KR100640149B1 - Al matrix composite for shoes mold cast in a ? gypsum - Google Patents

Al matrix composite for shoes mold cast in a ? gypsum Download PDF

Info

Publication number
KR100640149B1
KR100640149B1 KR1020050014479A KR20050014479A KR100640149B1 KR 100640149 B1 KR100640149 B1 KR 100640149B1 KR 1020050014479 A KR1020050014479 A KR 1020050014479A KR 20050014479 A KR20050014479 A KR 20050014479A KR 100640149 B1 KR100640149 B1 KR 100640149B1
Authority
KR
South Korea
Prior art keywords
mold
gypsum
aluminum
shoe
cast
Prior art date
Application number
KR1020050014479A
Other languages
Korean (ko)
Other versions
KR20060093758A (en
Inventor
여인동
김원용
나태엽
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020050014479A priority Critical patent/KR100640149B1/en
Publication of KR20060093758A publication Critical patent/KR20060093758A/en
Application granted granted Critical
Publication of KR100640149B1 publication Critical patent/KR100640149B1/en

Links

Images

Classifications

    • D06F39/40
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/02Rotary receptacles, e.g. drums
    • D06F37/04Rotary receptacles, e.g. drums adapted for rotation or oscillation about a horizontal or inclined axis
    • D06F37/10Doors; Securing means therefor
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/26Casings; Tubs
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/26Casings; Tubs
    • D06F37/28Doors; Security means therefor
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/30Driving arrangements 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/08Liquid supply or discharge arrangements
    • D06F39/087Water level measuring or regulating devices
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/12Casings; Tubs
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/12Casings; Tubs
    • D06F39/14Doors or covers; Securing means therefor
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/30Application of doors, windows, wings or fittings thereof for domestic appliances
    • E05Y2900/312Application of doors, windows, wings or fittings thereof for domestic appliances for washing machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Abstract

본 발명은 정밀 주조되는 신발 금형 제조방법에 관한 것으로, 특히 신발금형을 주조하는데 채택되는 α형반수석고를 이용하여 주형을 제작하고 알루미늄기의 복합재를 주조, 금형의 물성을 강화시키기 위한, α형반수석고주형에 주조되는 석고주형 정밀주조용 알루미늄기 복합소재를 이용하여 아웃솔에의 적용이 가능한 신발금형 제조방법에 관한 것으로, The present invention relates to a method of manufacturing a shoe mold to be precisely cast, in particular, to produce a mold using the α-type hemihydrate gypsum adopted to cast a shoe mold, and to cast the aluminum-based composite, to enhance the physical properties of the mold, The present invention relates to a shoe mold manufacturing method that can be applied to an outsole using an aluminum-based composite material for precision casting of a gypsum mold cast on a semi-hydrate gypsum mold.

α형반수석고 70% 이상을 함유하는 비발포성 석고주형에, 4~35 ㎛ 크기의 SiC입자 5~20 % 중량부를 알루미늄(Al)과 혼합처리하여 얻게 되는 알루미늄기 복합소재를 이용하여, 신발 금형 제작시 아웃솔 금형에의 적용이 가능하게 되어, 장기적으로 철계 금형을 대체할 수 있는 효과를 제공하기 위한 α 형 반수석고주형에 정밀 주조되는 신발 금형 제조방법에 관한 것이다.Shoe molds using an aluminum-based composite material obtained by mixing 5 to 20 parts by weight of aluminum (Al) with a non-foamable gypsum mold containing at least 70% of α-type hemihydrate gypsum. The present invention relates to a shoe mold manufacturing method that can be applied to an outsole mold during manufacture, and is precisely cast to an α-type hemihydrate gypsum mold to provide an effect of replacing iron-based mold in the long term.

α형반수석고, 알루미늄기복합소재, SiC, 신발금형α-type half gypsum, aluminum-based composite material, SiC, shoe mold

Description

α형반수석고주형에 정밀 주조되는 신발금형 제조방법{Al matrix composite for shoes mold cast in a α gypsum}Method for manufacturing shoe molds that are precisely cast on α-type semi-manufactured plaster molds {Al matrix composite for shoes mold cast in a α gypsum}

도 1은 본 발명에 채택되는 기지금속인 AC4C 알루미늄 합금의 500 배율에 의한 현미경 조직도이고Figure 1 is a microscopic organization chart at 500 magnification of the base metal AC4C aluminum alloy adopted in the present invention

도 2는 기지금속에 혼합되는 4 ~ 35㎛ 입자크기의 SiC를 10 % 중량부 함유한 상태에서의 현미경 조직도이며,FIG. 2 is a microscopic structure diagram of 10% by weight of SiC having a particle size of 4 to 35 µm mixed with a base metal.

도 3은 기지금속에 혼합되는 4 ~ 35㎛ 입자크기의 SiC를 15 % 중량부 함유한 상태에서의 현미경 조직도이며,3 is a microscopic structure diagram of 15% by weight of SiC having a particle size of 4 ~ 35㎛ mixed in a base metal,

도 4는 기지금속에 혼합되는 4 ~ 35㎛ 입자크기의 SiC를 20 % 중량부 함유한 상태에서의 현미경 조직도이며,FIG. 4 is a microscopic structure diagram of 20% by weight of SiC having a particle size of 4 to 35 µm mixed with a base metal.

도 5는 기지금속에 혼합되는 4 ~ 35㎛ 입자크기의 SiC를 25 % 중량부 함유한 상태에서의 현미경 조직도이며,5 is a microscopic structure diagram of 25% by weight of SiC having a particle size of 4 ~ 35㎛ mixed in a base metal,

도 6 내지 도 10은 기지금속에 혼합되는 SiC 입자를 1000 mesh(1 ~ 15 ㎛)로 하여 각각 10%, 15%, 20%, 25% 중량부를 혼합 하였을 경우의 각각의 현미경 조직도를 나타낸 것이다.6 to 10 show microscopic organization charts when 10%, 15%, 20%, and 25% by weight of SiC particles mixed with the base metal were mixed to 1000 mesh (1 to 15 μm), respectively.

표 1은 본 발명에 채택되는 기지금속인 AC4C 합금의 화학조성을 나타낸 것이 고,Table 1 shows the chemical composition of the base metal AC4C alloy adopted in the present invention,

표 2는 각 강화재의 종류와 분율에 따른 경도값을 나타낸 표이며,Table 2 is a table showing the hardness value according to the type and fraction of each reinforcing material,

표 3은 강화재에 따른 복합재의 인장강도를 나타낸 것이다.Table 3 shows the tensile strength of the composite according to the reinforcement.

본 발명은 정밀 주조되는 신발 금형 제조방법에 관한 것으로, 특히 신발금형을 주조하는데 채택되는 α형반수석고를 이용하여 주형을 제작하고 알루미늄기의 복합재를 주조, 금형의 물성을 강화시키기 위한, α형반수석고주형에 정밀 주조되는 신발금형 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a shoe mold to be precisely cast, in particular, to produce a mold using the α-type hemihydrate gypsum adopted to cast a shoe mold, and to cast the aluminum-based composite, to enhance the physical properties of the mold, The present invention relates to a shoe mold manufacturing method that is precisely cast on a semi-hydrated gypsum mold.

일반적으로 신발금형을 주조 제작 할 경우 주철이나 주강 금형으로 제작하게 되는데, 이와같은 재질을 이용할 경우 제작기간이 상당히 소요되고 무게가 무거워 취급하는데 불편함은 물론, 열전도성이 알루미늄에 비하여 떨어지기 때문에 제품의 생산성이 저하되는 문제점이 있다.In general, when casting a shoe mold, it is made of cast iron or cast steel mold. When using such a material, the production time is considerably longer and the weight is heavy, which makes it inconvenient to handle and the thermal conductivity is lower than that of aluminum. There is a problem that the productivity is lowered.

따라서, 상기한 바와 같은 문제점 등을 해결하기 위해 근래에 들어 알루미늄 소재를 이용한 금형 제조법이 개발되어 시행되고 있는바, 이와같은 알루미늄합금(Aluminum alloy)은 지금까지 고무성형, 발포성형, 진공성형, 취입성형(吹入成形) 등 비교적 압력이 가해지지 않는 용도에 쓰여지고 있었으나, 강재(鋼材)와 비교해서 여러 가지 장점이 있어 사출성형분야에도 시작금형(試作金型)으로 사용되기 시작하였음은 주지된 바와 같다.Therefore, in order to solve the problems as described above, in recent years, a mold manufacturing method using aluminum materials has been developed and implemented. Such aluminum alloys have been used so far for rubber molding, foam molding, vacuum molding, and blowing. It has been used for relatively low pressure applications such as molding, but it has many advantages compared with steel, and it is well known that it has been used as a starting mold in the field of injection molding. same.

이와같이 금형용 소재로 알루미늄 합금을 이용할 경우에는 강재에 비해 경량화와 가공속도를 높이는 것이 목적인바, 절삭 및 방전가공성이 좋고 단기간에 제작이 가능하며, 금형가공비를 대폭 절감할 수 있으며, 열전도성이 좋아 성형사이클을 단축할 수 있는 등 우수한 특성을 가지고 있다. As such, when aluminum alloy is used as a material for a mold, the purpose is to reduce the weight and speed of processing compared to steel, and it has good cutting and discharging process, and can be manufactured in a short time. It has excellent characteristics such as shortening the cycle.

이러한 알루미늄 합금은 정밀주조법으로 주조품을 정밀하게 제작할 수 있고, 주조결함이 거의 없는 특성을 가지고 있어 근래 들어 다양한 분야에의 실용성이 입증되고 있다.Such aluminum alloys can be manufactured precisely by the precision casting method, and have almost no casting defects, so the practical use in various fields has recently been demonstrated.

그러나 이와같이 상기 알루미늄 합금소재를 이용한 금형주조시, 그 무게가 가볍고 열전도성이 좋아 고속 성형이 비교적 잘 되므로 새로운 패턴으로 디자인되는 제품에 해당되는 금형을 신속하게 생산 할 수 있는 장점이 있는 반면에, 경도가 낮아 신발금형과 같은 경우 주로 미드솔 금형에만 적용하게 되는 문제점이 있다.However, when the mold casting using the aluminum alloy material as described above, because the weight is light and the thermal conductivity is good, high-speed molding is relatively good, there is an advantage that can quickly produce a mold corresponding to the product designed in a new pattern, while hardness If low, such as a shoe mold mainly has a problem that is applied only to the midsole mold.

따라서 본 발명은 상기한 문제점 등을 해결하기 위해 안출한 것으로서, Accordingly, the present invention has been made to solve the above problems,

내열용 비발포 α형 석고주형에 탄화규소의 분말을 알루미늄(Al)과 혼합하여서 되는 알루미늄 복합소재를 이용, 금형을 정밀 주조토록 함으로써 알루미늄의 장점과 철계의 물성에 의해 신발금형의 제조시 아웃솔 금형으로의 적용이 가능하도록 하는데 그 목적이 있다.Outsole molds for the production of shoe molds based on the advantages of aluminum and iron-based properties by precisely casting molds by using aluminum composite materials in which silicon carbide powder is mixed with aluminum (Al) in heat-resistant non-foaming α-type gypsum molds. The purpose is to make it possible to apply to.

상기한 목적을 달성하기 위한 본 발명은,
공지의 석고주형에 의해 신발금형을 제조하는 방법에 있어서,
The present invention for achieving the above object,
In the method of manufacturing a shoe mold by a known gypsum mold,

α 형반수석고 70% 이상을 함유하는 비발포성 석고주형에, 4 ~ 35 ㎛ 크기의 SiC 입자 5 ~ 20 % 중량부를 알루미늄(Al)과 혼합처리하여 얻게 되는 알루미늄기 복합소재를 이용하여 주조하는 것을 특징으로 하는 α 형반수석고주형을 이용한 신발금형제조방법을 제공한다.casting a non-foamable gypsum mold containing not less than 70% of α-form plaster, using an aluminum-based composite material obtained by mixing 5 to 20% by weight of SiC particles having a size of 4 to 35 μm with aluminum (Al). Provided is a shoe mold manufacturing method using the α-shaped half-board plaster.

삭제delete

이하 본 발명의 바람직한 실시예를 첨부한 도면 및 사진 등을 참조하여 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings and photographs.

일반적으로 주물을 주형별로 분류하면 생형, 건조형, 자경성형, 쉘(shell)형, 가스형, 석고형, 반영구형, 시멘트형, 금형(영구형)주형 등으로 나누게 되는데, 특히 본 발명에서는 주형용으로 사용되는 소석고를 수증기중에서의 가압, 가열에 의한 소성공정에 의해 얻게 되는 α형반수석고를 이용하여 주형을 제작하도록 한다.In general, when the casting is classified by mold, it is divided into mold, dry mold, self-molding mold, shell mold, gas mold, gypsum mold, semi-permanent mold, cement mold, mold mold (permanent mold), and the like. The cast gypsum used as a mold is produced by using the α-type hemihydrate gypsum obtained by the firing process by pressurization and heating in water vapor.

이와같은 α형반수석고는 소석고를 공기중에서 가열, 소성한 β형석고에 비하여 필요로 하는 혼수량이 적기 때문에 건조시간이 짧아서 경제적이며 강도가 커서 상기 α형반수석고를 주성분으로 하는 주형을 제작한 후 본 발명에 의해 제공되는 알루미늄기 복합소재에 의해 금형이 주조되도록 하는 구성을 제공하게 된다.Such α-type gypsum gypsum has a smaller amount of coma than the β-gypsum gypsum heated and calcined in air, resulting in a short drying time and economical and high strength. It is to provide a configuration such that the mold is cast by the aluminum-based composite material provided by the present invention.

따라서, 본 발명은 α형반수석고로 되는 석고주형을 이용하여 신발 금형을 제조할 때, AC4C 알루미늄 기지금속에 알루미늄기 복합소재를 첨가, 용탕 처리하여 신발 금형을 얻을 수 있도록 하기 위한 세라믹강화 알루미늄기 복합재를 제시하고자 한다.Accordingly, the present invention, when manufacturing a shoe mold using a gypsum mold made of α-type hemihydrate gypsum, the ceramic-reinforced aluminum machine for adding an aluminum-based composite material to the AC4C aluminum base metal, melt treatment to obtain a shoe mold We want to present a composite.

본 발명을 실시하기 위한 세라믹강화 알루미늄기 복합소재를 제조하기 위해 기지금속인 알루미늄 합금에 SiC를 400 mesh( 4 ~ 35 ㎛ 범위내)와 1000 mesh( 1 ~ 15 ㎛ 범위내) 범위내 두 입자의 재료를 대상으로 복합화 시험을 하였다.In order to manufacture a ceramic-reinforced aluminum-based composite material for carrying out the present invention, SiC is used in an aluminum alloy that is a base metal. The compound was subjected to the compounding test.

복합공정은 전자장 교반장치를 이용하여 강화재인 SiC 입자상을 투입한 후 1차 교반을 하고, 불활성가스 분위기속에서 2차 교반을 수행하였다.In the composite process, after adding SiC particles as reinforcing materials by using an electromagnetic field stirring device, the first stirring was performed, and the second stirring was performed in an inert gas atmosphere.

교반시 RPM은 100RPM으로 하였고, 용탕온도는 750℃를 유지하는 것이 가장 적합하다.When stirring, the RPM was 100 RPM, and the melt temperature was most suitably maintained at 750 ° C.

여기서, 교반속도가 낮아지게 되면 교반시간이 길어지며, 용탕온도가 설정온도 보다 낮으면 교반이 힘들게 되고 이보다 온도가 높게 되면 산화 및 가스결함 발생률이 높아질 수 있어, 상기의 온도를 유지하는 것이 중요하다.Here, when the stirring speed is lowered, the stirring time becomes longer, and when the molten metal temperature is lower than the set temperature, stirring becomes difficult, and when the temperature is higher than this, the incidence of oxidation and gas defects may be increased, and it is important to maintain the temperature. .

본 발명에 채택되는 기지금속인 알루미늄합금은 주조성ㆍ내식성ㆍ내압성 등이 우수한 AC4C 합금(Al-7%, Si-3.5%,Mg)을 이용하였다. As the base metal aluminum alloy to be employed in the present invention, an AC4C alloy (Al-7%, Si-3.5%, Mg) having excellent castability, corrosion resistance, pressure resistance, and the like was used.

표 1은 본 발명에 채택되는 기지금속인 AC4C 합금의 화학조성을 나타낸다.Table 1 shows the chemical composition of AC4C alloy which is a base metal adopted in the present invention.

MaterialMaterial % Si% Si % Mg% Mg % Cu% Cu % Zu% Zu % Fe% Fe % Mn% Mn % Ti% Ti % Al% Al AC4C alloyAC4C alloy 7.27.2 0.30.3 <0.001<0.001 0.0160.016 0.320.32 <0.001<0.001 0.150.15 BalBal

도 1은 이와같은 AC4C 합금의 현미경조직을 500배 확대하여 나타낸 것이다.Figure 1 shows an enlarged 500 times the microscopic structure of such an AC4C alloy.

이와같은 AC4C 알루미늄 합금을 기지금속으로 하여, 4 ~ 35 ㎛의 입자크기(약 400mesh)를 갖는 SiC를 첨가하여, 상술한 바와 같이 전자장 교반장치를 이용하여 1차 교반 한 다음, 불활성가스 분위기속에서 2차교반하였다.Using this AC4C aluminum alloy as a base metal, SiC having a particle size of about 4 to 35 µm (about 400 mesh) is added, followed by primary stirring using an electromagnetic stirring apparatus as described above, and then in an inert gas atmosphere. 2nd stirring.

도 2 내지 도 5는 각각 상기 입자크기를 갖는 SiC를 상술한 화학성분을 갖는 AC4C 알루미늄 합금에 10%, 15%, 20%, 25% 중량부 혼합한 상태에서 나온 결과물을 현미경조직을 통하여 500 배 확대한 상태를 나타낸 것이다.2 to 5 are 500 times through the microstructure of the result obtained by mixing the SiC having the particle size with 10%, 15%, 20%, 25% by weight of the AC4C aluminum alloy having the above-mentioned chemical composition. The enlarged state is shown.

한편, 이와는 달리 AC4C 알루미늄 합금을 기지금속으로 하여, 1000 mesh 입자크기를 갖는 SiC를 첨가하여, 상술한 바와 같이 전자장 교반장치를 이용하여 1차 교반 한 다음, 불활성가스 분위기속에서 2차교반하였다.On the other hand, by using the AC4C aluminum alloy as a base metal, SiC having a particle size of 1000 mesh was added, followed by primary stirring using an electromagnetic stirring apparatus as described above, and then secondary stirring in an inert gas atmosphere.

도 6 내지 도 10은 각각 상기 입자크기를 갖는 SiC를 상술한 화학성분을 갖는 AC4C 알루미늄 합금에 10%, 15%, 20%, 25% 중량부로 혼합한 상태에서 나온 결과물을 상기한 바와 동일한 방법으로 현미경조직을 통하여 500 배 확대한 상태를 나타낸 것이다.6 to 10 are the same as described above the result obtained by mixing the SiC having the particle size with 10%, 15%, 20%, 25% by weight to the AC4C aluminum alloy having the above-mentioned chemical composition, respectively. It shows the state magnified 500 times through the microscopic tissue.

첨부한 도면 대용 사진에서 보는바와 같이 4 ~ 35 ㎛의 입자크기(약 400mesh)의 크기를 갖는 SiC를 15% 중량부 이상의 첨가한 강화재에서 균일한 분포 를 나타내었으며, 1000 mesh( 1 ~ 15 ㎛ 범위내)의 크기를 갖는 SiC 를 25% 중량부 포함하여야 균일분포를 가지게 되나 그 강화재 등이 뭉쳐지는 현상이 심각하여 상기한 4 ~ 35 ㎛의 입자크기(약 400mesh)를 포함하는 강화재의 복합효과가 더욱 우수함을 알 수 있었다.As shown in the accompanying drawings, it showed uniform distribution in the reinforcing material added with 15% by weight or more of SiC having a particle size of about 4 to 35 μm (about 400 mesh), and 1000 mesh (1 to 15 μm range). SiC having a size of inside) should be included 25% by weight to have a uniform distribution, but the phenomenon that the reinforcing materials, etc. are agglomerated seriously, the composite effect of the reinforcing material including the particle size of about 4 ~ 35 ㎛ (about 400 mesh) It was found to be superior.

또한, 이와같이 얻게 되는 SiC 4 ~ 35 ㎛의 입자크기(약 400mesh)를 포함하는 알루미늄 강화재와 약 1 ~ 15 ㎛ 범위내(약 1000 mesh) 입자크기를 갖는 SiC가 혼합된 알루미늄 강화재간의 물성값을 비교하면 다음과 같다.In addition, the physical properties of the aluminum reinforcement containing the SiC 4 ~ 35 ㎛ particle size (about 400 mesh) obtained in this way and the Si reinforcement mixed with SiC having a particle size in the range of about 1 ~ 15 ㎛ (about 1000 mesh) is compared Is as follows.

표 2는 각 강화재의 종류와 분율에 따른 경도값을 나타낸다.Table 2 shows the hardness values according to the type and fraction of each reinforcing material.

재 료material 경 도 HB (평균값)Hardness HB (average value) 400 # 5% 복합재400 # 5% Composite 112.9112.9 400 # 10% 복합재400 # 10% Composite 117.4117.4 400 # 15% 복합재400 # 15% Composite 124.2124.2 400 # 20% 복합재400 # 20% Composite 135.4135.4 400 # 25% 복합재400 # 25% Composite 162.9162.9 1000 # 10% 복합재1000 # 10% composite 87.887.8 1000 # 15% 복합재1000 # 15% Composite 89.189.1 1000 # 20% 복합재1000 # 20% composite 91.391.3 1000 # 25% 복합재1000 # 25% composite 92.892.8

이상에서 알 수 있는 바와 같이, 전반적으로 1 ~ 15 ㎛ 범위내(1000 mesh) SiC 입자를 강화시킨 복합재의 경우 경도값이 대체로 낮았으며, 4 ~ 35 ㎛의 입자크기 범위(400 mesh) SiC 입자를 이용하여 강화시킨 복합재의 경우 5% 중량부 이상만 첨가되면 평균 경도값이 모두 높게 나타났다. As can be seen from the above, in general, the hardness of the composite reinforced with SiC particles in the range of 1 to 15 μm (1000 mesh) was generally low, and the particle size range (400 mesh) of SiC particles in the range of 4 to 35 μm was obtained. In the case of the composite reinforced by using only 5% by weight or more, the average hardness value was all high.

바람직하게는 15% 이상을 첨가하는 것이 안정적인 것으로 나타났다.Preferably it was found that adding at least 15% is stable.

표 3은 강화재에 따른 복합재의 인장강도를 나타낸 것이다.Table 3 shows the tensile strength of the composite according to the reinforcement.

재 료material 인장강도 (kg/㎠, 평균값)Tensile strength (kg / ㎠, average value) 400 # 15% 복합재400 # 15% Composite 31.431.4 1000 # 15% 복합재1000 # 15% Composite 28.528.5

이상의 인장강도 실험에서 알 수 있듯이, SiC를 15% 중량부 첨가시 400 mesh 강화재의 평균 인장강도값이 1000 mesh 강화재에서의 평균 인장강도보다 높게 나타났다.As can be seen from the above tensile strength test, the average tensile strength of the 400 mesh reinforcement was higher than that of the 1000 mesh reinforcement when 15% by weight of SiC was added.

따라서, 전반적인 물성 시험결과 본 발명에서 우수한 물성을 갖으며 신발금형을 주조하기 위한 알루미늄강화재를 얻기 위해서는 기지금속인 AC4C 알루미늄 합금에 4 ~ 35 ㎛의 입자크기(약 400mesh)를 포함, 혼합하여 얻게 되는 강화재의 복합효과가 더욱 우수함을 알 수 있었다.Therefore, in order to obtain an aluminum reinforcing material for casting shoe molds having excellent physical properties in the present invention as a result of the overall physical property test, 4 to 35 μm of particle size (about 400 mesh) is included and mixed with the base metal AC4C aluminum alloy. The composite effect of the reinforcement was found to be more excellent.

상기와 같은 강화재를 이용하여, 신발 등의 금형을 동일자 동일한 발명자에 의해 발명, 출원하는 내용에 기재된 바와 같은, 반고상가압주조 또는 주조후 응고가압주조방법을 통하여, 정밀주조를 하게 된다.By using the above reinforcing material, through the semi-solid pressure casting or post-solidification pressure casting method, as described in the contents of the invention and application of the mold, such as shoes by the same inventor, precise casting.

따라서 본 발명에 의하면, 알루미늄의 장점과 주철 수준의 물성을 같이 공유 하게 되는 알루미늄 강화 복합재를 얻게 되므로, 신발 금형 제작시 아웃솔 금형에의 적용이 가능하게 되어, 장기적으로 철계 금형을 대체할 수 있는 효과를 기대할 수 있게 된다.Therefore, according to the present invention, it is possible to obtain an aluminum-reinforced composite material that shares the advantages of aluminum and the properties of cast iron level, it is possible to apply to the outsole mold when manufacturing shoe molds, it is possible to replace the iron mold in the long term You can expect.

Claims (1)

공지의 석고주형에 의해 신발금형을 제조하는 방법에 있어서,In the method of manufacturing a shoe mold by a known gypsum mold, α 형반수석고 70% 이상을 함유하는 비발포성 석고주형에, 4 ~ 35 ㎛ 크기의 SiC 입자 5 ~ 20 % 중량부를 알루미늄(Al)과 혼합처리하여 얻게 되는 알루미늄기 복합소재를 이용하여 주조하는 것을 특징으로 하는 α 형반수석고주형을 이용한 신발금형제조방법.casting a non-foamable gypsum mold containing not less than 70% of α-form plaster, using an aluminum-based composite material obtained by mixing 5 to 20% by weight of SiC particles having a size of 4 to 35 μm with aluminum (Al). Shoe mold manufacturing method using the α-shaped half gypsum mold.
KR1020050014479A 2005-02-22 2005-02-22 Al matrix composite for shoes mold cast in a ? gypsum KR100640149B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050014479A KR100640149B1 (en) 2005-02-22 2005-02-22 Al matrix composite for shoes mold cast in a ? gypsum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050014479A KR100640149B1 (en) 2005-02-22 2005-02-22 Al matrix composite for shoes mold cast in a ? gypsum

Publications (2)

Publication Number Publication Date
KR20060093758A KR20060093758A (en) 2006-08-25
KR100640149B1 true KR100640149B1 (en) 2006-10-31

Family

ID=37601748

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050014479A KR100640149B1 (en) 2005-02-22 2005-02-22 Al matrix composite for shoes mold cast in a ? gypsum

Country Status (1)

Country Link
KR (1) KR100640149B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130203A (en) 1982-01-29 1983-08-03 Mitsui Alum Kogyo Kk Production of composite material dispersed with aluminum particles
KR100245686B1 (en) 1995-10-12 2000-03-02 정몽규 Manufacturing method of powder-type preform body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130203A (en) 1982-01-29 1983-08-03 Mitsui Alum Kogyo Kk Production of composite material dispersed with aluminum particles
KR100245686B1 (en) 1995-10-12 2000-03-02 정몽규 Manufacturing method of powder-type preform body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1002456860000 *

Also Published As

Publication number Publication date
KR20060093758A (en) 2006-08-25

Similar Documents

Publication Publication Date Title
Sarada et al. Hardness and wear characteristics of hybrid aluminium metal matrix composites produced by stir casting technique
KR101831754B1 (en) Tough coated hard particles consolidated in a tough matrix material
Santa Maria et al. Al–Al2O3 syntactic foams–Part I: Effect of matrix strength and hollow sphere size on the quasi-static properties of Al-A206/Al2O3 syntactic foams
CA2686261C (en) Direct to metal sintering of 17-4ph steel
KR20170047016A (en) Powder forming method of aluminum and its alloys
EP1456149B1 (en) Carbide and nitride ternary ceramic glove and condom formers
CA2958409A1 (en) Titanium-based compositions, methods of manufacture and uses thereof
KR100653161B1 (en) Pressure-casting method of semisolid Al matrix composite
KR100640149B1 (en) Al matrix composite for shoes mold cast in a ? gypsum
RU2621241C1 (en) Nanostructured composite material based on boron carbide and the method of its obtaining
WO2017070809A1 (en) Novel mg-al-tib2-rare earth element intermediate alloy and preparation method therefor
Anandakrishnan et al. Synthesis and forming behavior of in situ AA 7075-TiC composites
Mondal et al. Net-shape manufacturing of intricate components of A356/SiCp composite through rapid-prototyping-integrated investment casting
Puspitasari et al. Mechanical and physical properties of aluminium-silicon (Al-Si) casting alloys reinforced by Zinc Oxide (ZnO)
JP2005298871A (en) Aluminum alloy for plastic working, and its manufacturing method
KR101684300B1 (en) Method of the magnesium alloy castings produced using the calcium silicon alloy powder
Hanamantraygouda et al. Effect of cold forging on microstructure and mechanicalproperties of al/sic composites
CZ19962U1 (en) Fluid-tight sintered metal component
Myalski et al. Physical and mechanical properties of composites with aluminum alloy matrix designed for metal forming
JPS6342341A (en) Aluminum alloy material
JP5475213B2 (en) Improved wear-resistant metal part and method of manufacturing the same
WO2006134405A1 (en) Method of manufacturing aluminium-based composite material
JPS6328841A (en) Manufacture of aluminum alloy material and sliding member
JP2001348288A (en) Particle-dispersed silicon material and method of producing the same
Talabi et al. Effects of spin casting on microstructure and mechanical behaviour of AA6063/SiC composite cold rolled and heat treated

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140206

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150713

Year of fee payment: 9

R401 Registration of restoration