태 조합에 따른 매스콘크리트의 균열저감방법. According to claim 1, wherein the first admixture is composed of 0.01 to 1.5% by weight of the accelerated AE water reducing agent or accelerated high performance AE water reducing agent relative to the weight of the ordinary portland cement to the upper layer, the second admixture is added to the lower layer. Reduction of cracking of the mass concrete according to the combination of limestone fine powder and chemical admixture form, characterized in that composed of 0.01 to 1.5% by weight of standard AE water reducing agent or standard high performance AE water reducing agent Way.
KR1020060009487A 2006-02-01 2006-02-01 Crack reducing method of mass concrete for mat foundation considering the combined addition of limestone powder and chemical admixture KR100645546B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060009487A KR100645546B1 (en) 2006-02-01 2006-02-01 Crack reducing method of mass concrete for mat foundation considering the combined addition of limestone powder and chemical admixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060009487A KR100645546B1 (en) 2006-02-01 2006-02-01 Crack reducing method of mass concrete for mat foundation considering the combined addition of limestone powder and chemical admixture

Publications (1)

Publication Number Publication Date
KR100645546B1 true KR100645546B1 (en) 2006-11-15

Family

ID=37654497

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060009487A KR100645546B1 (en) 2006-02-01 2006-02-01 Crack reducing method of mass concrete for mat foundation considering the combined addition of limestone powder and chemical admixture

Country Status (1)

Country Link
KR (1) KR100645546B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103605888A (en) * 2013-11-14 2014-02-26 中国水利水电科学研究院 Mass-concrete temperature process prediction method based on real-time monitoring data
CN103964784A (en) * 2014-05-07 2014-08-06 西安中交土木科技有限公司 Cement mortar for repairing corrosion damage of concrete structure and preparation method of cement mortar
CN104030635A (en) * 2014-06-13 2014-09-10 安徽华业建工集团有限公司 Concrete and preparation method thereof
CN104045281A (en) * 2014-06-13 2014-09-17 安徽华业建工集团有限公司 Concrete and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08100528A (en) * 1994-10-03 1996-04-16 Okumura Corp Placing method for mass concrete
KR20030092712A (en) * 2002-05-31 2003-12-06 삼성물산 주식회사 concrete composite mixed with limestone powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08100528A (en) * 1994-10-03 1996-04-16 Okumura Corp Placing method for mass concrete
KR20030092712A (en) * 2002-05-31 2003-12-06 삼성물산 주식회사 concrete composite mixed with limestone powder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103605888A (en) * 2013-11-14 2014-02-26 中国水利水电科学研究院 Mass-concrete temperature process prediction method based on real-time monitoring data
CN103964784A (en) * 2014-05-07 2014-08-06 西安中交土木科技有限公司 Cement mortar for repairing corrosion damage of concrete structure and preparation method of cement mortar
CN103964784B (en) * 2014-05-07 2016-01-20 西安中交土木科技有限公司 For sand-cement slurry that concrete structure Damage of Corroded is repaired and preparation method thereof
CN104030635A (en) * 2014-06-13 2014-09-10 安徽华业建工集团有限公司 Concrete and preparation method thereof
CN104045281A (en) * 2014-06-13 2014-09-17 安徽华业建工集团有限公司 Concrete and preparation method thereof
CN104045281B (en) * 2014-06-13 2016-05-04 安徽华业建工集团有限公司 Concrete and preparation method thereof
CN104030635B (en) * 2014-06-13 2016-05-04 安徽华业建工集团有限公司 Concrete and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101720504B1 (en) A high early strength cement concrete composition having the improved durability for road pavement and a repairing method of road pavement using the same
CN105298133B (en) Lift the design and construction method of mass concrete invert crack resistance
KR100645546B1 (en) Crack reducing method of mass concrete for mat foundation considering the combined addition of limestone powder and chemical admixture
JP6404021B2 (en) Fast-hardening polymer cement mortar composition for repair and reinforcement, and repair and reinforcement method using the same
KR100581148B1 (en) Crack reducing method of mass concrete for mat foundation considering the combined addition of fly ash, blast furnace slag and chemical admixture
CN101503915B (en) Construction method for ultra-large area, ultra-thin non-agglutination pre-stress integral pond baseboard
KR100875240B1 (en) High performance concrete composition for constructing bridge slab integrated with pavement and bridge slab construction method using the same
KR100645545B1 (en) Crack reducing method of mass concrete for mat foundation considering the combined addition of blast furnace slag and chemical admixture
KR100581149B1 (en) Crack reducing method of mass concrete for mat foundation considering the combined addition of fly ash, limestone powder and chemical admixture
CN106587693B (en) A kind of expansion process adjustable outer water mixing working platform light calcined magnesia dam concrete preparing process and construction method
KR100645544B1 (en) Crack reducing method of mass concrete for mat foundation considering the combined addition of fly ash and chemical admixture
KR100581150B1 (en) Crack reducing method of mass concrete for mat foundation considering the combined addition of blast furnace slag, limestone powder and chemical admixture
JP2879017B2 (en) Heat of hydration control concrete and concrete crack control method
JP5602580B2 (en) Concrete material for placing in cold weather, concrete structure using the material
JP5173117B2 (en) Manufacturing method of concrete structure using concrete material for placing in cold weather
KR102472007B1 (en) Crack-proofing method of mass concrete by using hydrated heat and mass concrete thereof
KR101943037B1 (en) Composition for high strength concrete panel and high strength concrete panel for inner or outer wall of building prepared by using the same
RU2644367C1 (en) Composite system for floor devices
Nasir et al. Behavior of drying and plastic shrinkage of Portland cement concrete prepared and cured under harsh field
JP4564330B2 (en) Prevention of initial dry cracking of high strength concrete
JP2000248743A (en) Mass concrete placing method
JP2006131481A (en) Method for producing cement hardened body
Troli et al. USE OF A SHRINKAGE COMPENSATING CONCRETE FOR THE CONSTRUCTION OF A CRACK-FREE SLAB FOUNDATION
JP6509638B2 (en) Method of manufacturing concrete structure
JP6913531B2 (en) Manufacturing method of precast concrete members

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121120

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131202

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141118

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151105

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20161123

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20171106

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20191030

Year of fee payment: 14