KR100633287B1 - Double-layer cathode active materials for high capacity & high rate capability, method of preparing thereof and lithium secondary battery using thereby - Google Patents

Double-layer cathode active materials for high capacity & high rate capability, method of preparing thereof and lithium secondary battery using thereby Download PDF

Info

Publication number
KR100633287B1
KR100633287B1 KR1020050060218A KR20050060218A KR100633287B1 KR 100633287 B1 KR100633287 B1 KR 100633287B1 KR 1020050060218 A KR1020050060218 A KR 1020050060218A KR 20050060218 A KR20050060218 A KR 20050060218A KR 100633287 B1 KR100633287 B1 KR 100633287B1
Authority
KR
South Korea
Prior art keywords
active material
double layer
lithium secondary
secondary battery
positive electrode
Prior art date
Application number
KR1020050060218A
Other languages
Korean (ko)
Inventor
선양국
신호석
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to KR1020050060218A priority Critical patent/KR100633287B1/en
Application granted granted Critical
Publication of KR100633287B1 publication Critical patent/KR100633287B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Provided are a positive electrode active material for a lithium secondary battery which is high in capacity and charge density, is improved in lifetime characteristics and is excellent in thermal stability, and its preparation method. The positive electrode active material has a dual layer structure which comprises an inner part represented by Li_delta [Ni_x Co_(1-2x) Mn_x]O2 (wherein 1.0<=delta<=1.2 and 0.01<=x<=0.5), and an outer part represented by Li_delta [Ni_x Co_y Mn_(1-(x+y))]O2 (wherein 1.0<=delta<=1.2, 0.5<=x<=1.0 and 0.01<=y<=0.2) or Li_delta CoO2 (wherein 1.0<=delta<=1.2). Preferably the thickness of the outer part is 5-50 % of the total thickness of the positive electrode active material; the inner part has an average diameter of 1-8 micrometers; and the entire particle of positive electrode active material has an average diameter of 9-20 micrometers.

Description

고용량, 고율특성의 이중층 구조를 가지는 리튬이차전지용 양극 활물질, 그 제조 방법 및 그를 사용한 리튬이차전지{Double-layer cathode active materials for high capacity & high rate capability, method of preparing thereof and lithium secondary battery using thereby}A cathode active material for a lithium secondary battery having a double layer structure having a high capacity and a high rate characteristic, a method of manufacturing the same, and a lithium secondary battery using the same {Double-layer cathode active materials for high capacity & high rate capability, method of preparing etc and lithium secondary battery using

도1a는 (Ni1/2Mn1/2)(OH)2를 110℃ 온풍건조기에서 24시간 건조시킨 복합 산화물 분말, 도1b는 (Ni1/2Mn1/2)(OH)2에 쉘 부분을 Co(OH)2로 1시간 30분 반응시킨 분말, 도1c는 (Ni1/2Mn1/2)(OH)2에 Co(OH)2를 3시간 반응시킨 분말, 도1d는 (Ni1/2Mn1/2)(OH)2에 Co(OH)2를 4시간 반응시킨 분말의 카메라 사진. Figure 1a is a composite oxide powder obtained by drying (Ni 1/2 Mn 1/2 ) (OH) 2 in a 110 ℃ hot air dryer for 24 hours, Figure 1b is a shell in (Ni 1/2 Mn 1/2 ) (OH) 2 part of the Co (OH) 2 was 1.5 hours reaction in the form of powder, Figure 1c (Ni 1/2 Mn 1/2) (OH ) 2 to Co (OH) 2 to 3 hours that the powder, Fig. 1d is ( Ni 1/2 Mn 1/2) (OH) Co (OH) 2 powder in which the camera picture of reaction 4 hours 2.

도2는 (Ni1/2Mn1/2)(OH)2와 [(Ni1/2Mn1/2)x(Ni0.8Co0.1Mn0.1)1-x](OH)2와 [(Ni1/2Mn1/2)xCo1-x](OH)2 의 양극 활물질 분말의 FE-SEM 사진,2 shows (Ni 1/2 Mn 1/2 ) (OH) 2 and [(Ni 1/2 Mn 1/2 ) x (Ni 0.8 Co 0.1 Mn 0.1 ) 1-x ] (OH) 2 and [(Ni FE-SEM photograph of the positive electrode active material powder of 1/2 Mn 1/2 ) x Co 1-x ] (OH) 2 ,

도3은 Li[Ni1/2Mn1/2]O2, Li[(Ni1/2Mn1/2)x(Ni0.8Co0.1Mn0.1)1-x]O2, Li[(Ni1/2Mn1/2)xCo1-x]O2 소결체 분말입자의 엑스선 회절패턴(XRD).3 shows Li [Ni 1/2 Mn 1/2 ] O 2 , Li [(Ni 1/2 Mn 1/2 ) x (Ni 0.8 Co 0.1 Mn 0.1 ) 1-x ] O 2 , Li [(Ni 1 / 2 Mn 1/2 ) x Co 1-x ] O 2 sintered powder particles X-ray diffraction pattern (XRD).

도4는 Li[Ni1/2Mn1/2]O2, Li[(Ni1/2Mn1/2)x(Ni0.8Co0.1Mn0.1)1-x]O2, Li[(Ni1/2Mn1/2)xCo1-x]O2 2.8-4.3V 충전-방전 0.1C 조건에서 실험한 싸이클에 따른 방전용량.4 shows Li [Ni 1/2 Mn 1/2 ] O 2 , Li [(Ni 1/2 Mn 1/2 ) x (Ni 0.8 Co 0.1 Mn 0.1 ) 1-x ] O 2 , Li [(Ni 1 / 2 Mn 1/2 ) x Co 1-x ] O 2 2.8-4.3V Charge-discharge Discharge capacity with cycles tested at 0.1C.

도5는 Li[Ni1/2Mn1/2]O2, Li[(Ni1/2Mn1/2)x(Ni0.8Co0.1Mn0.1)1-x]O2, Li[(Ni1/2Mn1/2)xCo1-x]O2 의 2.8-4.3V 0.2C, 0.5C, 1C, 2C, 3C 조건에서 실험한 5싸이클씩에 따른 방전용량.5 is Li [Ni 1/2 Mn 1/2 ] O 2 , Li [(Ni 1/2 Mn 1/2 ) x (Ni 0.8 Co 0.1 Mn 0.1 ) 1-x ] O 2 , Li [(Ni 1 / 2 Mn 1/2 ) x Co 1-x ] O 2 discharge capacity with 5 cycles tested at 2.8-4.3V 0.2C, 0.5C, 1C, 2C, 3C.

도6은 Li[Ni1/2Mn1/2]O2, Li[(Ni1/2Mn1/2)xCo1-x]O2 의 4.3V 충전 후 시차중량열분석에 관한 데이터.Figure 6 is a data on the differential weight thermal analysis after 4.3V charging of Li [Ni 1/2 Mn 1/2 ] O 2 , Li [(Ni 1/2 Mn 1/2 ) x Co 1-x ] O 2 .

도7은 (Ni1/3Co1/3Mn1/3)(OH)2 와 [(Ni1/3Co1/3Mn1/3)x(Ni0.7Co0.1Mn0.2)1-x](OH)2 의 전구체 분말의 FE-SEM 사진,7 shows (Ni 1/3 Co 1/3 Mn 1/3 ) (OH) 2 and [(Ni 1/3 Co 1/3 Mn 1/3 ) x (Ni 0.7 Co 0.1 Mn 0.2 ) 1-x ] FE-SEM photo of precursor powder of (OH) 2 ,

도8은 Li[(Ni1/3Co1/3Mn1/3)]O2 와 Li[(Ni1/3Co1/3Mn1/3)x(Ni0.7Co0.1Mn0.2)1-x]O2 의 양극 활물질 분말의 FE-SEM 사진, 8 shows Li [(Ni 1/3 Co 1/3 Mn 1/3 )] O 2 and Li [(Ni 1/3 Co 1/3 Mn 1/3 ) x (Ni 0.7 Co 0.1 Mn 0.2 ) 1- FE-SEM photograph of the positive electrode active material powder of x ] O 2 ,

도9는 Li[(Ni1/3Co1/3Mn1/3)]O2 와 Li[(Ni1/3Co1/3Mn1/3)x(Ni0.7Co0.1Mn0.2)1-x]O2 의 양극 활물질 분말입자의 엑스선 회절패턴(XRD), 9 shows Li [(Ni 1/3 Co 1/3 Mn 1/3 )] O 2 and Li [(Ni 1/3 Co 1/3 Mn 1/3 ) x (Ni 0.7 Co 0.1 Mn 0.2 ) 1- x ] X-ray diffraction pattern (XRD) of the positive electrode active material powder particles of O 2 ,

도10은 Li[(Ni1/3Co1/3Mn1/3)]O2 와 Li[(Ni1/3Co1/3Mn1/3)x(Ni0.7Co0.1Mn0.2)1-x]O2 3.0∼4.3V 충전-방전 0.1C 조건에서 실험한 2번째 싸이클의 충방전 곡선,10 shows Li [(Ni 1/3 Co 1/3 Mn 1/3 )] O 2 and Li [(Ni 1/3 Co 1/3 Mn 1/3 ) x (Ni 0.7 Co 0.1 Mn 0.2 ) 1- x ] O 2 charge and discharge curves of the second cycle tested under 3.0 ~ 4.3V charge-discharge 0.1C,

도11은 Li[Ni0.33Co0.33Mn0.3Mg0.04]O2 와Li[(Ni0.33Co0.33Mn0.3Mg0.04)x(Ni0.7Co0.1Mn0.16Mg0.04)1-x]O2 3.0∼4.3V 충전-방전 0.1C 조건에서 실험한 2번째 싸이클의 충방전 곡선이다.11 shows Li [Ni 0.33 Co 0.33 Mn 0.3 Mg 0.04 ] O 2 and Li [(Ni 0.33 Co 0.33 Mn 0.3 Mg 0.04 ) x (Ni 0.7 Co 0.1 Mn 0.16 Mg 0.04 ) 1-x ] O 2 3.0 to 4.3V Charge-discharge Curve of the second cycle tested at 0.1C.

본 발명은 이중층 구조를 갖는 리튬이차전지용 양극 활물질 및 그 제조 방법 에 관한 것으로, 보다 상세하게는 내부는 고안정성, 저가특성을 가지는 니켈, 망간, 코발트 혼합계 양극 활물질과 외부는 고용량 니켈계, 높은 전도도 특징을 갖는 코발트계 양극 활물질로 구성되어 용량과 충전밀도가 높고 수명특성이 개선되며 열적 안전성이 우수한 이중층 구조를 갖는 양극 활물질 및 그 제조방법에 관한 것이다. The present invention relates to a positive electrode active material for a lithium secondary battery having a double layer structure and a method of manufacturing the same, and more specifically, a nickel, manganese, cobalt-based positive electrode active material having a high stability and low-cost properties inside and a high capacity nickel-based, high outside The present invention relates to a positive electrode active material having a double layer structure having a high capacity, high packing density, improved lifespan characteristics, and excellent thermal safety.

리튬이온이차전지는 소형, 경량, 대용량 전지로서 1991년에 등장한 이래, 휴대기기의 전원으로서 널리 사용되었다. 최근 들어 전자, 통신, 컴퓨터산업의 급속한 발전에 따라 캠코더, 휴대폰, 노트북PC등이 출현하여 눈부신 발전을 거듭하고 있으며, 이들 휴대용 전자정보통신기기들을 구동할 동력원으로서 리튬이온이차전지에 대한 수요가 나날이 증가하고 있다. Li-ion secondary batteries have been widely used as power sources for portable devices since they emerged in 1991 as small, light and large capacity batteries. Recently, with the rapid development of electronics, telecommunications, and computer industry, camcorders, mobile phones, notebook PCs, etc. have emerged and are developing remarkably, and the demand for lithium ion secondary battery as a power source to drive these portable electronic information communication devices is increasing day by day. It is increasing.

특히 최근에는 내연기관과 리튬이차전지를 혼성화(hybrid)한 전기자동차용 동력원에 관한 연구가 미국, 일본 및 유럽 등에서 활발히 진행 중에 있다. 그러나 전기자동차용의 대형 전지로서 에너지 밀도 관점에서 리튬이온전지사용을 고려하고 있지만, 아직도 개발 시작 단계이고 특히 안전성의 관점에서 니켈 수소 전지가 사용되고 있으며, 최대의 당면 과제는 높은 가격과 안전성이다. In particular, research on power sources for electric vehicles that hybridize an internal combustion engine and a lithium secondary battery has been actively conducted in the United States, Japan, and Europe. However, although the use of lithium ion batteries is considered as a large battery for electric vehicles in terms of energy density, nickel hydride batteries are still in the development stage and in particular in terms of safety, and the biggest challenge is high price and safety.

특히, 현재 상용화되어 사용되고 있는 LiCoO2나 LiNiO2와 같은 양극 활물질은 어느 것이나 충전시의 탈 리튬에 의하여 결정 구조가 불안정하여 열적 특성이 매우 열악한 단점을 가지고 있다. In particular, the positive electrode active materials such as LiCoO 2 and LiNiO 2 which are currently commercially used have a disadvantage in that the crystal structure is unstable due to de-lithography at the time of charging and thus the thermal characteristics are very poor.

즉, 과충전 상태의 전지를 200∼270℃에 가열하면, 급격한 구조 변화가 발생 하게 되며, 그러한 구조변화로 인해 격자내의 산소가 방출되는 반응이 진행된다 (J.R.Dahn et al., Solid State Ionics ,69,265(1994)).That is, when a battery in an overcharged state is heated to 200 to 270 ° C., a sudden structural change occurs, and a reaction of releasing oxygen in the lattice proceeds due to such a structural change (JRDahn et al., Solid State Ionics, 69,265). (1994).

현재 시판되는 소형 리튬이온이차전지는 양극에 LiCoO2를, 음극에 탄소를 사용한다. LiCoO2는 안정된 충·방전특성, 우수한 전자전도성, 높은 안정성 및 평탄한 방전전압 특성을 갖는 뛰어난 물질이나, 코발트는 매장량이 적고 고가인 데다가 인체에 대한 독성이 있기 때문에 다른 양극 재료 개발이 요망된다. Commercially available small lithium ion secondary batteries use LiCoO 2 for the positive electrode and carbon for the negative electrode. LiCoO 2 is an excellent material having stable charging and discharging characteristics, excellent electronic conductivity, high stability, and flat discharge voltage characteristics. However, cobalt is low in reserve, expensive, and toxic to human body.

LiCoO2와 같은 층상 구조를 갖는 LiNiO2는 방전용량이 크지만 순수한 층상 구조를 갖는 물질을 합성하기 어렵고, 충전 후 반응성이 매우 좋은 Ni4+ 이온 때문에 록솔트(rocksalt)형 구조를 갖는 LixNi1-xO로 전이 되면서 과량의 산소를 방출하므로 수명 및 열적 불안정성 때문에 아직 상품화되지 못하고 있다. LiNiO 2 having a layered structure such as LiCoO 2 has a large discharge capacity but is difficult to synthesize a material having a pure layered structure, and Li x Ni having a rocksalt type structure because of Ni 4+ ions which are highly reactive after charging. Excess oxygen is released as it transitions to 1-x O, which has not yet been commercialized due to lifetime and thermal instability.

이를 개선하기 위해 니켈의 일부를 전이금속 원소의 치환하여 발열 시작 온도를 약간 고온 측으로 이동시키거나 급격한 발열을 방지하는 발열 피크의 브로드(broad)화 등이 시도되었으나(T.Ohzuku et al., J. Electrochem.Soc.,142, 4033(1995),특개평 9-237631호 공보),아직도 만족스러운 결과는 얻지 못하고 있다. To improve this, attempts have been made to replace a portion of nickel with a transition metal element to shift the exothermic start temperature to a slightly higher temperature side or to broaden the exothermic peak to prevent rapid exotherm (T.Ohzuku et al., J.). Electrochem. Soc., 142, 4033 (1995), Japanese Patent Application Laid-Open No. 237-361), yet no satisfactory results have been obtained.

또한 니켈의 일부를 코발트로 치환한 LiNi1-xCoxO2(x=0.1∼0.3) 물질의 경우 우수한 충·방전특성과 수명특성을 보이나, 열적 안전성 문제는 해결하지 못하였다.In addition, LiNi 1-x Co x O 2 (x = 0.1 to 0.3) material in which a part of nickel was substituted with cobalt showed excellent charge and discharge characteristics and life characteristics, but thermal safety problems were not solved.

뿐만 아니라 Ni자리에 열적 안전성이 뛰어난 Mn을 일부 치환한 Li-Ni-Mn계 복합산화물 또는 Mn 및 Co로 치환한 Li-Ni-Mn-Co계 복합산화물의 조성과 그 제조에 관련된 기술도 많이 알려져 있다. In addition, the composition and manufacturing techniques of Li-Ni-Mn-based composite oxides partially substituted with Mn having excellent thermal stability at Ni sites or Li-Ni-Mn-Co-based composite oxides substituted with Mn and Co are well known. have.

예를 들면 일본 특허평 8-171910에서는 Mn과 Ni의 혼합 수용액에 알칼리 용액을 혼합하여 Mn과 Ni을 공침시키고, 이 공침 화합물에 수산화리튬을 혼합한 후에 소성하여 LiNixMn1-xO2(0.7≤x≤0.95)의 양극 활물질을 제조하는 방법이 개시 되었다. For example, in Japanese Patent No. 8-171910, an alkaline solution is mixed with a mixed aqueous solution of Mn and Ni to coprecipitate Mn and Ni, and lithium hydroxide is mixed with the coprecipitation compound and then calcined to form LiNi x Mn 1-x O 2 ( 0.7≤x≤0.95) has been disclosed.

최근에는 일본특허 2000-227858호에서는 LiNiO2나 LiMnO2에 전이금속을 부분 치환하는 개념이 아니라 Mn과 Ni 화합물을 원자레벨에서 균일하게 분산시켜 고용체를 만드는 새로운 개념의 양극 활물질을 개시하였다. Recently, Japanese Patent No. 2000-227858 discloses a positive electrode active material having a new concept of making a solid solution by uniformly dispersing Mn and Ni compounds at the atomic level, instead of partially substituting a transition metal to LiNiO 2 or LiMnO 2 .

그러나 유럽특허 0918041이나 미국특허 6040090에 따르면, LiNi1-xCoxMnyO2 (0<y≤0.3)는 기존의 Ni과 Co만으로 구성된 재료에 비해 향상된 열적안정성을 가지나, Ni4+의 반응성으로 인해 상업화하기에는 문제점을 가지고 있다.However, according to European Patent 0918041 or US Patent 6040090, LiNi 1-x Co x Mn y O 2 (0 <y≤0.3) has improved thermal stability compared to the conventional Ni and Co-only materials, but the reactivity of Ni 4+ There is a problem to commercialize.

뿐만 아니라 유럽특허 0872450 A1과 B1에서는 Ni 자리에 Co와 Mn 뿐만 아니라 다른 금속이 치환된 LiaCobMncMdNi1-(b+c+d)O2(M=B, Al, Si. Fe, Cr, Cu, Zn, W, Ti, Ga) 형을 개시하였으나, 여전히 Ni계의 열적 안전성은 해결하지 못하였다.In addition, in European Patent 0872450 A1 and B1, Li a Co b Mn c MdNi 1- (b + c + d) O 2 (M = B, Al, Si.Fe ) in which Ni and other metals are substituted in place of Ni and Co. , Cr, Cu, Zn, W, Ti, Ga) type, but the thermal stability of the Ni-based still has not been solved.

이에 본 발명은 상기 종래 기술의 제반 문제점을 해결하기 위하여 안출된 것으로, 수산화염 공침법을 사용하여 내부는 고안정성, 저가특성을 가지는 니켈, 망간, 코발트계 전이금속 혼합 양극, 전해질과 접하는 외부는 고용량 니켈계 양극, 혹은 높은 이온전도도 특성을 가지는 코발트계 양극(이하, 전이금속혼합계 양극)으로 구성되어 용량과 충전밀도가 높고 수명특성이 개선되며 열적 안전성이 우수한 이중층 구조를 갖는 양극 활물질을 제공함에 있다.Accordingly, the present invention has been made to solve the above problems of the prior art, the inside of the nickel, manganese, cobalt-based transition metal mixed anode having a high stability, low-cost properties using the hydroxide co-precipitation method, the outside is in contact with the electrolyte Composed of high capacity nickel-based anode or cobalt-based anode (hereinafter transition metal anode) with high ion conductivity, it provides cathode active material with double layer structure with high capacity, high packing density, improved lifespan, and excellent thermal stability. Is in.

또한, 본 발명의 다른 목적은 상기 이중층 구조를 갖는 양극 활물질의 제조방법을 제공함에 있다. In addition, another object of the present invention to provide a method for producing a positive electrode active material having the double layer structure.

또한, 본 발명의 다른 목적은 상기 이중층 구조를 갖는 양극 활물질을 이용한 리튬이차전지를 제공함에 있다. In addition, another object of the present invention to provide a lithium secondary battery using a positive electrode active material having the double layer structure.

상기 목적을 달성하기 위하여 본 발명은 이중층 구조를 가지는 리튬이차전지용 양극 활물질에 있어서, 내부는 조성식 Liδ[NixCo1-2xMnx]O2 (1.0≤δ≤1.2, 0.01≤x≤0.5)로 이루어지고, 외부는 Liδ[NixCoyMn1-(x+y)]O2(1.0≤δ≤1.2, 0.5≤x≤1.0, 0.01≤y≤0.2) 혹은 LiδCoO2 (1.0≤δ≤1.2)로 이루어지는 것을 특징으로 하는 고용량, 고율특성의 이중층 구조를 가지는 리튬이차전지용 양극 활물질을 제공한다.The present invention to achieve the above object, according to a lithium secondary battery positive electrode active material having a double layer structure, the inside is expressed by a composition formula Li δ [Ni x Co 1-2x Mn x] O 2 (1.0≤δ≤1.2, 0.01≤x≤0.5 ) And the outside is Li δ [Ni x Co y Mn 1- (x + y) ] O 2 (1.0 ≦ δ ≦ 1.2, 0.5 ≦ x ≦ 1.0, 0.01 ≦ y ≦ 0.2) or Li δ CoO 2 ( It provides a positive electrode active material for a lithium secondary battery having a double layer structure of high capacity, high rate characteristics, characterized in that consisting of 1.0≤δ≤1.2).

또한, 본 발명은 이중층 구조를 가지는 리튬이차전지용 양극 활물질에 있어서, 내부는 조성식 Liδ[NixCo1-2xMnx-aMa]O2 (M은 Mg, Zn, Ca, Sr, Cu, Zr, P, Fe, Al, Ga, In, Cr, Ge, Sn, Ti, Mo, W, Nd 등으로 이루어진 군에서 선택된 적어도 하나의 원소, 1.0≤δ≤1.2, 0.01≤x≤0.5, 0.01≤a≤0.1)로 이루어지고, 외부는 Liδ[NixCoyMn1-(x+y+z)Nz]O2 (N은 Mg, Zn, Ca, Sr, Cu, Zr로 이루어진 군에서 선택된 적어도 하나의 원소, 1.0≤δ≤1.2, 0.5≤x≤1.0, 0.01≤y≤0.2, 0.01≤z≤0.1)로 이루어지는 것을 특징으로 하는 고용량, 고율특성의 이중층 구조를 가지는 리튬이차전지용 양극 활물질을 제공한다. In addition, the present invention is a positive electrode active material for a lithium secondary battery having a double-layer structure, the inside is Li δ [Ni x Co 1-2x Mn xa M a ] O 2 (M is Mg, Zn, Ca, Sr, Cu, Zr At least one element selected from the group consisting of P, Fe, Al, Ga, In, Cr, Ge, Sn, Ti, Mo, W, Nd, 1.0≤δ≤1.2, 0.01≤x≤0.5, 0.01≤a ≤0.1) and the outer is Li δ [Ni x Co y Mn 1- (x + y + z) N z ] O 2 (N is selected from the group consisting of Mg, Zn, Ca, Sr, Cu, Zr At least one element, 1.0 ≤ δ ≤ 1.2, 0.5 ≤ x ≤ 1.0, 0.01 ≤ y ≤ 0.2, 0.01 ≤ z ≤ 0.1), the positive electrode active material for a lithium secondary battery having a high capacity, high rate bilayer structure to provide.

외부층의 두께는 전체 양극 활물질 두께의 5%∼50%인 것을 특징으로 한다.The thickness of the outer layer is 5% to 50% of the total thickness of the positive electrode active material.

상기 내부 평균입경은 1 ∼ 8㎛이고, 상기 양극 활물질의 전체입자의 평균입경은 9 ∼ 20㎛인 것으로 한다. Said internal average particle diameter is 1-8 micrometers, and the average particle diameter of all the particles of the said positive electrode active material shall be 9-20 micrometers.

본 발명은 이중층 구조를 가지는 리튬이차전지용 양극 활물질을 이용한 것을 특징으로 하는 리튬이차전지를 제공한다.The present invention provides a lithium secondary battery using a cathode active material for a lithium secondary battery having a double layer structure.

또한 본 발명은 상기 양극활물질을 제공하기 위한 제조방법으로 니켈, 망간, 코발트계 전이금속 수용액, 암모니아 수용액 및 염기성 수용액을 반응기에 동시에 혼합하여 구형의 침전물을 얻는 제1단계; 상기 침전물에 전이금속혼합계 수용액, 암모니아 수용액 및 염기성 수용액을 반응기에 동시에 혼합하여 전이금속수산화물이 덮여진 이중층 복합금속수산화물의 침전물을 얻는 제2단계; 상기 침전물을 건조시키거나 열처리하여 이중층 복합금속수산화물 또는 이중층 복합금속산화물을 얻는 제3단계; 상기 이중층 복합금속수산화물 또는 이중층 복합금속산화물에 리튬염을 혼합하여 이중층 리튬복합금속산화물을 얻는 제4단계를 포함하는 것을 특징으로 하는 고용량, 고율특성의 이중층 구조를 가지는 리튬이차전지용 양극 활물질의 제조방법을 제공한다. In another aspect, the present invention is a manufacturing method for providing the positive electrode active material in the first step of obtaining a spherical precipitate by simultaneously mixing nickel, manganese, cobalt-based transition metal aqueous solution, ammonia aqueous solution and basic aqueous solution in the reactor; A second step of obtaining a precipitate of a double layer composite metal hydroxide covered with a transition metal hydroxide by simultaneously mixing the transition metal mixed solution, the ammonia solution and the basic aqueous solution in the reactor with the precipitate; Drying or depositing the precipitate to obtain a double layer composite metal hydroxide or a double layer composite metal oxide; Method for producing a positive electrode active material for a lithium secondary battery having a double layer structure of a high capacity, high rate characteristics, characterized in that it comprises a fourth step of obtaining a double layer lithium composite metal oxide by mixing a lithium salt in the double layer composite metal hydroxide or double layer composite metal oxide. To provide.

상기 제1단계는 전구체로서 2종 이상의 금속염을 포함하는 수용액을 혼합하여 사용하고, 암모니아와 금속염의 몰 비는 0.2 내지 0.4, 반응 용액의 pH는 10.5 내지 12로 조절하여 10 내지 20 시간 반응시키는 것을 특징으로 한다.In the first step, an aqueous solution including two or more metal salts is mixed and used as a precursor. The molar ratio of ammonia and metal salts is 0.2 to 0.4, and the pH of the reaction solution is adjusted to 10.5 to 12 for 10 to 20 hours. It features.

상기 제2단계는 반응시간을 1 내지 10시간으로 조절하여 외부층의 두께를 조절하는 것을 특징으로 한다.The second step is characterized by adjusting the thickness of the outer layer by adjusting the reaction time to 1 to 10 hours.

상기 제3단계는 110℃에서 15시간 건조시키거나, 400 내지 550℃에서 5 내지 10시간 가열하는 것을 특징으로 한다.The third step may be dried at 110 ° C. for 15 hours or heated at 400 to 550 ° C. for 5 to 10 hours.

상기 제3단계는 300~550℃에서 5시간 유지시켜 예비 소성하는 단계, 700~1100℃에서 10시간 소성하는 단계, 600~750℃에서 10시간 어닐링하는 것을 특징으로 한다.The third step is characterized in that the preliminary firing step by maintaining for 5 hours at 300 ~ 550 ° C, 10 hours at 700 ~ 1100 ° C, annealing at 600 ~ 750 ° C for 10 hours.

상기 전이금속수용액의 반응 분위기는 질소 흐름하, pH는 10.5내지 12.5이내, 반응온도는 30 내지 80℃이내이며, 반응교반기 rpm은 500내지 2000인 것을 특징으로 한다.The reaction atmosphere of the aqueous transition metal solution is nitrogen flow, the pH is 10.5 to 12.5, the reaction temperature is 30 to 80 ℃, characterized in that the reaction stirrer rpm is 500 to 2000.

이하, 본 발명에 따른 이중층 구조를 가지는 리튬이차전지용 양극 활물질 및 그 제조방법에 대해 상세하게 설명한다.Hereinafter, a cathode active material for a lithium secondary battery having a double layer structure according to the present invention and a manufacturing method thereof will be described in detail.

본 발명에 의한 이중층 구조를 가지는 리튬이차전지용 양극 활물질 제조방법 은 니켈, 망간, 코발트계 전이금속 수용액, 암모니아 수용액 및 염기성 수용액을 반응기에 동시에 혼합하여 구형의 침전물을 얻는 제1단계; 상기 침전물 위에 전이금속혼합계 수용액, 암모니아 수용액 및 염기성 수용액을 반응기에 동시에 혼합하여 전이금속수산화물이 덮인 이중층 복합금속수산화물염의 침전물을 얻는 2단계; 상기 침전물을 건조시키거나 열처리하여 이중층 복합금속산화물을 얻는 3단계; 상기 이중층 복합금속수산화물 또는 복합금속산화물에 리튬 전구체를 혼합하여 이중층 리튬복합금속산화물을 얻는 4단계를 포함한다.Method for producing a positive electrode active material for a lithium secondary battery having a double layer structure according to the present invention comprises the first step of obtaining a spherical precipitate by simultaneously mixing nickel, manganese, cobalt-based transition metal aqueous solution, ammonia aqueous solution and basic aqueous solution in the reactor; Step 2 to obtain a precipitate of a double-layer composite metal hydroxide salt covered with a transition metal hydroxide by simultaneously mixing the transition metal mixed solution, ammonia solution and basic aqueous solution on the precipitate on the reactor; Drying or depositing the precipitate to obtain a double layer composite metal oxide; And a four step of obtaining a double-layer lithium composite metal oxide by mixing a lithium precursor with the double-layer composite metal hydroxide or composite metal oxide.

내부는 조성식 Liδ[NixCo1-2xMnx]O2 (1.0≤δ≤1.2, 0.01≤x≤0.5)로 이루어지고, 외부는 Liδ[NixCoyMn1-(x+y)]O2(1.0≤δ≤1.2, 0.5≤x≤1.0, 0.01≤y≤0.2) 혹은 LiδCoO2 (1.0≤δ≤1.2)로 이루어지는 것을 특징으로 한다.Inside δ composition formula Li [Ni x Co 1-2x Mn x] O 2 is made of a (1.0≤δ≤1.2, 0.01≤x≤0.5), δ exterior Li [Ni x Co y Mn 1- (x + y ) ] O 2 (1.0 ≦ δ ≦ 1.2, 0.5 ≦ x ≦ 1.0, 0.01 ≦ y ≦ 0.2) or Li δ CoO 2 (1.0 ≦ δ ≦ 1.2).

또한, 본 발명의 이중층 구조를 가지는 리튬이차전지용 양극 활물질의 내부는 조성식 Liδ[NixCo1-2xMnx-aMa]O2 (M은 Mg, Zn, Ca, Sr, Cu, Zr, P, Fe, Al, Ga, In, Cr, Ge, Sn, Ti, Mo, W, Nd 등으로 이루어진 군에서 선택된 적어도 하나의 원소, 1.0≤δ≤1.2, 0.01≤x≤0.5, 0.01≤a≤0.1)로 이루어지고, 외부는 Liδ[NixCoyMn1-(x+y+z)Nz]O2 (N은 Mg, Zn, Ca, Sr, Cu, Zr로 이루어진 군에서 선택된 적어도 하나의 원소, 1.0≤δ≤1.2, 0.5≤x≤1.0, 0.01≤y≤0.2, 0.01≤z≤0.1)로 이루어지는 것을 특징으로 한다.In addition, the inside of the cathode active material for a lithium secondary battery having a double layer structure of the present invention is a composition formula Li δ [Ni x Co 1-2x Mn xa M a ] O 2 (M is Mg, Zn, Ca, Sr, Cu, Zr, P At least one element selected from the group consisting of, Fe, Al, Ga, In, Cr, Ge, Sn, Ti, Mo, W, Nd, 1.0≤δ≤1.2, 0.01≤x≤0.5, 0.01≤a≤0.1 ) And the outside is Li δ [Ni x Co y Mn 1- (x + y + z) N z ] O 2 (N is at least one selected from the group consisting of Mg, Zn, Ca, Sr, Cu, Zr) Element, 1.0 ≦ δ ≦ 1.2, 0.5 ≦ x ≦ 1.0, 0.01 ≦ y ≦ 0.2, and 0.01 ≦ z ≦ 0.1).

상기 반응기는 회전날개가 역날개식으로 설계되고, 1∼4개의 배플(baffle)이 내벽과 2∼3cm 이격된 구조이며, 또한 이 배플들은 반응기 내부의 상하부분의 혼합을 균일하게 하기위하여 원통을 설치하였다. 역날개식 설계도 상하 균일 혼합을 위한 것이고, 반응기의 내면에 설치된 배플(baffle)을 내벽과 이격시키는 것은 물결의 세기와 방향를 조절하며, 터블런트(turbulent) 효과를 증대시켜 반응액의 지역적 불균일성을 해결하기 위한 것이다.The reactor has a rotary blade designed in reverse wing type, 1 to 4 baffles are separated from the inner wall by 2 to 3 cm, and these baffles are used to uniformly mix the upper and lower parts of the reactor. Installed. The reverse wing design is also designed for uniform mixing up and down, and the separation of the baffles installed on the inner surface of the reactor from the inner wall controls the intensity and direction of the waves and increases the turbulent effect to solve the local nonuniformity of the reaction solution. It is to.

본 발명의 양극 활물질 제조방법인 금속수산화법은 기존의 금속용액에 암모니아수를 먼저 섞은 후 침전시키는 암모니아 혼합법(Ammonia complex method)과는 달리 2종 이상의 금속염 수용액, 암모니아수용액, NaOH 수용액을 각각 반응기에 투입함으로써, 망간 이온의 초기 산화를 방지하여 입자의 균일성과 금속원소들이 균일하게 분포된 침전물을 얻을 수 있다. In the method of manufacturing the cathode active material of the present invention, unlike the ammonia complex method in which ammonia water is first mixed with a conventional metal solution and then precipitated, two or more types of metal salt solutions, aqueous ammonia solution, and NaOH solution are respectively added to the reactor. By introducing, it is possible to prevent the initial oxidation of manganese ions to obtain a precipitate in which the uniformity of particles and metal elements are uniformly distributed.

이하 본 발명의 층상 암염 구조와 이중층 구조를 가지는 리튬이차전지용 양극 활물질제조방법인 금속수산화법에 대하여 상세히 살펴보도록 한다. Hereinafter, the metal hydroxide method, which is a method of manufacturing a cathode active material for a lithium secondary battery having a layered rock salt structure and a double layer structure, will be described in detail.

먼저 Ni:Co:Mn:M을 a:b:1-(a+b+c):c (M은 Mg, Zn, Ca, Sr, Cu, Zr, P, Fe, Al, Ga, In, Cr, Ge, Sn)로 원하는 일정 비율로 증류수에 용해한다. 이때 치환 금속염은 2종 이상으로 선택되도록 하는 것이 바람직하다. 상기 니켈계 금속전구체와 암모니아 수용액 및 염기성 용액을 반응기에 넣어 혼합한다. Ni: Co: Mn: M is a: b: 1- (a + b + c): c (M is Mg, Zn, Ca, Sr, Cu, Zr, P, Fe, Al, Ga, In, Cr , Ge, Sn), dissolved in distilled water at a desired ratio. At this time, it is preferable that the substituted metal salt is selected from two or more kinds. The nickel-based metal precursor, an aqueous ammonia solution and a basic solution are put into a reactor and mixed.

이때, 상기 금속 수용액은 1M 내지 3M 농도의 것을 사용하고, 암모니아수 용액은 금속 수용액 농도의 20% 내지 40%의 농도, NaOH수용액은 4M 내지 5M 농도의 것을 사용하는 것이 바람직하다. At this time, the aqueous metal solution is used in the concentration of 1M to 3M, the aqueous ammonia solution is preferably 20% to 40% of the concentration of the metal solution, the NaOH aqueous solution is preferably used 4M to 5M concentration.

암모니아수 용액의 농도를 금속 수용액 농도의 20% 내지 40%로 하는 것은 암모니아는 금속 전구체와 1 대 1로 반응하지만, 중간 생성물이 다시 암모니아로 회수되어 사용될 수 있기 때문이며, 나아가 이것이 양극 활물질 결정성을 높이고 안정화하기 위한 최적의 조건이기 때문이다. The concentration of the aqueous ammonia solution is 20% to 40% of the concentration of the aqueous metal solution because ammonia reacts one-to-one with the metal precursor, but the intermediate product can be recovered and used again as ammonia, further increasing the crystallinity of the positive electrode active material. This is because it is an optimal condition for stabilization.

또한, 상기 혼합용액의 pH는 10.5 내지 12로 유지되도록 상기 NaOH수용액을 주입하며, 상기 반응기 내에서의 반응시간은 10∼20시간으로 조절하는 것이 바람직하다. In addition, the NaOH aqueous solution is injected so that the pH of the mixed solution is maintained at 10.5 to 12, and the reaction time in the reactor is preferably adjusted to 10 to 20 hours.

상기 1단계를 보다 구체적으로 설명하면, 먼저 니켈, 망간, 코발트 및 치환 금속염들을 증류수에 용해한 후, 암모니아수 용액, NaOH 수용액과 함께 각각 반응기에 투입하여 침전이 일어나도록 한다. 공침법은 수용액 중에서 중화반응을 이용하여 2원소 이상을 동시에 침전시켜 복합 수산화물을 얻는 방법이다. To describe the first step in more detail, first, nickel, manganese, cobalt and substituted metal salts are dissolved in distilled water, and then introduced into the reactor with ammonia water solution and NaOH aqueous solution to cause precipitation. The coprecipitation method is a method of obtaining a composite hydroxide by simultaneously precipitating two or more elements by using a neutralization reaction in an aqueous solution.

여기에서 상기 혼합용액이 상기 반응기 내에 체류하는 평균시간은 6시간으로 조절하고, pH는 10.5 내지 11.5로 반응기의 온도는 50 내지 60℃로 유지한다. 이렇게 반응기의 온도를 높이는 이유는 생성된 코발트 수산화물이 낮은 온도에서는 착염 형태로 침전되기 때문에 고밀도 복합수산화물을 얻기 어렵기 때문이다. Here, the average time for the mixed solution to stay in the reactor is adjusted to 6 hours, the pH is maintained at 10.5 to 11.5 and the temperature of the reactor at 50 to 60 ℃. The reason for raising the temperature of the reactor is that it is difficult to obtain a high-density complex hydroxide because the cobalt hydroxide produced is precipitated in complex salt form at a low temperature.

다음으로 내부층을 형성하는 전구체 수산화물을 얻은 후에는 외부층을 조성하는 금속염을 같은 반응조건에서 1∼10시간 동안 반응시켜 이중층 구조의 복합수산화물을 얻는다. 외부층의 두께는 반응기 내에서의 외부층 전구체의 합성 시간으로 조절한다. Next, after obtaining the precursor hydroxide forming the inner layer, the metal salt forming the outer layer is reacted for 1 to 10 hours under the same reaction conditions to obtain a double layered composite hydroxide. The thickness of the outer layer is controlled by the synthesis time of the outer layer precursor in the reactor.

공침법으로 제조된 니켈, 망간계 양극 활물질에 의해 형성된 1차입자의 평균입경은 1 내지 8㎛이고, 상기 1차 입자 표면을 덮어 싼 전이금속혼합계 양극 활물질에 의해 형성된 2차입자의 평균입경은 9 내지 20㎛인 것이 바람직하다. The average particle diameter of the primary particles formed by the nickel and manganese cathode active materials prepared by the coprecipitation method is 1 to 8 µm, and the average particle diameter of the secondary particles formed by the transition metal mixed cathode active material covering the surface of the primary particles is 9 It is preferable that it is 20 micrometers.

왜냐하면, 1차입자의 평균입경을 l∼8㎛로 하는 것에 의해 충방전의 반응성을 높이고 전지의 고율특성을 향상시키는 한편, 2차입자의 평균입경을 9∼20㎛로 하는 것에 의해 이중층 구조를 가지는 리튬이차전지용 양극 활물질의 충전성을 높이고 코팅력을 향상시켜 전극을 고용량화 할 수 있기 때문이다. This is because lithium having a double layer structure is obtained by increasing the reactivity of charging and discharging and improving the high rate characteristics of the battery by setting the average particle diameter of the primary particles to 1 to 8 µm, and by setting the average particle diameter of the secondary particles to 9 to 20 µm. This is because the electrode can be increased in capacity by increasing the chargeability of the cathode active material for secondary batteries and improving the coating power.

또한 이중층 구조에서 내부 Liδ[NixCo1-2xMnx-aMa]O2의 특성을 살리기 위해 외부에 입혀지는 Liδ[NixCoyMn1-(x+y+z)Mz]O2의 두께는 전체 이중층 양극 활물질 두께의 5%∼50%가 되도록 하는 것이 바람직하다. 더욱 특성을 살리기 위해서는 30% 이하 더욱 바람직하게는 5%이하로 하는 것이 바람직하다. 하지만 외부에 입혀지는 Liδ[NixCoyMn1-(x+y+z)Mz]O2의 두께가 5% 이하이면 외부 조성의 특성이 떨어진다. In addition, Li δ [Ni x Co y Mn 1- (x + y + z) M z ] coated on the outside to utilize the characteristics of the internal Li δ [Ni x Co 1-2x Mn xa M a ] O 2 in the double layer structure. The thickness of O 2 is preferably 5% to 50% of the total thickness of the double layer positive electrode active material. In order to further utilize the properties, it is preferable to set it to 30% or less, more preferably 5% or less. However, when the thickness of Li δ [Ni x Co y Mn 1- (x + y + z) M z ] O 2 applied to the outside is 5% or less, the characteristics of the external composition are inferior.

또한, 내부 양극 활물질 Liδ[NixCo1-2xMnx-aMa]O2에서 Ni, Co 및 Mn의 산화수는 +2, +3, +4가이나(이때 M은 +2, +3, +4, +6가 가능) 외부에 입혀지는 양극 활물질 Liδ[NixCoyMn1-(x+y+z)Mz]O2에서 Ni의 산화수는 +2가, Mn의 산화수는 +4가, Co의 산화수는 +3가, 치환금속인 M은 +2가인 것이 바람직하다. In addition, in the internal cathode active material Li δ [Ni x Co 1-2x Mn xa M a ] O 2 , the oxidation numbers of Ni, Co, and Mn are +2, +3, +4, where M is +2, +3, +4, +6 possible) In the cathode active material Li δ [Ni x Co y Mn 1- (x + y + z) M z ] O 2 , the oxidation number of Ni is +2 and the oxidation number of Mn is + It is preferable that the oxidation number of tetravalent and Co is + 3-valent, and M which is a substituted metal is + 2-valent.

특히, Mn의 산화수가 +4가인 것은 기존 사방정계나 층상구조 LiMnO2에서 Mn 의 +3가, +4가 산화/환원반응에 의해 야기된 구조전이(얀-텔러 효과)를 방지 할 수 있어 충방전시 구조 안정화를 꾀하여 수명특성을 향상 시킬 수 있다. In particular, the +4 valence of Mn can prevent the structural transition (yan-teller effect) caused by the oxidation / reduction reaction of +3 or +4 of Mn in the existing tetragonal or layered LiMnO 2 . Structural stabilization during discharging can improve lifespan.

다음으로 얻어진 이중층 복합금속수산화물을 증류수로 세척한 후에 여과하여 110℃에서 24시간 건조하거나 450℃에서 5시간 열처리하여 전구체로 사용한다. Next, the obtained double layer composite metal hydroxide is washed with distilled water and then filtered and dried at 110 ° C. for 24 hours or heat treated at 450 ° C. for 5 hours to be used as a precursor.

다음으로 상기 이중층 복합금속수산화물 또는 복합금속산화물과 리튬염을 충분히 혼합하는 건식방법이나, 상기 이중층 복합금속수산화물 또는 복합금속산화물과 리튬염을 구연산, 주석산, 글리콜산, 말레인산 등과 같은 킬레이팅제가 혼합된 수용액에 혼합하는 습식방법을 사용하여 증류수를 제거한다. Next, a dry method of sufficiently mixing the double layer composite metal hydroxide or composite metal oxide and lithium salt, or a chelating agent such as citric acid, tartaric acid, glycolic acid, maleic acid, etc. mixed with the double layer composite metal hydroxide or composite metal oxide and lithium salt. Distilled water is removed using a wet method of mixing in an aqueous solution.

마지막으로 750 내지 1000℃에서 공기나 산소의 산화성 분위기에서 10 내지 20시간 소성하여 이중층 구조를 가지는 리튬이차전지용 양극 활물질을 제조한다. Finally, by firing for 10 to 20 hours in an oxidizing atmosphere of air or oxygen at 750 to 1000 ℃ to prepare a cathode active material for a lithium secondary battery having a double layer structure.

상기 방법으로 제조된 이중층 구조를 가지는 리튬이차전지용 양극 활물질의 비표적은 3㎡/g 이하인 것이 바람직하다. 왜냐하면 비표적이 3㎡/g 이상이면 전해액과의 반응성이 증가되어 가스발생이 증대되기 때문이다. It is preferable that the specific target of the positive electrode active material for lithium secondary batteries which has a double layer structure manufactured by the said method is 3 m <2> / g or less. This is because when the specific target is 3 m 2 / g or more, the reactivity with the electrolyte is increased and gas generation is increased.

상기 반응기는 회전날개가 역날개식으로 설계되고, 1∼4개의 배플(baffle)이 내벽과 2∼3cm 이격된 구조이며, 또한 이 배플들은 반응기 내부의 상하부분의 혼합을 균일하게 하기 위하여 원통을 설치하였다. 역날개식 설계도 상하 균일 혼합을 위한 것이고, 반응기의 내면에 설치된 배플(baffle)을 내벽과 이격시키는 것은 물결의 세기와 방향를 조절하며, 터블런트(turbulent) 효과를 증대시켜 반응액의 지역적 불균일성을 해결하기 위한 것이다. 따라서 상기 반응기를 이용한 경우, 기존의 반응기를 사용한 경우 보다 얻어진 수산화물의 탭 밀도는 약 10% 이상 향상된 다. 수산화물의 탭 밀도는 1.95g/㎤, 바람직하게는 2.1g/㎤이상, 보다 바람직하게는 2.4g/㎤이다.The reactor has a rotor blade designed in reverse wing type, and has 1 to 4 baffles spaced 2 to 3 cm apart from the inner wall, and these baffles are used to uniformly mix the upper and lower parts of the reactor. Installed. The reverse wing design is also designed for uniform mixing up and down, and the separation of the baffles installed on the inner surface of the reactor from the inner wall controls the intensity and direction of the waves and increases the turbulent effect to solve the local nonuniformity of the reaction solution. It is to. Therefore, when using the reactor, the tap density of the obtained hydroxide is improved by about 10% or more than when using the conventional reactor. The tap density of the hydroxide is 1.95 g / cm 3, preferably 2.1 g / cm 3 or more, and more preferably 2.4 g / cm 3.

이하, 본 발명의 실시예를 첨부된 도1내지 도10에 의거하여 상세히 설명하지만, 이들 실시예로 본 발명이 한정되는 것은 아니다. Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 to 10, but the present invention is not limited to these embodiments.

[실시예 1] Example 1

공침 반응기(용량 4L, 회전모터의 출력 80W이상)에 증류수 4리터를 넣은 뒤 질소가스를 반응기에 0.5리터/분의 속도로 버블링하여 공급함으로써, 용존산소를 제거하였다. 반응기의 온도를 50℃로 유지시키면서 1000rpm으로 교반하였다. 4 liters of distilled water was put into the coprecipitation reactor (capacity 4L, the output of the rotary motor more than 80W), and nitrogen gas was bubbled into the reactor at a rate of 0.5 liters / minute to remove dissolved oxygen. Stirring at 1000 rpm while maintaining the temperature of the reactor at 50 ℃.

황산니켈, 황산망간 몰비가 1.2 : 1.2 비율로 혼합된 2.4M 농도의 금속 수용액을 0.3리터/시간으로, 4.8M 농도의 암모니아 용액을 0.03리터/시간으로 반응기에 연속적으로 투입하였다. 또한 pH 조정을 위해 4.8M 농도의 수산화나트륨 용액을 공급하여 pH가 11로 유지되도록 하였다. Nickel sulfate and manganese sulfate molar ratios of 1.2: 1.2 were mixed in a 2.4 M aqueous metal solution at 0.3 liters per hour and a 4.8 M ammonia solution at 0.03 liters per hour in the reactor. In addition, a pH of 4.8 M sodium hydroxide solution was supplied to adjust the pH to maintain a pH of 11.

임펠러 속도는 1000rpm으로 조절하였다. 유량을 조절하여 용액의 반응기 내의 평균체류시간은 6시간 정도가 되도록 하였으며, 반응이 정상상태에 도달 한 후에 상기 반응물에 대해 정상상태 지속시간을 주어 좀더 밀도 높은 복합금속수산화물을 얻도록 하였다. Impeller speed was adjusted to 1000 rpm. By adjusting the flow rate, the average residence time of the solution in the reactor was about 6 hours, and after the reaction reached a steady state, a steady state duration was given to the reactant to obtain a more dense composite metal hydroxide.

정상상태에 도달한 상기 복합금속수산화물에 1.2 : 1.2의 몰비로 공급되던 황산니켈, 황산망간 금속 수용액을 황산니켈, 황산망간 및 황산코발트의 몰비 1.92 :0.24 : 0.24 로 교체한 뒤 1~6시간 상기와 같은 조건으로 반응 시켰다. Nickel sulfate and manganese sulfate metal aqueous solution supplied to the composite metal hydroxide in a molar ratio of 1.2: 1.2 to a steady state was replaced with a molar ratio of 1.92: 0.24: 0.24 of nickel sulfate, manganese sulfate and cobalt sulfate for 1 to 6 hours. The reaction was carried out under the same conditions.

다음으로 오버플로파이프(overflow pipe)를 통하여 구형의 니켈망간코발트 복합수산화물을 연속적으로 얻었다. 상기 복합금속수산화물을 여과하고, 물 세척한 후에 110℃ 온풍건조기에서 12시간 건조시켜 금속복합산화물 형태의 전구체를 얻었다.Next, a spherical nickel manganese cobalt composite hydroxide was continuously obtained through an overflow pipe. The composite metal hydroxide was filtered, washed with water, and dried in a 110 ° C. hot air dryer for 12 hours to obtain a precursor in the form of a metal composite oxide.

상기 전구체와 질산화리튬(LiNO3)을 1 : 1.05 몰비로 혼합한 후에 2℃/min의 승온 속도로 가열한 후 200~400℃에서 12시간 유지시켜 예비 소성을 수행하였으며, 뒤이어 720℃에서 12시간 소성시켜 내부는 Li[Ni1/2Mn1/2]O2로 외부는 Li[Ni0.8Co0.1Mn0.1]O2, 로 구성된 이중층을 형성하는 양극 활물질 분말을 얻었다. After mixing the precursor and lithium nitrate (LiNO 3 ) in a 1: 1.05 molar ratio, the mixture was heated at a temperature increase rate of 2 ° C./min, and then preliminarily baked at 200 ° C. to 400 ° C. for 12 hours, followed by 12 hours at 720 ° C. Firing was carried out to obtain a positive electrode active material powder having a double layer composed of Li [Ni 1/2 Mn 1/2 ] O 2 inside and Li [Ni 0.8 Co 0.1 Mn 0.1 ] O 2 .

상기의 방법으로 제조된 이중층 구조를 가지는 리튬이차전지용 양극 활물질과 도전재로 아세틸렌블랙, 결합제로는 폴리비닐리덴 플루오라이드(PVdF)를 80:10:10의 중량비로 혼합하여 슬러리를 제조하였다. 상기 슬러리를 20㎛ 두께의 알루미늄박에 균일하게 도포하고, 120℃에서 진공 건조하여 리튬이차전지용 양극을 제조하였다.A slurry was prepared by mixing a positive electrode active material for a lithium secondary battery having a double layer structure prepared by the above method, acetylene black as a conductive material, and polyvinylidene fluoride (PVdF) as a binder in a weight ratio of 80:10:10. The slurry was uniformly applied to an aluminum foil having a thickness of 20 μm, and vacuum dried at 120 ° C. to prepare a cathode for a lithium secondary battery.

상기 양극과, 리튬 호일을 상대 전극으로 하며, 다공성 폴리에틸렌막(셀가르드 엘엘씨 제, Celgard 2300, 두께: 25㎛)을 세퍼레이터로 하고, 에틸렌 카보네이트와 디에틸 카보네이트가 부피비로 1:1로 혼합된 용매에 LiPF6가 1M 농도로 녹아 있는 액체 전해액을 사용하여 통상적으로 알려져 있는 제조공정에 따라 코인 전지를 제조하였다. 제조된 코인 전지를 전기화학 분석장치(Toyo System, Toscat 3100U)를 사용하여 3.0~4.3 볼트 영역에서 양극 활물질 특성을 평가하였다.The anode and the lithium foil were used as counter electrodes, and a porous polyethylene membrane (Celgard ELC, Celgard 2300, thickness: 25 μm) was used as a separator, and ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1. A coin battery was manufactured according to a known manufacturing process using a liquid electrolyte in which LiPF 6 was dissolved at a concentration of 1 M in a solvent. The manufactured coin battery was evaluated for the positive electrode active material in the 3.0 ~ 4.3 volt region using an electrochemical analyzer (Toyo System, Toscat 3100U).

[비교예 1] Comparative Example 1

양극 활물질 제조시 외부에 Li[Ni0.8Co0.1Mn0.1]O2 층을 가지지 않는 Li[Ni1/2Mn1/2]O2을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 분말을 합성하고 코인형의 반쪽전지를 제조하였다. The powder was prepared in the same manner as in Example 1, except that Li [Ni 1/2 Mn 1/2 ] O 2 was prepared, which did not have a Li [Ni 0.8 Co 0.1 Mn 0.1 ] O 2 layer externally. It synthesize | combined and produced the coin type half cell.

[실시예 2]Example 2

양극 활물질 제조시 외부에 Li[Ni0.8Co0.1Mn0.1]O2 층 대신 LiCoO2 조성을 가지지는 Li[(Ni1/2Mn1/2)x(Co)1-x]O2 을 제조한 것을 제외하고는 실시예1과 동일한 방법으로 분말을 합성하고 코인형의 반쪽전지를 제조하였다.Except that Li [(Ni 1/2 Mn 1/2 ) x (Co) 1-x ] O 2 having a LiCoO 2 composition instead of a Li [Ni 0.8 Co 0.1 Mn 0.1 ] O 2 layer was prepared when the cathode active material was manufactured. Then, the powder was synthesized in the same manner as in Example 1, and a coin-type half cell was prepared.

도1a는 (Ni1/2Mn1/2)(OH)2를 110℃ 온풍건조기에서 12시간 건조시킨 복합산화물 분말, 도1b는 (Ni1/2Mn1/2)(OH)2에 Co(OH)2를 1시간 30분 반응시킨 분말, 도1c는 (Ni1/2Mn1/2)(OH)2에 Co(OH)2를 3시간 반응시킨 분말, 도1d는 (Ni1/2Mn1/2)(OH)2에 Co(OH)2를 4시간 반응시킨 분말의 카메라 사진이다.1a is a composite oxide powder obtained by drying (Ni 1/2 Mn 1/2 ) (OH) 2 in a 110 ° C. warm air dryer for 12 hours, and FIG. 1b shows Co in (Ni 1/2 Mn 1/2 ) (OH) 2 . (OH) 2 for 1.5 hours the reaction was powdered, Figure 1c (Ni 1/2 Mn 1/2) (OH) 2 to Co (OH) 2 to 3 hours that the powder, Fig. 1d is a (Ni 1 / 2 Mn 1/2) (OH) is a camera picture of Co (powder having OH) 2 to 4 hours in the second.

도2는 (Ni.1/2Mn1/2)(OH)2와 [(Ni1/2Mn1/2)x(Ni0.8Co0.1Mn0.1)1-x](OH)2와 [(Ni1/2Mn1/2)xCo1-x](OH)2 의 양극 활물질 분말의 FE-SEM 사진이다. 이중층 구조의 [(Ni1/2Mn1/2)x(Ni0.8Co0.1Mn0.1)1-x](OH)2와 [(Ni1/2Mn1/2)xCo1-x](OH)2 양극 활물질 분말은 (Ni.1/2Mn1/2)(OH)2분말과 동일한 입자형상을 가지나, 표면에 전구체 분말의 특징을 나타내는 가는 실 같은 물질이 표면을 감싸고 있는 것을 알 수 있다.Figure 2 is (Ni .1 / 2 Mn 1/2) (OH) 2 and [(Ni 1/2 Mn 1/2) x (Ni 0.8 Co 0.1 Mn 0.1) 1-x] (OH) 2 and [( It is a FE-SEM photograph of the positive electrode active material powder of Ni 1/2 Mn 1/2 ) x Co 1-x ] (OH) 2 . Of double layer structure [(Ni 1/2 Mn 1/2 ) x (Ni 0.8 Co 0.1 Mn 0.1 ) 1-x ] (OH) 2 and [(Ni 1/2 Mn 1/2 ) x Co 1-x ] (OH) 2 of The positive electrode active material powder (Ni .1 / 2 Mn 1/2) (OH) gajina the same particle shape as the second powder, it can be seen that the thread-like material going indicating the characteristics of the precursor powder to the surface surrounding the surface.

도3에 실시예1, 실시예2, 비교예1에서 합성한 Li[Ni1/2Mn1/2]O2, Li[(Ni1/2Mn1/2)x(Ni0.8Co0.1Mn0.1)1-x]O2, Li[(Ni1/2Mn1/2)xCo1-x]O2 소결체 분말입자의 엑스선 회절패턴(XRD)을 나타내었다. 모든 분말들의 회절피크에서 (006)과 (102) 피크 분리, (018)과 (110) 피크 분리가 잘 나타나 있고, (003)과 (104) 피크비가 1이상 인 것으로부터 상기 리튬복합산화물은 공간군 R-3m을 가지는 헥사고날(hexagonal)-NaFeO2 구조를 가지며, 이중층 구조로 형성 된 후에도 결정성이 우수한 층상 화합물임을 알 수 있다. 3 shows Li [Ni 1/2 Mn 1/2 ] O 2 , Li [(Ni 1/2 Mn 1/2 ) x (Ni 0.8 Co 0.1 Mn synthesized in Example 1, Example 2, and Comparative Example 1 0.1 ) X-ray diffraction pattern (XRD) of 1-x ] O 2 , Li [(Ni 1/2 Mn 1/2 ) x Co 1-x ] O 2 sintered powder particles was shown. In the diffraction peaks of all the powders, the (006) and (102) peak separations, the (018) and (110) peak separations are well represented, and the lithium composite oxide has a space ratio of 1 or more. It can be seen that it has a hexagonal-NaFeO 2 structure having a group R-3m and is a layered compound having excellent crystallinity even after being formed in a double layer structure.

도4에 실시예1, 실시예2, 비교예1의 방법으로 합성한 각각의 물질을 2.8-4.3 V 범위에서 인가 전류0.4㎃로 실험한 싸이클에 따른 방전용량을 나타내었다. 4 shows discharge capacities according to cycles in which each material synthesized by the method of Example 1, Example 2 and Comparative Example 1 was tested with an applied current of 0.4 mA in the range of 2.8-4.3 V. FIG.

도4 의 2.8-4.3V, 0.4mA 조건에서 실험한 Li[Ni1/2Mn1/2]O2, Li[(Ni1/2Mn1/2)x(Ni0.8Co0.1Mn0.1)1-x]O2, Li[(Ni1/2Mn1/2)xCo1-x]O2 싸이클에 따른 방전용량은 Li[(Ni1/2Mn1/2)x(Ni0.8Co0.1Mn0.1)1-x]O2, Li[(Ni1/2Mn1/2)xCo1-x]O2 양극 활물질들이 초기 용량 증가 및 우수한 사이클 특성을 보여주었다. Li[Ni1/2Mn1/2]O2 은 147mAh/g 의 초 기용량으로 계속 싸이클이 진행되는 반면, Li[(Ni1/2Mn1/2)xCo1-x]O2 전극은 10mAh/g 의 용량이 늘어난 157mAh/g 의 용량을 보이고, Li[(Ni1/2Mn1/2)x(Ni0.8Co0.1Mn0.1)1-x]O2 의 용량은 Ni양의 증가에 따른 계획대로 164mAh/g 의 고용량을 나타내었다.Li [Ni 1/2 Mn 1/2 ] O 2 , Li [(Ni 1/2 Mn 1/2 ) x (Ni 0.8 Co 0.1 Mn 0.1 ) 1 experimented at 2.8-4.3V, 0.4mA -x ] O 2 , Li [(Ni 1/2 Mn 1/2 ) x Co 1-x ] O 2 cycles discharge capacity according to Li [(Ni 1/2 Mn 1/2 ) x (Ni 0.8 Co 0.1 Mn 0.1 ) 1-x ] O 2 , Li [(Ni 1/2 Mn 1/2 ) x Co 1-x ] O 2 cathode active materials showed an initial capacity increase and excellent cycle characteristics. Li [Ni 1/2 Mn 1/2 ] O 2 continues to cycle with an initial capacity of 147 mAh / g, while Li [(Ni 1/2 Mn 1/2 ) x Co 1-x ] O 2 electrodes Shows a capacity of 157mAh / g with an increase of 10mAh / g, and the capacity of Li [(Ni 1/2 Mn 1/2 ) x (Ni 0.8 Co 0.1 Mn 0.1 ) 1-x ] O 2 increases with the amount of Ni. As planned according to the high capacity of 164mAh / g.

도5는 Li[Ni1/2Mn1/2]O2, Li[(Ni1/2Mn1/2)xCo1-x]O2, Li[(Ni1/2Mn1/2)x(Ni0.8Co0.1Mn0.1)1-x]O2 의 0.2C, 0.5C, 1C, 2C, 3C 조건에서 실험한 5싸이클씩에 따른 방전용량을 나타내었다. Li[Ni1/2Mn1/2]O2 에 비해 Li[(Ni1/2Mn1/2)x(Ni0.8Co0.1Mn0.1)1-x]O2 의 고율특성에서 우수한 성능을 나타내고 있다.5 is Li [Ni 1/2 Mn 1/2 ] O 2 , Li [(Ni 1/2 Mn 1/2 ) x Co 1-x ] O 2, Li [(Ni 1/2 Mn 1/2 ) The discharge capacity of each of the five cycles tested at 0.2C, 0.5C, 1C, 2C, and 3C of x (Ni 0.8 Co 0.1 Mn 0.1 ) 1-x ] O 2 was shown. Compared to Li [Ni 1/2 Mn 1/2] O 2 Li [(Ni 1/2 Mn 1/2) x (Ni 0.8 Co 0.1 Mn 0.1) 1-x] indicates a superior performance in high-rate characteristics of the O 2 have.

도6은 4.3V 충전 후 Li[Ni1/2Mn1/2]O2 Li[(Ni1/2Mn1/2)xCo1-x]O2 의 시차중량열분석에 관한 데이터이다. Li[Ni1/2Mn1/2]O2 는 250℃에서 발열이 시작되어 300℃에서 주 발열피크가 나타나지만 Li[(Ni1/2Mn1/2)xCo1-x]O2 는 310℃에서의 주 발열피크와 2/3으로 줄어든 발열량으로 열적 안정성이 향상되었다.6 shows Li [Ni 1/2 Mn 1/2 ] O 2 with 4.3V charge. Data on differential weighted thermal analysis of Li [(Ni 1/2 Mn 1/2 ) x Co 1-x ] O 2 . Li [Ni 1/2 Mn 1/2 ] O 2 starts to generate heat at 250 ° C and shows the main exothermic peak at 300 ° C, while Li [(Ni 1/2 Mn 1/2 ) x Co 1-x ] O 2 The thermal stability was improved by the main heating peak at 310 ° C and the heat generation reduced by 2/3.

[실시예 3]Example 3

황산니켈, 황산망간 및 황산코발트 몰비가 0.8 : 0.8 : 0.8 의 비율로 혼합된 2.4M 농도의 금속 수용액을 실시예 1과 동일한 조건으로 구형의 니켈망간코발트마그네슘 복합금속수산화물을 합성한 다음, 황산니켈, 황산코발트 및 황산망간 몰비가 1.68 : 0.24 : 0.48 인 2.4M의 금속 수용액으로 교체한 뒤 1~10시간 상기와 같은 조건으로 반응시켰다. 상기 반응으로 얻은 금속복합수산화물을 실시예 1과 같 은 방법으로 이중층 구조 리튬복합금속산화물 분말을 합성하였고, 반쪽전지를 제조하였다.Spherical nickel manganese cobalt magnesium composite metal hydroxides were synthesized under the same conditions as in Example 1 with a 2.4 M aqueous metal solution mixed with nickel sulfate, manganese sulfate and cobalt sulfate in a ratio of 0.8: 0.8: 0.8, and then nickel sulfate , And cobalt sulfate and manganese sulfate molar ratio of 1.68: 0.24: 0.48 was replaced with a 2.4 M aqueous metal solution and reacted under the same conditions for 1 to 10 hours. A double layer structure lithium composite metal oxide powder was synthesized in the same manner as in Example 1, and the half cell was prepared.

[비교예 3]Comparative Example 3

상기 실시예 3의 황산니켈, 황산망간 및 황산코발트 몰비가 0.8 : 0.8 : 0.8 의 비율로 혼합된 2.4M 농도의 금속 수용액을 실시예 1과 동일한 방법으로 합성하였고, 반쪽전지를 제조하였다. Nickel sulfate, manganese sulfate and cobalt sulfate molar ratio of Example 3 were mixed in a 2.4 M aqueous metal solution in a ratio of 0.8: 0.8: 0.8 in the same manner as in Example 1 to prepare a half cell.

도 7에서 (Ni1/3Co1/3Mn1/3)(OH)2, [(Ni1/3Co1/3Mn1/3)x(Ni0.7Co0.1Mn0.2)1-x](OH)2 의 FE-SEM 사진이다. 그림에서 보듯이 [(Ni1/3Co1/3Mn1/3)x(Ni0.7Co0.1Mn0.2)1-x](OH)2 는 좀더 촘촘하게 전구체가 합성되었고, 도 8의 FE-SEM 사진에서도 Li[Ni1/3Co1/3Mn1/3]O2, Li[(Ni1/3Co1/3Mn1/3)x(Ni0.7Co0.1Mn0.2)1-x]O2 입자형태 차이를 쉽게 알 수가 있다. 도 9에서는 Li[Ni1/3Co1/3Mn1/3]O2, Li[(Ni1/3Co1/3Mn1/3)x(Ni0.7Co0.1Mn0.2)1-x]O2의 엑스선 회절 패턴으로(XRD) 모든 분말들의 회절피크에서 (006)과 (102) 피크 분리, (018)과 (110) 피크 분리가 잘 나타나 있고, (003)과 (104) 피크비가 1이상 인 것으로부터 상기 리튬복합산화물은 공간군 R-3m을 가지는 헥사고날(hexagonal)-NaFeO2 구조를 가지며, 이중층 구조로 형성 된 후에도 결정성이 우수한 층상 화합물임을 알 수 있다. 도 10은 3.0-4.3V의 충방전 곡선으로 내부는 삼분의 일의 조성으로 안정성을 외부는 니켈계 층상 양극 활물질로 Li[(Ni1/3Co1/3Mn1/3)x(Ni0.7Co0.1Mn0.2)1-x]O2 의 초기용량이 171mAh/g이고 Li[Ni1/3Co1/3Mn1/3]O2 이 164mAh/g로 약 7mAh/g정도 증가하였음을 알 수가 있다.In Figure 7 (Ni 1/3 Co 1/3 Mn 1/3 ) (OH) 2 , [(Ni 1/3 Co 1/3 Mn 1/3 ) x (Ni 0.7 Co 0.1 Mn 0.2 ) 1-x ] FE-SEM photograph of (OH) 2 . As shown in the figure, [(Ni 1/3 Co 1/3 Mn 1/3 ) x (Ni 0.7 Co 0.1 Mn 0.2 ) 1-x ] (OH) 2 was more densely synthesized precursor, FE-SEM of Figure 8 In the photo, Li [Ni 1/3 Co 1/3 Mn 1/3 ] O 2 , Li [(Ni 1/3 Co 1/3 Mn 1/3 ) x (Ni 0.7 Co 0.1 Mn 0.2 ) 1-x ] O 2 of It is easy to see the difference in particle shape. 9, Li [Ni 1/3 Co 1/3 Mn 1/3 ] O 2 , Li [(Ni 1/3 Co 1/3 Mn 1/3 ) x (Ni 0.7 Co 0.1 Mn 0.2 ) 1-x ] The X-ray diffraction pattern of O 2 (XRD) shows well the (006) and (102) peak separations, the (018) and (110) peak separations in the diffraction peaks of all powders, and the peak ratios of (003) and (104) are 1 It can be seen from the above that the lithium composite oxide has a hexagonal-NaFeO 2 structure having a space group R-3m and is a layered compound having excellent crystallinity even after being formed in a double layer structure. 10 is a charge / discharge curve of 3.0-4.3V, the inside of which is a third of the composition of the stability as the nickel-based layered positive electrode active material Li [(Ni 1/3 Co 1/3 Mn 1/3 ) x (Ni 0.7 Co 0.1 Mn 0.2 ) 1-x ] O 2 initial capacity was 171mAh / g and Li [Ni 1/3 Co 1/3 Mn 1/3 ] O 2 was increased to about 164mAh / g to about 7mAh / g There is a number.

[실시예 4]Example 4

황산니켈, 황산망간, 황산코발트 및 황산마그네슘 몰비가 0.8 : 0.8 : 0.704 : 0.096 의 비율로 혼합된 2.4M 농도의 금속 수용액을 실시예 1과 동일한 조건으로 구형의 니켈망간코발트마그네슘 복합금속수산화물을 합성한 다음, 황산니켈, 황산코발트, 황산망간 및 황산마그네슘 몰비가 1.68 : 0.24 : 0.384 : 0.096 인 2.4M의 금속 수용액으로 교체한 뒤 1~10시간 상기와 같은 조건으로 반응시켰다. 상기 반응으로 얻은 금속복합수산화물을 실시예 1과 같은 방법으로 이중층 구조 리튬복합금속산화물 분말을 합성하였고, 반쪽전지를 제조하였다.A spherical nickel manganese cobalt magnesium composite metal hydroxide was synthesized under the same conditions as in Example 1 using a 2.4 M aqueous solution containing nickel sulfate, manganese sulfate, cobalt sulfate, and magnesium sulfate in a ratio of 0.8: 0.8: 0.704: 0.096. Then, nickel sulfate, cobalt sulfate, manganese sulfate, and magnesium sulfate were replaced with a 2.4 M aqueous solution having a molar ratio of 1.68: 0.24: 0.384: 0.096 and reacted under the same conditions as above for 1 to 10 hours. A double layer structure lithium composite metal oxide powder was synthesized in the same manner as in Example 1, and the half cell was prepared.

[비교예 4][Comparative Example 4]

상기 실시예 4의 황산니켈, 황산망간, 황산코발트 및 황산마그네슘 몰비가 0.8 : 0.8 : 0.704 : 0.096 의 비율로 혼합된 2.4M 농도의 금속 수용액을 실시예 1과 동일한 방법으로 합성하여 Li[(Ni0.33Co0.33Mn0.3Mg0.04)x(Ni0.7Co0.1Mn0.16Mg0.04)1-x]O2로 이루어진 반쪽전지를 제조하였다. Nickel sulfate, manganese sulfate, cobalt sulfate, and magnesium sulfate mole ratios of Example 4 were mixed in a ratio of 0.8: 0.8: 0.704: 0.096 to a metal solution of 2.4 M concentration in the same manner as in Example 1 to synthesize Li [(Ni A half cell consisting of 0.33 Co 0.33 Mn 0.3 Mg 0.04 ) x (Ni 0.7 Co 0.1 Mn 0.16 Mg 0.04 ) 1-x ] O 2 was prepared.

도 11은 3.0-4.3V의 충방전 곡선으로 내부는 삼분의 일의 조성에 마그네슘이 첨가된 양극 활물질로 안정성을 외부는 니켈계 층상 양극 활물질로 Li[(Ni0.33Co0.33Mn0.3Mg0.04)x(Ni0.7Co0.1Mn0.16Mg0.04)1-x]O2 의 초기용량이 169mAh/g이고 Li[Ni0.33Co0.33Mn0.3Mg0.04]O2 이 161mAh/g로 약 8mAh/g정도 증가하였음을 알 수가 있다. 11 is a charge / discharge curve of 3.0-4.3V, the inside of which is one-third of the composition of magnesium added to the positive electrode active material, the stability of the nickel-based layered positive electrode active material Li [(Ni 0.33 Co 0.33 Mn 0.3 Mg 0.04 ) x (Ni 0.7 Co 0.1 Mn 0.16 Mg 0.04 ) The initial capacity of 1-x ] O 2 was 169mAh / g and Li [Ni 0.33 Co 0.33 Mn 0.3 Mg 0.04 ] O 2 was increased by about 8mAh / g to 161mAh / g. I can see.

이상의 설명에서와 같이 본 발명은 하나의 바람직한 구체예에 대해서만 기술하였으나, 상기의 구체예를 바탕으로 한 본 발명의 기술사상 범위 내에서의 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 또한, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.As described above, the present invention has been described for only one preferred embodiment, but it is apparent to those skilled in the art that various changes and modifications can be made within the technical spirit of the present invention based on the above embodiments. It is natural that such variations and modifications fall within the scope of the appended claims.

이와 같이 본 발명에 의한 수산화염 공침법을 사용하여 제조된 층상 암염 구조와 이중층 구조를 갖는 양극 활물질은 내부는 안정성이 우수한 니켈, 망간, 코발트계 양극, 전해질과 접하는 외부는 용량이 큰 니켈계 전이금속혼합계 혹은 고율특성일 우수한 코발트 양극으로 구성되어 용량과 충전밀도가 높고 수명특성이 개선되며 열적 안전성이 우수하였다. As described above, the positive electrode active material having a layered rock salt structure and a double layer structure prepared using the hydroxide co-precipitation method according to the present invention has excellent stability in nickel, manganese, cobalt-based positive electrode, and a nickel-based transition having a large capacity outside in contact with the electrolyte. It is composed of cobalt anode which is metal mixed system or high rate characteristic, so it has high capacity, high packing density, improved life characteristics and excellent thermal safety.

Claims (11)

이중층 구조를 가지는 리튬이차전지용 양극 활물질에 있어서, In the positive electrode active material for a lithium secondary battery having a double layer structure, 내부는 조성식 Liδ[NixCo1-2xMnx]O2 (1.0≤δ≤1.2, 0.01≤x≤0.5)로 이루어지고, 외부는 Liδ[NixCoyMn1-(x+y)]O2(1.0≤δ≤1.2, 0.5≤x≤1.0, 0.01≤y≤0.2) 혹은 LiδCoO2 (1.0≤δ≤1.2)로 이루어지는 것을 특징으로 하는 고용량, 고율특성의 이중층 구조를 가지는 리튬이차전지용 양극 활물질. Inside δ composition formula Li [Ni x Co 1-2x Mn x] O 2 is made of a (1.0≤δ≤1.2, 0.01≤x≤0.5), δ exterior Li [Ni x Co y Mn 1- (x + y ) ] O 2 (1.0≤δ≤1.2, 0.5≤x≤1.0, 0.01≤y≤0.2) or Li δ CoO 2 (1.0≤δ≤1.2), which has a high-capacity, high-rate bilayer structure Cathode active material for lithium secondary battery. 이중층 구조를 가지는 리튬이차전지용 양극 활물질에 있어서, In the positive electrode active material for a lithium secondary battery having a double layer structure, 내부는 조성식 Liδ[NixCo1-2xMnx-aMa]O2 (M은 Mg, Zn, Ca, Sr, Cu, Zr, P, Fe, Al, Ga, In, Cr, Ge, Sn, Ti, Mo, W, Nd 등으로 이루어진 군에서 선택된 적어도 하나의 원소, 1.0≤δ≤1.2, 0.01≤x≤0.5, 0.01≤a≤0.1)로 이루어지고, 외부는 Liδ[NixCoyMn1-(x+y+z)Nz]O2 (N은 Mg, Zn, Ca, Sr, Cu, Zr로 이루어진 군에서 선택된 적어도 하나의 원소, 1.0≤δ≤1.2, 0.5≤x≤1.0, 0.01≤y≤0.2, 0.01≤z≤0.1)로 이루어지는 것을 특징으로 하는 고용량, 고율특성의 이중층 구조를 가지는 리튬이차전지용 양극 활물질. Inside is the formula Li δ [Ni x Co 1-2x Mn xa M a ] O 2 (M is Mg, Zn, Ca, Sr, Cu, Zr, P, Fe, Al, Ga, In, Cr, Ge, Sn, At least one element selected from the group consisting of Ti, Mo, W, Nd, etc., 1.0 ≦ δ ≦ 1.2, 0.01 ≦ x ≦ 0.5, 0.01 ≦ a ≦ 0.1), and the outside thereof is Li δ [Ni x Co y Mn 1- (x + y + z) N z ] O 2 (N is at least one element selected from the group consisting of Mg, Zn, Ca, Sr, Cu, Zr, 1.0≤δ≤1.2, 0.5≤x≤1.0, 0.01 ≤ y ≤ 0.2, 0.01 ≤ z ≤ 0.1), the positive electrode active material for a lithium secondary battery having a double layer structure of high capacity, high rate characteristics. 제 1항에 있어서, 외부층의 두께는 전체 양극 활물질 두께의 5%∼50%인 것을 특징으로 하는 고용량, 고율특성의 이중층 구조를 가지는 리튬이차전지용 양극 활물질. The cathode active material for a lithium secondary battery according to claim 1, wherein the outer layer has a thickness of 5% to 50% of the total thickness of the cathode active material. 제 1항에 있어서, 상기 내부 평균입경은 1 ∼ 8㎛이고, 상기 양극 활물질의 전체입자의 평균입경은 9 ∼ 20㎛m인 것으로 하는 고용량, 고율특성의 이중층 구조를 가지는 리튬이차전지용 양극 활물질.The cathode active material for a lithium secondary battery according to claim 1, wherein the internal average particle diameter is 1 to 8 µm and the average particle diameter of all the particles of the cathode active material is 9 to 20 µm. 제1항 내지 제3항 중 어느 한 항 기재의 이중층 구조를 가지는 리튬이차전지용 양극 활물질을 이용한 것을 특징으로 하는 리튬이차전지.The lithium secondary battery using the positive electrode active material for lithium secondary batteries which has a double layer structure as described in any one of Claims 1-3. 니켈, 망간, 코발트계 전이금속 수용액, 암모니아 수용액 및 염기성 수용액을 반응기에 동시에 혼합하여 구형의 침전물을 얻는 제1단계;  A first step of simultaneously mixing nickel, manganese, cobalt-based transition metal aqueous solution, ammonia aqueous solution and basic aqueous solution in a reactor to obtain a spherical precipitate; 상기 침전물에 전이금속혼합계 수용액, 암모니아 수용액 및 염기성 수용액을 반응기에 동시에 혼합하여 전이금속수산화물이 덮여진 이중층 복합금속수산화물의 침전물을 얻는 제2단계;  A second step of obtaining a precipitate of a double layer composite metal hydroxide covered with a transition metal hydroxide by simultaneously mixing the transition metal mixed solution, the ammonia solution and the basic aqueous solution in the reactor with the precipitate; 상기 침전물을 건조시키거나 열처리하여 이중층 복합금속수산화물 또는 이중층 복합금속산화물을 얻는 제3단계;  Drying or depositing the precipitate to obtain a double layer composite metal hydroxide or a double layer composite metal oxide; 상기 이중층 복합금속수산화물 또는 이중층 복합금속산화물에 리튬염을 혼합하여 이중층 리튬복합금속산화물을 얻는 제4단계를 포함하는 것을 특징으로 하는 고용량, 고율특성의 이중층 구조를 가지는 리튬이차전지용 양극 활물질의 제조방법. Method for producing a positive electrode active material for a lithium secondary battery having a double layer structure of a high capacity, high rate characteristics, characterized in that it comprises a fourth step of obtaining a double layer lithium composite metal oxide by mixing a lithium salt in the double layer composite metal hydroxide or double layer composite metal oxide. . 제 6항에 있어서, 상기 제1단계는 전구체로서 2종 이상의 금속염을 포함하는 수용액을 혼합하여 사용하고, 암모니아와 금속염의 몰 비는 0.2 내지 0.4, 반응 용액의 pH는 10.5 내지 12로 조절하여 10 내지 20 시간 반응시키는 것을 특징으로 하는 고용량, 고율특성의 이중층 구조를 가지는 리튬이차전지용 양극 활물질의 제조방법.The method of claim 6, wherein the first step is used by mixing an aqueous solution containing two or more metal salts as a precursor, the molar ratio of ammonia and metal salt is 0.2 to 0.4, the pH of the reaction solution is adjusted to 10.5 to 10 to 10 A method of manufacturing a cathode active material for a lithium secondary battery having a double layer structure of high capacity and high rate characteristics, characterized by reacting for 20 hours. 제 6항에 있어서, 상기 제2단계는 반응시간을 1 내지 10시간으로 조절하여 외부층의 두께를 조절하는 것을 특징으로 하는 고용량, 고율특성의 이중층 구조를 가지는 리튬이차전지용 양극 활물질의 제조방법.The method of claim 6, wherein in the second step, the thickness of the outer layer is adjusted by adjusting the reaction time to 1 to 10 hours. 제 6항에 있어서, 상기 제3단계는 110℃에서 15시간 건조시키거나, 400 내지 550℃에서 5 내지 10시간 가열하는 것을 특징으로 하는 고용량, 고율특성의 이중층 구조를 가지는 리튬이차전지용 양극 활물질 제조방법.The method of claim 6, wherein the third step is to dry 15 hours at 110 ℃, or 5 to 10 hours at 400 to 550 ℃ characterized in that the manufacturing of a positive electrode active material for a lithium secondary battery having a double layer structure of high capacity, high rate characteristics Way. 제 6항에 있어서, 상기 제3단계는 300~550℃에서 5시간 유지시켜 예비 소성하는 단계, 700~1100℃에서 10시간 소성하는 단계, 600~750℃에서 10시간 어닐링하는 것을 특징으로 하는 고용량, 고율특성의 이중층 구조를 가지는 리튬이차전지용 양극 활물질의 제조방법.The method of claim 6, wherein the third step is a preliminary firing by maintaining at 300 ~ 550 ℃ 5 hours, firing 10 hours at 700 ~ 1100 ℃, high capacity, characterized in that for 10 hours at 600 ~ 750 ℃ , A method for producing a cathode active material for a lithium secondary battery having a double layer structure of high rate characteristics. 제 6항에 있어서, 상기 전이금속수용액의 반응 분위기는 질소 흐름하, pH는 10.5내지 12.5이내, 반응온도는 30 내지 80℃이내이며, 반응교반기 rpm은 500 내지 2000인 것을 특징으로 하는 고용량, 고율특성의 이중층 구조를 가지는 리튬이차전지용 양극 활물질의 제조방법.The method of claim 6, wherein the reaction atmosphere of the aqueous solution of the transition metal is nitrogen flow, pH is 10.5 to 12.5, the reaction temperature is 30 to 80 ℃, high capacity, high rate, characterized in that the reaction stirrer rpm is 500 to 2000 A method for producing a cathode active material for a lithium secondary battery having a double layer structure of characteristics.
KR1020050060218A 2005-07-05 2005-07-05 Double-layer cathode active materials for high capacity & high rate capability, method of preparing thereof and lithium secondary battery using thereby KR100633287B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050060218A KR100633287B1 (en) 2005-07-05 2005-07-05 Double-layer cathode active materials for high capacity & high rate capability, method of preparing thereof and lithium secondary battery using thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050060218A KR100633287B1 (en) 2005-07-05 2005-07-05 Double-layer cathode active materials for high capacity & high rate capability, method of preparing thereof and lithium secondary battery using thereby

Publications (1)

Publication Number Publication Date
KR100633287B1 true KR100633287B1 (en) 2006-10-11

Family

ID=37635584

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050060218A KR100633287B1 (en) 2005-07-05 2005-07-05 Double-layer cathode active materials for high capacity & high rate capability, method of preparing thereof and lithium secondary battery using thereby

Country Status (1)

Country Link
KR (1) KR100633287B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014010862A1 (en) * 2012-07-09 2014-01-16 주식회사 엘지화학 Precursor for preparing lithium composite transition metal oxide, method for preparing same, and lithium composite transition metal oxide
US9490642B2 (en) 2012-06-07 2016-11-08 Lg Chem, Ltd. Charging method of secondary battery with constant current using high charge rate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9490642B2 (en) 2012-06-07 2016-11-08 Lg Chem, Ltd. Charging method of secondary battery with constant current using high charge rate
WO2014010862A1 (en) * 2012-07-09 2014-01-16 주식회사 엘지화학 Precursor for preparing lithium composite transition metal oxide, method for preparing same, and lithium composite transition metal oxide
CN104364201A (en) * 2012-07-09 2015-02-18 株式会社Lg化学 Precursor for preparing lithium composite transition metal oxide, method for preparing same, and lithium composite transition metal oxide
US9966600B2 (en) 2012-07-09 2018-05-08 Lg Chem, Ltd. Precursor for preparing lithium composite transition metal oxide, method for preparing the precursor, and lithium composite transition metal oxide

Similar Documents

Publication Publication Date Title
KR100725399B1 (en) Core-shell structured cathode active materials with high capacity and safety and their preparing method for lithium secondary batteries
KR100752703B1 (en) Positive active material for lithium secondary battery, method of preparing same and a lithium secondary battery comprising the same
KR100822012B1 (en) Cathode active materials for lithium batteries, Method of preparing thereof and lithium secondary batteries comprising same
CN111587500B (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including positive electrode including the same
JP7094248B2 (en) A lithium secondary battery containing a nickel-based active material precursor for a lithium secondary battery, a manufacturing method thereof, a nickel-based active material for a lithium secondary battery formed from the precursor, and a positive electrode containing the same.
KR100738192B1 (en) Core-shell spinel cathode active materials for lithium secondary batteries, lithium secondary batteries using the same and Method for preparing thereof
KR100723973B1 (en) Core-shell cathode active materials with high safety and high capacity for lithium secondary batteries, Method of preparing thereof And the product thereby
EP1831943B1 (en) Method for preparing double-layer cathode active materials for lithium secondary batteries
KR100974352B1 (en) Composite cathode active material for lithium secondary battery, methode of preparing thereof, and lithium secondary battery comprising the same
KR100548988B1 (en) Manufacturing process of cathodes materials of lithium second battery, the reactor used therein and cathodes materials of lithium second battery manufactured thereby
JP5759545B2 (en) Method for producing positive electrode active material for lithium secondary battery, positive electrode active material for lithium secondary battery produced thereby, and lithium secondary battery using the same
KR100744759B1 (en) A method for preparing cathode active materials for lithium secondary batteries
KR100598491B1 (en) Double-layer cathode active materials and their preparing method for lithium secondary batteries
KR20050121727A (en) Lithium-nickel-cobalt-manganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these
JP2010511990A (en) Core-shell spinel positive electrode active material for lithium secondary battery, lithium secondary battery using the above, and method for producing the same
JP2017537434A (en) Transition metal oxide precursor, method for producing the same, lithium composite transition metal oxide, positive electrode and secondary battery including the same
KR20060128814A (en) Method of preparing layered cathode active materials with high capacity and high safety for lithium secondary batteries and the product thereby
KR100557240B1 (en) Cathode active material for lithium secondary btteries prepared by coprecipitation method, method for preparing the same, and lithium secondary batteries using the same
KR100668050B1 (en) Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
KR100633287B1 (en) Double-layer cathode active materials for high capacity &amp; high rate capability, method of preparing thereof and lithium secondary battery using thereby
KR100582115B1 (en) 5? spinel complex-oxide prepared, method for preparing the same, and lithium secondary batteries using the same
JP7280330B2 (en) Nickel-based lithium metal composite oxide, method for producing same, positive electrode containing same, and lithium secondary battery
KR100677535B1 (en) Method of preparing layered cathode active materials with high capacity and high safety for lithium secondary batteries and the product thereby

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120928

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131001

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140930

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151001

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20161004

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee