KR100632383B1 - Semiconductor nano material doping method using neutron transmutation doping process - Google Patents

Semiconductor nano material doping method using neutron transmutation doping process Download PDF

Info

Publication number
KR100632383B1
KR100632383B1 KR1020050048260A KR20050048260A KR100632383B1 KR 100632383 B1 KR100632383 B1 KR 100632383B1 KR 1020050048260 A KR1020050048260 A KR 1020050048260A KR 20050048260 A KR20050048260 A KR 20050048260A KR 100632383 B1 KR100632383 B1 KR 100632383B1
Authority
KR
South Korea
Prior art keywords
doping
neutron
semiconductor
nanowires
doping process
Prior art date
Application number
KR1020050048260A
Other languages
Korean (ko)
Inventor
김상식
김기현
정동영
Original Assignee
학교법인고려중앙학원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인고려중앙학원 filed Critical 학교법인고려중앙학원
Priority to KR1020050048260A priority Critical patent/KR100632383B1/en
Application granted granted Critical
Publication of KR100632383B1 publication Critical patent/KR100632383B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A semiconductor nano material doping method using a neutron transmutation doping process is provided to implement uniform dope to a nano wire by irradiating neutron to generate impurity atoms using a transmutation doping process. In a growth process, a semiconductor nano wire is grown on a substrate(110). In a doping process, the semiconductor nano wire is doped by irradiating neutron using a transmutation(120). In an anneal process, a thermal annealing is performed to the neutron doped semiconductor nano wire(130). In the doping process, the nano wire is doped with desired impurity concentration by controlling irradiation time of the neutron and quantity of the neutron.

Description

중성자 핵전환 도핑공정을 이용한 반도체 나노물질 도핑방법{SEMICONDUCTOR NANO MATERIAL DOPING METHOD USING NEUTRON TRANSMUTATION DOPING PROCESS}Semiconductor nano material doping method using neutron nuclear doping process {SEMICONDUCTOR NANO MATERIAL DOPING METHOD USING NEUTRON TRANSMUTATION DOPING PROCESS}

도 1은 본 발명에 따른 중성자 핵전환 도핑공정을 이용한 반도체 나노물질 도핑방법을 설명하기 위한 공정도,1 is a process chart for explaining a semiconductor nanomaterial doping method using a neutron nuclear conversion doping process according to the present invention,

도 2는 도 1에서 반도체 나노선에 중성자를 조사하는 공정을 설명하기 위한 도면,FIG. 2 is a view for explaining a process of irradiating neutrons to semiconductor nanowires in FIG. 1;

도 3은 실제로 중성자를 조사한 반도체 나노선의 SEM 사진이다.3 is a SEM photograph of a semiconductor nanowire actually irradiated with neutrons.

*** 도면의 주요부분에 대한 부호 설명 ****** Explanation of symbols on main parts of drawing ***

10 : Al 또는 Si 기판 10: Al or Si substrate

20 : 반도체 나노선20: semiconductor nanowire

30 : 중성자 조사수단30: neutron irradiation means

본 발명은 중성자 핵전환 도핑공정을 이용한 반도체 나노물질 도핑방법에 관 한 것이다.The present invention relates to a method for doping semiconductor nanomaterials using a neutron nuclear doping process.

보다 상세하게는, 중성자 핵전환(Transmutation) 도핑(doping) 공정을 이용하여 반도체 나노선에 중성자를 조사하여 불순물로 작용하는 원자들을 생성하여 반도체 나노선에 불순물이 균일하게 도핑될 수 있도록 하기 위한 중성자 핵전환 도핑공정을 이용한 반도체 나노물질 도핑방법에 관한 것이다.More specifically, neutrons are used to irradiate neutrons to semiconductor nanowires by using a neutron transmutation doping process to generate atoms that act as impurities, so that impurities can be uniformly doped in the semiconductor nanowires. The present invention relates to a method for doping semiconductor nanomaterials using a nuclear conversion doping process.

나노기술 연구에서 선진국은 50년대에 나노기술에 대한 개념이 시작되었고, 80년대 이후 관련 장비 등의 개발로 기술이 크게 발전한데 비해, 한국은 90년대 들어 나노스케일의 연구과제 일부가 수행된데 불과하다.In nanotechnology research, developed countries began to develop the concept of nanotechnology in the fifties, and since the 1980s, the development of related equipment greatly improved the technology.In Korea, some of nanoscale research projects were conducted in the 1990s. Do.

특히, 나노기술은 타분야보다 기초연구가 필수적인데 비해, 국내 기초과학기술의 발전기반이 취약하다. 더욱이 나노기술을 연구하는 실험장비도 크게 부족하고, 고성능 E-beam 등 실질적인 연구장비 또한 거의 전무한 상태이다.In particular, while nanotechnology is essential for basic research than other fields, the generator panel of domestic basic science and technology is vulnerable. In addition, there is a large lack of experimental equipment for researching nanotechnology, and there is almost no practical research equipment such as high-performance E-beam.

그리고, 현재까지는 국내외적으로 나노물질의 합성과 그에 따른 메카니즘을 규명하기 위한 노력이 대부분이라 해도 과언이 아닐 것이다. 특히 나노기술은 전체적으로 볼 때, 미국이 가장 앞서 가고 있지만, GaN계 및 ZnO 나노재료의 제조 및 소자제조기술은 전 세계적으로 초기 단계이기 때문에 모든 국가가 동등한 기회를 갖고 있다고 해도 과언이 아니다. 나노재료 및 나노소자 제조기술 개발을 위한 요소기술은 나노물질 성장기술, 소자 제조기술로 요약할 수 있다.And until now, it is no exaggeration to say that most of the efforts are made to investigate the synthesis of nanomaterials and their mechanisms at home and abroad. In particular, the United States is at the forefront of nanotechnology as a whole, but it is no exaggeration to say that all countries have equal opportunities because GaN-based and ZnO nanomaterial fabrication and device fabrication technologies are at an early stage in the world. Element technologies for developing nanomaterials and nanodevice manufacturing technology can be summarized as nanomaterial growth technology and device manufacturing technology.

이들 기술의 상호 영향을 체계적으로 연구하고 통합하기 위해서는 무엇보다도 나노물질 성장기술과 그에 따르는 소자 제조기술이 종합적으로 연구되어야 한 다.In order to systematically study and integrate the mutual influences of these technologies, first of all, the nanomaterial growth technology and the device fabrication technology must be comprehensively studied.

최근에 일차원 나노선을 이용한 FET(Field Effect Transistor), 광검출소자, bio-chemical sensor 뿐만 아니라 n-type과 p-type을 이용한 rectifier, LED 등의 고기능성 나노소자가 구현되기 시작하고 있으며, 특히 GaN와 ZnO는 청색 LED, 실온에서 자외선 영역의 발광소자로의 가능성 등에 대한 연구가 활발히 진행되고 있다.Recently, high-functional nanodevices such as rectifiers and LEDs using n-type and p-type as well as FET (Field Effect Transistor), photodetector, and bio-chemical sensor using one-dimensional nanowires have been started to be implemented. And ZnO have been actively studied for the possibility of being a blue LED, a light emitting device in the ultraviolet region at room temperature.

이러한 나노물질을 소자로 실현시키기 위해서는 나노선에 원하는 불순물을 원하는 농도로 도핑을 하는 것이 주요 선결과제이다. 현재 나노선의 도핑방법은 도핑된 필름을 증착하고, e-beam 식각 기술을 이용하여 기판에서 일부분만 남겨 둔 형태로 나노선을 제작하여 도핑된 나노선을 얻는 방법이 주로 사용되고 있으나, 상기와 같은 방식에서의 나노선은 결함이 많고, 그 크기에도 한계가 있는 등 많은 문제점을 가지고 있다.In order to realize such a nanomaterial as a device, it is a major prerequisite to dope a desired impurity in a nanowire at a desired concentration. Currently, the doping method of the nanowires is a method of obtaining a doped nanowire by depositing a doped film and fabricating the nanowire in a form of leaving only a portion of the substrate using an e-beam etching technique. Nanowires have many problems, such as many defects and their size is limited.

본 발명은 상기와 같이 핵심 기술 개발 요구에 부응하기 위해 안출된 것으로, 본 발명의 목적은 중성자 핵전환(Transmutation) 도핑(doping) 공정을 이용하여 반도체 나노선에 중성자를 조사하여 불순물로 작용하는 원자들을 생성하여 반도체 나노선에 불순물이 일정량으로 도핑될 수 있도록 하기 위한 중성자 핵전환 도핑공정을 이용한 반도체 나노물질 도핑방법을 제공함에 있다.The present invention has been made to meet the core technology development needs as described above, an object of the present invention is to use an neutron transmutation doping process to irradiate neutrons to semiconductor nanowires to act as impurities The present invention provides a method for doping semiconductor nanomaterials using a neutron nuclear conversion doping process for generating impurities to allow a certain amount of impurities to be doped into a semiconductor nanowire.

또한, 본 발명의 목적은 반도체 나노선에 중성자를 조사하여 도핑한 후에 반도체 물질을 열처리를 하여 반도체 나노선에 불순물이 균일하고 나노선에 결함없 이 도핑되도록 하기 위한 중성자 핵전환 도핑공정을 이용한 반도체 나노물질 도핑방법을 제공함에 있다.In addition, an object of the present invention is a semiconductor using a neutron nuclear conversion doping process for the semiconductor nanowires are irradiated with neutrons and doped, followed by heat treatment of the semiconductor material so that impurities are uniformly doped in the semiconductor nanowires and doped without defects on the nanowires The present invention provides a method of doping nanomaterials.

상기와 같은 기술적 과제를 해결하기 위하여 제안된 본 발명의 일 실시예는, 기판 상부에 반도체 나노선을 성장시키는 성장과정; 반도체 나노선에 중성자를 조사하여 상기 반도체 나노선 내부에 존재하는 원자들에 변환을 주는 핵전환공정을 이용하여 상기 반도체 나노선을 도핑하는 도핑과정; 및 상기 중성자가 도핑된 반도체 나노선을 열처리하는 열처리과정으로 이루어진 것을 특징으로 한다.One embodiment of the present invention proposed to solve the above technical problem, the growth process of growing a semiconductor nanowire on the substrate; A doping step of doping the semiconductor nanowires by using a nuclear conversion process of converting atoms present in the semiconductor nanowires by irradiating neutrons to the semiconductor nanowires; And a heat treatment process of heat-treating the neutron-doped semiconductor nanowires.

이하, 첨부한 도면을 참조하여 중성자 핵전환 도핑공정을 이용한 반도체 나노물질 도핑방법에 대해 상세하게 설명한다.Hereinafter, a semiconductor nanomaterial doping method using a neutron nuclear conversion doping process will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 중성자 핵전환 도핑공정을 이용한 반도체 나노물질 도핑방법을 설명하기 위한 공정도이고, 도 2는 도 1에서 반도체 나노선에 중성자를 조사하는 공정을 설명하기 위한 도면이며, 도 3은 실제로 중성자를 조사한 반도체 나노선의 SEM 사진이다.1 is a process chart for explaining a semiconductor nanomaterial doping method using a neutron nuclear conversion doping process according to the present invention, Figure 2 is a view for explaining a process for irradiating a neutron to the semiconductor nanowire in Figure 1, Figure 3 Is actually a SEM photograph of a semiconductor nanowire irradiated with neutrons.

중성자 핵전환 도핑공정을 이용한 반도체 나노물질 도핑방법은 첨부 도면 도 1에 도시된 바와 같이 Al 또는 Si 기판 상부(10)에 열 증착법을 통해 반도체 나노선(20)을 성장시키고(110), 상기 반도체 나노선(20)이 성장된 Al 또는 Si 기판(10)에 첨부 도면 도 2에 도시된 바와 같이 중성자 조사수단(30)을 이용하여 중성자를 조사시킨다(120). In the semiconductor nanomaterial doping method using the neutron nucleus conversion doping process, as shown in FIG. 1, the semiconductor nanowire 20 is grown 110 by thermal evaporation on an Al or Si substrate 10, and the semiconductor An neutron is irradiated to the Al or Si substrate 10 on which the nanowires 20 are grown using the neutron irradiation means 30 as shown in FIG. 2 (120).

상기와 같이 Al 또는 Si 기판(10) 상부로 중성자를 조사하면 반도체 나노선(20) 내부에 있는 원자들에 변화가 일어나 반도체 나노선(20)이 도핑된다. 이때, 상기 중성자의 조사조건에 대해 언급하면 중성자 조사량은 3.79×1013/cm2s이고, 중성자 에너지는 0.1 MeV이며, 중성자 조사시간은 3~9일이다.When the neutron is irradiated onto the Al or Si substrate 10 as described above, the atoms in the semiconductor nanowire 20 are changed to dop the semiconductor nanowire 20. At this time, referring to the irradiation conditions of the neutron, the neutron dose is 3.79 × 10 13 / cm 2 s, the neutron energy is 0.1 MeV, the neutron irradiation time is 3 to 9 days.

다시 말해, 반도체 나노선(20)에 중성자를 조사(irradiation)하여 핵전환(transmutation)을 통해 발생하는 불순물을 이용하여 반도체 나노선(20)을 도핑하게 된다. 즉, 열중성자와 빠른 중성자로 구성되는 중성자를 반도체에 조사할 경우 반도체 구성원자가 열중성자와 핵반응하게 되면 질량수 하나를 얻으면서 동위원소가 된다. 반면에 큰 에너지를 지닌 빠른 중성자는 반도체에 결함만 줄 뿐 핵반응과는 무관하게 작용한다.In other words, the semiconductor nanowires 20 are irradiated with neutrons and doped with the semiconductor nanowires 20 using impurities generated through transmutation. In other words, when a semiconductor is irradiated with a neutron composed of a thermal neutron and a fast neutron, when the semiconductor member reacts with the thermal neutron, it becomes an isotope with one mass. Fast energetic neutrons, on the other hand, can only cause defects in semiconductors and work independently of nuclear reactions.

그리고, 상기와 같이 반도체 나노선(20)이 불순물에 의해 도핑된 후 열처리공정(130)이 이루어진다. 상기 열처리 공정(130)은 600 ~ 800 ℃에서 10 시간 동안 진행하면 빠른 중성자에 의해서 발생된 데미지를 제거해 줄 뿐만 아니라 열중성자에 의해 발생된 원치 않는 효과도 제거한다. 그리고, 상기 열처리 공정(130)은 반도체 나노선(20)에 도핑된 불순물이 구성원자 사이에 자리잡게 되어 균일한 도핑특성을 가지도록 한다.Then, as described above, the semiconductor nanowire 20 is doped with an impurity, followed by a heat treatment process 130. The heat treatment process 130 proceeds for 10 hours at 600 ~ 800 ℃ not only removes the damage caused by the fast neutrons, but also removes the unwanted effects caused by thermal neutrons. In the heat treatment step 130, the doped impurities in the semiconductor nanowire 20 are settled among the members to have uniform doping characteristics.

한편, 상기 도핑공정(120)에서 중성자의 조사시간 및 조사량을 조절하여 원하는 농도의 불순물이 반도체 나노선(20)에 도핑되도록 구현할 수도 있다.On the other hand, the doping step 120 may be implemented so that the impurities of the desired concentration is doped in the semiconductor nanowire 20 by adjusting the irradiation time and the irradiation amount of the neutron.

본 발명에 적용된 상기 반도체 나노선(20)은 Si, Ge, GaN, InP, GaAs, GaP, Si3N4, SiO2, SiC, Zno 및 Ga2O3 중 어느 하나의 성분으로 이루어진다.The semiconductor nanowire 20 applied to the present invention is composed of any one of Si, Ge, GaN, InP, GaAs, GaP, Si 3 N 4 , SiO 2 , SiC, Zno, and Ga 2 O 3 .

이상의 본 발명은 상기 실시예들에 의해 한정되지 않고, 당업자에 의해 다양한 변형 및 변경을 가져올 수 있으며, 이는 첨부된 청구항에서 포함되는 본 발명의 취지와 범위에 포함된다.The present invention is not limited to the above embodiments, and various modifications and changes can be made by those skilled in the art, which are included in the spirit and scope of the present invention included in the appended claims.

상기와 같은 구성 및 작용 그리고 바람직한 실시예를 가지는 본 발명은 중성자 핵전환(Transmutation) 도핑(doping) 공정을 이용하여 반도체 나노선에 중성자를 조사하여 불순물로 작용하는 원자들을 생성하여 반도체 나노선에 불순물이 균일하게 도핑될 수 있도록 하는 효과가 있다.According to the present invention having the above-described configuration, function, and preferred embodiment, the neutron is irradiated to the semiconductor nanowires by using a neutron transmutation doping process to generate atoms acting as impurities, thereby generating impurities in the semiconductor nanowires. This has the effect of allowing it to be uniformly doped.

또한, 본 발명은 반도체 나노선에 중성자를 조사하여 도핑한 후에 반도체 물질을 열처리를 하여 반도체 나노선에 불순물이 균일하고 일정하게 도핑되도록 하는 효과를 달성한다. In addition, the present invention achieves the effect of uniformly and uniformly doping impurities in the semiconductor nanowires by heat-treating the semiconductor material after doping the semiconductor nanowires by neutron irradiation.

또한, 본 발명은 도핑한 반도체 나노소자를 열처리함으로써 빠른 중성자에 의해서 발생된 데미지를 제거해 줄뿐만 아니라 열중성자에 의해 발생된 원치 않는 효과도 제거할 수 있도록 하는 효과를 달성한다.In addition, the present invention achieves the effect of not only to remove the damage caused by the fast neutrons by heat treatment of the doped semiconductor nano device, but also to remove the unwanted effects caused by the thermal neutrons.

또한, 본 발명은 반도체 나노선에 중성자 핵전환 도핑을 이용하여 불순물을 치환하는 방법을 이용하는 것으로 나노선을 나노소자로서의 응용 가능하도록 하여 나노소자에 대한 연구가 산업화에 이용될 수 있도록 하는 효과를 달성한다. In addition, the present invention by using a method of replacing the impurities using neutron nucleus conversion doping to the semiconductor nanowires to achieve the effect that the nanowires can be applied as a nanodevice to study the nanodevices can be used in industrialization do.

또한, 본 발명은 중성자의 조사시간을 조절하여 원하는 농도의 불순물 도핑이 가능하도록 하여 나노소자로서의 이용효과를 향상시킬 수 있도록 하는 효과를 달성한다.In addition, the present invention achieves the effect of improving the use effect as a nano device by allowing the doping of the impurity of the desired concentration by controlling the irradiation time of the neutron.

또한, 본 발명은 열처리를 이용하여 도핑된 불순물이 구성원자 사이에 자리잡게 하여 균일하게 도핑되도록 하는 효과를 달성한다.In addition, the present invention achieves the effect of uniformly doped by allowing the doped impurities to settle between the members using the heat treatment.

Claims (6)

기판 상부에 반도체 나노선을 성장시키는 성장과정;A growth process of growing semiconductor nanowires on the substrate; 반도체 나노선에 중성자를 조사하여 상기 반도체 나노선 내부에 존재하는 원자들에 변환을 주는 핵전환공정을 이용하여 상기 반도체 나노선을 도핑하는 도핑과정; 및A doping step of doping the semiconductor nanowires by using a nuclear conversion process of converting atoms present in the semiconductor nanowires by irradiating neutrons to the semiconductor nanowires; And 상기 중성자가 도핑된 반도체 나노선을 열처리하는 열처리과정;A heat treatment process of heat-treating the neutron doped semiconductor nanowires; 으로 이루어진 것을 특징으로 하는 중성자 핵전환 도핑공정을 이용한 반도체 나노물질 도핑방법.Semiconductor nano material doping method using a neutron nuclear conversion doping process, characterized in that consisting of. 제 1 항에 있어서, 상기 반도체 나노선은,The method of claim 1, wherein the semiconductor nanowire, Si, Ge, GaN, InP, GaAs, GaP, Si3N4, SiO2, SiC, Zno 및 Ga2O3 중 어느 하나의 성분으로 이루어진 것을 특징으로 하는 중성자 핵전환 도핑공정을 이용한 반도체 나노물질 도핑방법.Doping semiconductor nanomaterials using a neutron nucleus conversion doping process comprising any one of Si, Ge, GaN, InP, GaAs, GaP, Si 3 N 4 , SiO 2 , SiC, Zno and Ga 2 O 3 Way. 제 1 항에 있어서, The method of claim 1, 상기 도핑과정에서, 중성자의 조사시간 및 조사량을 조절하여 원하는 농도의 불순물이 반도체 나노선에 도핑되도록 하는 것을 특징으로 하는 중성자 핵전환 도핑공정을 이용한 반도체 나노물질 도핑방법.In the doping process, the method of doping semiconductor nanomaterials using a neutron nuclear conversion doping process characterized in that the doping of the semiconductor nanowires by controlling the irradiation time and the amount of neutron irradiation. 제 3 항에 있어서, 상기 중성자는,The method of claim 3, wherein the neutron is, 3.79×1013/cm2s의 조사량으로 3 ~ 9 일 동안 조사되는 것을 특징으로 하는 중성자 핵전환 도핑공정을 이용한 반도체 나노물질 도핑방법. 3. A method of doping semiconductor nanomaterials using a neutron nuclear doping process, characterized in that irradiated for 3 to 9 days at a dose of 3.79 × 10 13 / cm 2 s. 제 4 항에 있어서, 상기 중성자의 에너지는,The energy of the neutron, 0.1 MeV인 것을 특징으로 하는 중성자 핵전환 도핑공정을 이용한 반도체 나노물질 도핑방법. Method of doping semiconductor nanomaterials using a neutron nuclear conversion doping process, characterized in that 0.1 MeV. 제 1 항에 있어서, 상기 열처리 과정은, The method of claim 1, wherein the heat treatment process, 600 ~ 800 ℃ 에서 10 시간 동안 진행되는 것을 특징으로 하는 중성자 핵전환 도핑공정을 이용한 반도체 나노물질 도핑방법. Method of doping semiconductor nanomaterials using a neutron nuclear doping process, characterized in that for 10 hours at 600 ~ 800 ℃.
KR1020050048260A 2005-06-07 2005-06-07 Semiconductor nano material doping method using neutron transmutation doping process KR100632383B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050048260A KR100632383B1 (en) 2005-06-07 2005-06-07 Semiconductor nano material doping method using neutron transmutation doping process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050048260A KR100632383B1 (en) 2005-06-07 2005-06-07 Semiconductor nano material doping method using neutron transmutation doping process

Publications (1)

Publication Number Publication Date
KR100632383B1 true KR100632383B1 (en) 2006-10-09

Family

ID=37635485

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050048260A KR100632383B1 (en) 2005-06-07 2005-06-07 Semiconductor nano material doping method using neutron transmutation doping process

Country Status (1)

Country Link
KR (1) KR100632383B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8835742B2 (en) 2009-02-02 2014-09-16 Samsung Electronics Co., Ltd. Thermoelectric device and method of manufacturing the same
KR20190032098A (en) 2017-09-19 2019-03-27 한국원자력연구원 Ingot station for neutron transmutation doping

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244141A (en) 2004-02-27 2005-09-08 Toyo Univ InSb NANO-FINE WIRE STRUCTURE

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244141A (en) 2004-02-27 2005-09-08 Toyo Univ InSb NANO-FINE WIRE STRUCTURE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8835742B2 (en) 2009-02-02 2014-09-16 Samsung Electronics Co., Ltd. Thermoelectric device and method of manufacturing the same
KR20190032098A (en) 2017-09-19 2019-03-27 한국원자력연구원 Ingot station for neutron transmutation doping

Similar Documents

Publication Publication Date Title
Li et al. The ion implantation-induced properties of one-dimensional nanomaterials
KR101345432B1 (en) Method for producing metal-free single crystalline silicone nanowire, nanowire prepared therefrom and nano device comprising the same
US20040092085A1 (en) Semiconductor crystal film and method for preparation thereof
JP4167718B2 (en) Nanowire, device including nanowire, and method for manufacturing the same
EP2710629B1 (en) Process for producing semiconductor device
KR20090101617A (en) Method for manufacturing zinc oxide nanowires
US20130112995A1 (en) Semiconductor wafer and method for manufacturing the same
CN107564806A (en) Reduce the impurity concentration in semiconductor body
KR20110135293A (en) Manufacturing method of p-type zn oxide nanowires and electronic device comprising p-type zn oxide nanowires
KR100632383B1 (en) Semiconductor nano material doping method using neutron transmutation doping process
Teker Gallium nitride nanowire devices and photoelectric properties
CN114093765A (en) Method for prolonging minority carrier lifetime of silicon carbide film
US7902569B2 (en) Si/SiGe interband tunneling diodes with tensile strain
Pavlyk et al. Origin of dislocation luminescence centers and their reorganization in p-type silicon crystal subjected to plastic deformation and high temperature annealing
CN103794694B (en) Silicon-based germanium film with tensile strain and manufacturing method thereof
CN108597988A (en) A kind of AlGaN base deep ultraviolet LED epitaxial wafer and preparation method thereof grown on a si substrate
US20110237011A1 (en) Method for Forming a GaN-Based Quantum-Well LED with Red Light
WO2019173945A1 (en) Direct bandgap light-emitting silicon-based material and preparation method therefor, and on-chip light-emitting device
Paskov et al. Point defects in group-III nitrides
Sun et al. Enhanced ultraviolet electroluminescence from p-Si∕ n-ZnO nanorod array heterojunction
KR101172508B1 (en) Proton doped zinc oxide nanostructures, semi-conductor nano devices using the same and manufacturing method of proton doped zinc oxide nanostructures
Moeinian et al. Crystallinity of silicon-shells deposited onto germanium and silicon nanowires for core-shell nanostructures and nanotubes
KR100634512B1 (en) P type doped nanowire and method of fabricating the same
Urgessa et al. Comprehensive study of ZnO nanostructures grown using chemical bath deposition: from growth to application
RU2354000C2 (en) Method of processing monocrystalline epitaxial layers of group iii nitrides

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120615

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130621

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150817

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160826

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee