KR100629447B1 - Multilayers catalyst system for trapping small hydrocarbons - Google Patents

Multilayers catalyst system for trapping small hydrocarbons Download PDF

Info

Publication number
KR100629447B1
KR100629447B1 KR1020040112731A KR20040112731A KR100629447B1 KR 100629447 B1 KR100629447 B1 KR 100629447B1 KR 1020040112731 A KR1020040112731 A KR 1020040112731A KR 20040112731 A KR20040112731 A KR 20040112731A KR 100629447 B1 KR100629447 B1 KR 100629447B1
Authority
KR
South Korea
Prior art keywords
zeolite
catalyst system
hydrocarbon
adsorption
multilayer
Prior art date
Application number
KR1020040112731A
Other languages
Korean (ko)
Other versions
KR20060074102A (en
Inventor
이재의
김지만
연태헌
강민
Original Assignee
아주대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아주대학교산학협력단 filed Critical 아주대학교산학협력단
Priority to KR1020040112731A priority Critical patent/KR100629447B1/en
Publication of KR20060074102A publication Critical patent/KR20060074102A/en
Application granted granted Critical
Publication of KR100629447B1 publication Critical patent/KR100629447B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 기질상부에 나노사이즈 제오라이트-A가 엥커링된 소수성 제올라이트로 구성된 탄화수소 흡착층; 및 2) 상기 탄화수소 흡착층 상부에 산화촉매층이 코팅된 탄화수소 흡착용 다층촉매시스템에 관한 것이며, 내연기관 배기가스 성분 중 소분자 HC 흡착 및 탈착에 현저한 개선효과를 보이므로, 날로 엄격하게 적용되는 배기가스 규제에 효율적으로 대처할 수 있는 유용한 산화촉매 다층시스템을 설계할 수 있는 기술적 배경을 제공하는 발명이다.The present invention provides a hydrocarbon adsorption layer composed of a hydrophobic zeolite in which nanosize zeolite-A is anchored on a substrate; And 2) a multilayer catalyst system for hydrocarbon adsorption, in which an oxidation catalyst layer is coated on the hydrocarbon adsorption layer, and shows a significant improvement in small molecule HC adsorption and desorption among exhaust gas components of an internal combustion engine. The present invention provides a technical background for designing a useful oxidation catalyst multilayer system that can efficiently cope with regulations.

다층촉매, 탄화수소 흡착, 나노, 제오라이트 AMultilayer Catalyst, Hydrocarbon Adsorption, Nano, Zeolite A

Description

소분자 탄화수소 트랩을 가지는 다층촉매 시스템{Multilayers catalyst system for trapping small hydrocarbons} Multilayers catalyst system for trapping small hydrocarbons             

도 1은 본 발명에 의한 소분자 탄화수소 트랩용 엥커링 제오라이트 합성 공정도이며,1 is a flow chart of the anchoring zeolite for small molecule hydrocarbon trap according to the present invention,

도 2a, b는 본 발명에 의한 다층촉매시스템의 무수조건에서의 소분자 HC 흡착도이며,Figure 2a, b is a small molecule HC adsorption degree in anhydrous conditions of the multilayer catalyst system according to the present invention,

도 3a, b는 본 발명에 의한 다층촉매시스템의 유슈조건에서의 소분자 HC 흡착도를 도시한 것이다.3A and 3B show small-molecule HC adsorption degree under Yushu conditions of a multilayer catalyst system according to the present invention.

본 발명은 소분자 탄화수소 트랩을 가지는 다층촉매시스템에 관한 것으로서, 보다 상세하게는 기질 상부에 형성된 탄화수소 흡착층 ; 상기 탄화수소 흡착층 상부에 코팅된 배기가스 산화 촉매층을 포함하는 다층 촉매 시스템에 있어서, 상기 탄화수소 흡착층은 나노사이즈(nano-sized) Zeolite-A 가 소수성 제올라이트에 엥 커링된 것을 특징으로 하는, 소분자 탄화수소 트랩을 가지는 다층촉매시스템에 관한 것이다.The present invention relates to a multilayer catalyst system having a small molecule hydrocarbon trap, and more particularly, a hydrocarbon adsorption layer formed on a substrate; In a multilayer catalyst system comprising an exhaust gas oxidation catalyst layer coated on top of the hydrocarbon adsorption layer, the hydrocarbon adsorption layer is characterized in that nano-sized Zeolite-A is encapsulated in a hydrophobic zeolite. A multilayer catalyst system having a trap is provided.

내연기관 배기가스 유독성분인 탄화수소(hydrocarbons, 이하 'HC'라 함), 일산화탄소(CO) 및 질소산화물(nitrogen oxide, 이하 'NOx'라 함)을 각각 무해성분, 물, 이산화탄소 및 질소로 산화 및 환원시키기 위한 배기가스 후처리방법은 공지된 기술이다. 상기 무해성분으로의 전환(conversion)은 배기가스를 하나 또는 그 이상의 촉매, 통상 산화촉매 및 환원촉매, 또는 실질적으로 동시적으로 HC 및 CO를 물과 이산화탄소로 산화시키고, NOx를 질소로 환원시킬 수 있는, 소위 삼원 전환촉매(three-way conversion catalyst)와 접촉하여 달성된다. 상기 촉매들은 종종 Pt 계열 금속들, 예를들면 Pt, Pt+Rh 또는 Pd 금속들,이 감마 알루미나와 같은 내화성 무기산화 지지체에 분산된 상태이다. 한편, 상온 콜로이드에서의 Zeolite-A 나노 결정체 성장 메카니즘에 관한 연구는 공지된 것이다(Science, Vol 283, issue 5404, 958-960). 상기 논문에 의하면, 상온 맑은 용액(clear solution)에서의 Zeolite-A 결정핵 형성 및 성장에 관하여 언급되어 있다. 싱글 Zeolite-A 결정체는 상온에서 3일내에 무결정 겔 입자들에서 핵화되며, 생성된 나노스케일(nanoscale) 싱글 결정체(single crystals, 10-30 nanometer)는 상기 무결정 겔 입자들(amorphous gel particles)간에 임베드(embedded)된다. 겔 입자들은 상온에서 결정성장에 따라 소모되며, Zeolite-A 나노 결정체의 콜로이드 서스펜션(colloidal suspension)을 형성한다. 상기 서스펜션을 80℃에서 가열하면, 추가적이고도 실질 적인 결정체 성장이 진행된다. 상기 논문은 본 발명에 연관된다.Toxic hydrocarbons (hereinafter referred to as "HC"), carbon monoxide (CO) and nitrogen oxides (NOx), which are toxic to internal combustion engine exhaust gases, are oxidized to harmless components, water, carbon dioxide and nitrogen, respectively. Exhaust gas aftertreatment methods for reducing are well known techniques. The conversion to harmless components can oxidize the exhaust gases to one or more catalysts, usually oxidation and reduction catalysts, or substantially simultaneously, to oxidize HC and CO to water and carbon dioxide, and to reduce NOx to nitrogen. Is achieved in contact with a so-called three-way conversion catalyst. The catalysts are often dispersed in Pt based metals, such as Pt, Pt + Rh or Pd metals, refractory inorganic oxide supports such as gamma alumina. On the other hand, studies on the growth mechanism of Zeolite-A nanocrystals at room temperature colloids are known (Science, Vol 283, issue 5404, 958-960). In this paper, mention is made of Zeolite-A nucleation and growth in a clear solution at room temperature. Single Zeolite-A crystals are nucleated in amorphous gel particles within 3 days at room temperature, and the resulting nanoscale single crystals (10-30 nanometers) are the amorphous gel particles. It is embedded in the liver. Gel particles are consumed as the crystal grows at room temperature, forming a colloidal suspension of Zeolite-A nanocrystals. When the suspension is heated at 80 ° C., further and substantial crystal growth proceeds. The article relates to the present invention.

엔진 배기가스 배출 비중은 HC 비율이 총 배출가스 중 약 70%에 달하며, 특히 저온시동(cold start) 구간, 즉 시동을 건 후 최초 505초 이내인 촉매 활성에 요구되는 온도에 도달하기 전에서의 배출 비중이 대부분을 차지하고 있다. 따라서, HC 흡착용 촉매조성물에 대한 연구가 지속적으로 이루어지고 있으며, 특히 세라믹 기질 상부에 HC 흡착층 및 촉매층을 연속적으로 코팅한 다층 흡착시스템이 주목되고 있다. 상기 시스템에 의하면, HC 흡착층이 저온시동 구간에서 과량으로 방출되는 HC를 먼저 흡착(또는 트랩, trap)하고, 촉매 활성 온도에 도달되면, 상기 흡착 HC는 탈착되어 산화 촉매에 의하여 HC는 무해성분으로 전환되는 것이다. 상기 조건에 적합한 촉매를 설계하기 위하여 저온 HC 흡착율이 높고, 탈착 온도가 높을 것 등의 조건 등을 고려할 수 있다.Engine exhaust emissions account for about 70% of the total emissions, especially in the cold start section, i.e. before reaching the temperature required for catalytic activity within the first 505 seconds after starting. Emissions account for the majority. Therefore, research on the catalyst composition for HC adsorption is continuously made, and in particular, a multi-layer adsorption system in which the HC adsorption layer and the catalyst layer are continuously coated on the ceramic substrate is attracting attention. According to the system, the HC adsorption layer first adsorbs (or traps) HC released in excess in the low temperature start-up section, and when the catalyst activation temperature is reached, the adsorption HC is desorbed and HC is harmless by the oxidation catalyst. Will be converted to. In order to design a catalyst suitable for the above conditions, conditions such as high low-temperature HC adsorption rate and high desorption temperature may be considered.

대한민국 공개특허 제2004-42234호를 통하여, HC 흡착용 촉매조성물을 개시된 바 있으며, 이에 의하면 HC 흡착용 촉매조성물은 1) 기질 하부에 제오라이트로 구성된 탄화수소 흡착층 ; 및 2) 상기 기질 상부에 2-촉매시스템으로 코팅된 탄화수소 흡착용 촉매 조성물에 있어서, 상기 탄화수소 흡착층에 물 흡수층을 포함하여, 상기 물 흡수층은 주입되는 배기가스로부터 물을 초기에 제거하여, 저온시동 구간에서 과량 방출되는 HC를 의도된 HC 흡착층이 효율적으로 흡착하도록 하고, 물 자체의 고증발열로 인하여, 높은 탈착온도를 제공하여, 촉매가 작동하는 온도에 도 달되기까지 흡착된 HC를 유지하여 HC 흡착용도에 적합한 촉매조성물을 제공하고 있다. 그러나, 상기 촉매조성물은 소분자(small molecules) 탄화수소, 예를들면 C3 이하의 HC에 대하여는 효율을 낮다는 단점을 가지고 있었으므로, 본 출원인들은 상기 문제점에 대한 개선을 위하여 노력한 결과, 세공 조절된 나노사이즈 제오라이트를 적용하여 소분자 HC 흡착 및 탈착율이 개선된 촉매시스템을 설계할 수 있었다.Through the Republic of Korea Patent Publication No. 2004-42234, the catalyst composition for HC adsorption has been disclosed, according to this, the catalyst composition for HC adsorption comprises: 1) a hydrocarbon adsorption layer composed of zeolite under the substrate; And 2) a catalyst composition for hydrocarbon adsorption coated on the substrate with a two-catalyst system, wherein the hydrocarbon adsorption layer comprises a water absorption layer, wherein the water absorption layer initially removes water from the injected exhaust gas, Allow the HC adsorbed layer to be adsorbed efficiently by the intended HC adsorption layer and provide high desorption temperature due to the high evaporation of water itself, so that the adsorbed HC is maintained until it reaches the operating temperature of the catalyst. Thus, a catalyst composition suitable for HC adsorption is provided. However, since the catalyst composition has a disadvantage of low efficiency for small molecule hydrocarbons, for example, HC of C3 or less, the present inventors have tried to improve the problem, and as a result, pore controlled nanosize Zeolite was applied to design a catalyst system with improved small molecule HC adsorption and desorption rates.

본 발명의 목적은, 내연기관 배기가스 HC의 효율적인 촉매산화반응을 촉진하기 위한 트랩을 가진 다층 촉매시스템을 제공하는 것이다. 본 발명의 다른 목적은, 트랩된 HC 탈착을 지연함으로써 내연기관 배기가스 HC의 촉매산화반응을 개선하기 위한 다층 촉매시스템을 제공하는 것이다. 간단하게 기술하면, 본 발명은 저온시동 구간에서 과량 방출되는 탄화수소를 효과적으로 트랩하고, 높은 탈착온도를 제공함으로써, 촉매 활성 온도에 도달되기까지 흡착된 HC를 유지하는 HC 흡착이 개선된 다층 촉매시스템을 개시하는 것이다.
It is an object of the present invention to provide a multilayer catalyst system having a trap for promoting efficient catalytic oxidation of internal combustion engine exhaust gas HC. Another object of the present invention is to provide a multilayer catalyst system for improving the catalytic oxidation of internal combustion engine exhaust gas HC by delaying trapped HC desorption. In brief, the present invention provides a multi-layered catalyst system with improved HC adsorption that effectively traps excess hydrocarbons in cold start zones and provides high desorption temperatures, thereby maintaining the adsorbed HC until the catalyst active temperature is reached. It is to start.

상기 목적을 달성하기 위하여, 본 발명은 기질 ; 상기 기질 상부에 형성된 탄화수소 흡착층 ; 상기 탄화수소 흡착층 상부에 코팅된 배기가스 산화 촉매층을 포함하는 다층 촉매 시스템에 있어서, 상기 탄화수소 흡착층은 나노사이즈(nanometer-sized) Zeolite-A 가 소수성 제올라이트에 코팅된(또는 엥커링된, anchored) 것을 특징으로 하는, 소분자 탄화수소 트랩을 가지는 다층촉매시스템으로 구성되며, 상기 나노사이즈 Zeolite-A를 소수성 제올라이트에 엥커링하는 것은 소수성 제오라이트를 Zeolite-A 용액에 투여한 후, 필터하여 제조될 수 있다.In order to achieve the above object, the present invention is a substrate; A hydrocarbon adsorption layer formed on the substrate; In a multilayer catalyst system comprising an exhaust gas oxidation catalyst layer coated on top of the hydrocarbon adsorption layer, the hydrocarbon adsorption layer is nano-sized Zeolite-A coated (or anchored) onto a hydrophobic zeolite. Characterized in that, consisting of a multi-layered catalyst system having a small molecule hydrocarbon trap, the anchoring of the nano-size Zeolite-A to the hydrophobic zeolite can be prepared by administering a hydrophobic zeolite to the Zeolite-A solution, and then filtering.

내연기관 배기가스 산화 다층촉매시스템에서 적용될 수 있는 기질로는 코디오라이트(cordierite), 알파-알루미나(α-alumina) 및 뮤라이트(mulite)로 구성된 군에서 선택되며, 바람직하기로는 코디오라이트가 선택될 수 있다. 상기 배기가스 산화 촉매층을 구성하는 것은 바람직하기로는 2 촉매시스템(two way catalyst)이며, 세륨/지르코늄 복합산화물에 제1 촉매로 백금이 담지된 활성알루미나 및 2 촉매로 로듐이 담지된 활성 알루미나의 혼합 슬러리로 구성될 수 있다.Substrates that can be applied in the internal combustion engine exhaust gas oxidation multilayer catalyst system are selected from the group consisting of cordierite, alpha-alumina, and mulite. Can be selected. The exhaust gas oxidation catalyst layer is preferably a two-way catalyst, and a mixture of activated alumina in which platinum is supported as a first catalyst on a cerium / zirconium composite oxide and rhodium-supported activated alumina in two catalysts It may consist of a slurry.

본 발명에서의 탄화수소 흡착층은 소수성 제오라이트에 나노사이즈 Zeolite-A가 코팅된(anchored) 상태의 물질이며, 상기 소수성 제오라이트는 베타 제오라이트(β-Zeolite), Y형 제오라이트 또는 ZSM-5 가 적용될 수 있으나, 바람직하게는 ZSM-5 제오라이트가 선택된 것이다. 상기 소수성 제오라이트에 나노사이즈 Zeolite-A를 코팅하기 위한 방법이 개시된다. 상기 엥커링(코팅, anchoring)을 위한 전단계로서 Zeolite-A 용액은 본 발명과 연관된 논문에서 인용된다. Hydrocarbon adsorption layer in the present invention is a material of the nano-size Zeolite-A coated (hydrocholic zeolite) on the hydrophobic zeolite, the hydrophobic zeolite may be beta zeolite (β-Zeolite), Y-type zeolite or ZSM-5 may be applied Preferably, ZSM-5 zeolite is selected. A method for coating nanosize Zeolite-A on the hydrophobic zeolite is disclosed. Zeolite-A solution as a preliminary step for anchoring is cited in the literature associated with the present invention.

이하 본 발명을 실시예를 통하여 상세히 설명하고자 하나, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니며, 당해 분야의 전문가라면, 본 발명의 목적 및 범위를 벗어나지 아니하고도 본 발명을 참조한 변형 및 개선이 가능하다는 것을 이해하여야 한다.Hereinafter, the present invention will be described in detail with reference to examples, but the scope of the present invention is not limited to these examples, and those skilled in the art will appreciate that the present invention may be modified and improved without departing from the object and scope of the present invention. It should be understood that this is possible.

실시예 1. ZSM-5 합성Example 1 ZSM-5 Synthesis

통상의 제오라이트 합성방법으로 진행하였다. 우선 실리콘 졸(Silicon sol, LUDOX- HS-40, Aldrich), 소듐 알루미네이트(Sodium aluminate, NaAlO2), 수산화나트륨(NaOH) 및 증류수로 이루어진 전구체(Precursor)를 충분한 교반 후, Autoclave 에 옮긴 후, 190℃에서 10시간 유지한 후, 여과과정에서 충분한 물로 세척하였다. 여과물을 120℃에서 24시간 건조 후, 550℃, 4시간 소성하여 ZSM-5를 합성하였다.It proceeded with the conventional zeolite synthesis method. First, a precursor consisting of silicon sol (LUDOX- HS-40, Aldrich), sodium aluminate (NaAlO2), sodium hydroxide (NaOH) and distilled water (precursor) is sufficiently stirred, then transferred to an autoclave, and then 190 After keeping at 10 ° C. for 10 hours, the mixture was washed with sufficient water. The filtrate was dried at 120 ° C. for 24 hours, and then calcined at 550 ° C. for 4 hours to synthesize ZSM-5.

실시예 2. Zeolite-A의 ZSM-5 표면으로의 엥커링(anchoring)Example 2 Anchoring of Zeolite-A to the ZSM-5 Surface

1) 나노크기(nanometer) Zeolite-A 합성은 문헌에서 보고된 방법을 따랐다. (12 Feb. 1999 vol 283 Science). 즉, 30% Silicon Sol (Adrich), Aluminium Isopropoxide (Aldrich), TMA 하이드록사이드(TMAOH·5H2O, Adrich), NaOH (Adrich), H2O를 도 1에 기재된 몰비의 조성을 가지도록 잘 섞어준 후, 상온에서 3일간 교반하여 Zeolite-A 용액을 제조하였다.1) Nanoscale Zeolite-A synthesis followed the method reported in the literature. (12 Feb. 1999 vol 283 Science). That is, after mixing 30% Silicon Sol (Adrich), Aluminum Isopropoxide (Aldrich), TMA hydroxide (TMAOH 5H 2 O, Adrich), NaOH (Adrich), H 2 O to have a molar ratio composition as shown in FIG. Zeolite-A solution was prepared by stirring for 3 days.

2) 실시예 1에서 합성된 ZSM-5를 Zeolite-A 용액에 넣은 후(슬러리 상태), 3일간 상온에서 교반 후, 여과과정에서는 충분한 물로 세척하였다. 여과지를 통과하지 못한 침전물을 120℃에서 24시간 건조한 후, 550℃, 4시간 소성하여, Zeolite-A가 ZSM-5 표면에 엥커링(anchoring)된 제오라이트를 완성하였다. 상기 2)에서 ZSM-5는 다양한 중량%로 Zeolite-A 용액에 투입될 수 있으며, 상기 슬러리 상태에서 존재하는 Zeolite-A 및 ZSM-5의 중량비, 즉 Zeolite-A : ZSM-5 = 2 : 1 (이하 'S1' 시료라 칭함), 2 : 1.5 (이하 'S2'라 칭함), 2 : 2 (이하 'S3'이라 칭함)의 시료을 제조하였다.2) ZSM-5 synthesized in Example 1 was added to Zeolite-A solution (slurry state), and then stirred at room temperature for 3 days, and then washed with sufficient water in the filtration process. The precipitate that did not pass through the filter paper was dried at 120 ° C. for 24 hours, and then calcined at 550 ° C. for 4 hours to complete zeolite in which Zeolite-A was anchored on the surface of ZSM-5. In the above 2) ZSM-5 can be added to the Zeolite-A solution in various weight percent, the weight ratio of Zeolite-A and ZSM-5 present in the slurry state, that is, Zeolite-A: ZSM-5 = 2: 1 (Hereinafter referred to as 'S1' sample), 2: 1.5 (hereinafter referred to as 'S2'), and 2: 2 (hereinafter referred to as 'S3') were prepared.

상기 완성된 제오라이트를 알루미나 결합체(binder)와 혼합한 후, 밀링하여 코디어라이트 하니컴(cordierite honeycomb)에 코팅·소성하여, HC 흡착층을 제조할 수 있으며, 상기 HC 흡착층에 코팅될 산화촉매층은 공지 기술로서 이를 적용하여 다층촉매시스템을 완성할 수 있었다. After mixing the finished zeolite with an alumina binder (binder), milling and coating and firing the cordierite honeycomb (cordierite honeycomb), can be prepared for the HC adsorption layer, the oxidation catalyst layer to be coated on the HC adsorption layer By applying this as a known technique, it was possible to complete a multilayer catalyst system.

표 1은 실시예 2에서 제조된 다양한 제오라이트의 표면적 및 다공 부피를 표면분석기를 이용하여 측정한 것이다.Table 1 shows the surface area and pore volume of the various zeolites prepared in Example 2 using a surface analyzer.

표면적 및 다공부피 요약Surface area and pore volume summary 시료명Sample Name 표면적(m2/g)Surface area (m2 / g) 다공부피(pore vol. cm3/g)Porous volume (pore vol.cm3 / g) S1S1 258258 0.1240.124 s2s2 237237 0.1320.132 s3s3 274274 0.1490.149 ZSM-5ZSM-5 280280 0.1510.151

상기 실시예에 의한 Zeolite-A가 엥커링된 ZSM-5 는 순수한 ZSM-5와 대비하여 표면적 및 다공부피가 좁으며, 엥커링 정도는 표면적 및 다공부피와 반비례 관 계에 있음을 알 수 있다.Zeolite-A-encapsulated ZSM-5 according to the above embodiment has a narrower surface area and pore volume than pure ZSM-5, and the degree of anchoring is inversely related to the surface area and pore volume.

상기 실시예 2에서 제조된 Zeolite-A가 엥커링된 ZSM-5 (S1, S2, S3 시료)를 대상으로 C3 이하의 소분자 탄화수소 흡착 및 탈착실험을 수행하였다. 즉, S1, S2 및 S3 0.1g를 취하여, 마이크로 반응기에 옮긴 후, 질소분위기에서 520℃ 까지 분당 10℃ 속도로 승온 시키면서 전처리한 후, 1) 흡착시험 : 2.4% C3H6 / 0.6% C3H8 2 가지 로 혼합된 반응가스를 이용하였으며,100℃에서 유량을 300CC/min 10분간 흘려주었다. 한편, 2) 탈착시험 : 분당 10℃ 승온속도로 500℃까지 승온시키면서 질소유량 ( 1L/min ) 조건에서 탈착시험을 수행하였으며, 질량분석기로 분석되었다.  Zeolite-A prepared in Example 2 was subjected to the adsorption and desorption experiments of small molecule hydrocarbons of C3 or less on the ZSM-5 (S1, S2, S3 samples) anchored. That is, 0.1 g of S1, S2, and S3 were taken, transferred to a micro reactor, and pretreated with nitrogen at 520 ° C. at a rate of 10 ° C. per minute. 1) Adsorption test: 2.4% C3H6 / 0.6% C3H8 The mixed reaction gas was used, and a flow rate was flowed at 100 ° C. for 10 minutes at 300 CC / min. On the other hand, 2) Desorption test: The desorption test was performed under nitrogen flow rate (1 L / min) while heating up to 500 ° C. at a rate of 10 ° C. per minute, and analyzed by mass spectrometry.

도 2는 물이 존재하지 않은 조건에서 탄화수소 탈착 특성을 도시한 것으로서, 측정에 의하면, 소분자 탄화수소 C3H6, C3H8 흡착량이 종래 순수하게 적용된 ZSM-5에 비해 크게 향상됨을 확인할 수 있었다.Figure 2 shows the hydrocarbon desorption characteristics in the absence of water, the measurement showed that the small molecule hydrocarbon C3H6, C3H8 adsorption amount is significantly improved compared to the conventionally applied pure ZSM-5.

도 3은 물이 존재하는 탄화수소 탈착 특성을 나타낸 것으로서, 10% 물이 존재하는 조건에서 종래 ZSM-5로만 제조된 흡착층과 대비할 때, 소분자 탄화수소 C3H6, C3H8 흡착량이 ZSM-5에 비해 개선되었음을 확인할 수 있었다.Figure 3 shows the desorption characteristics of hydrocarbons in the presence of water, compared to the adsorption layer prepared only with conventional ZSM-5 in the presence of 10% water, confirms that the small-molecule hydrocarbons C3H6, C3H8 adsorption is improved compared to ZSM-5. Could.

상기 양호한 실시예에 근거하여 본 발명을 설명하였지만, 이러한 실시예는 본 발명을 제한하려는 것이 아니라 예시하려는 것이다. 본 발명이 속하는 분야의 숙련자에게는 본 발명의 기술사상을 벗어남이 없이 위 실시예에 대한 다양한 변화나 변경 또는 조절이 가능함이 자명할 것이다. 그러므로, 이 발명의 보호범위는 첨부된 청구범위는 상기 실시예의 변화, 변경 또는 다양한 조절 모두 포함하는 것으로 해석되어야 할 것이다.Although the present invention has been described based on the above preferred embodiments, these examples are intended to illustrate, not limit, the invention. It will be apparent to those skilled in the art that various changes, modifications, or adjustments to the above embodiments can be made without departing from the spirit of the invention. Therefore, the protection scope of this invention should be construed that the appended claims include all changes, modifications or various adjustments of the above embodiments.

상술한 바와 같이, 본 발명은 기질상부에 나노사이즈 제오라이트-A가 엥커링된 소수성 제올라이트로 구성된 탄화수소 흡착층; 및 2) 상기 탄화수소 흡착층 상부에 산화촉매층이 코팅된 탄화수소 흡착용 다층촉매시스템에 관한 것이며, 내연기관 배기가스 성분 중 소분자 HC 흡착 및 탈착에 현저한 개선효과를 보이므로, 날로 엄격하게 적용되는 배기가스 규제에 효율적으로 대처할 수 있는 유용한 산화촉매 다층시스템을 설계할 수 있는 기술적 배경을 제공하는 발명이다.As described above, the present invention provides a hydrocarbon adsorption layer composed of a hydrophobic zeolite in which nanosize zeolite-A is anchored on a substrate; And 2) a multilayer catalyst system for hydrocarbon adsorption, in which an oxidation catalyst layer is coated on the hydrocarbon adsorption layer, and shows a significant improvement in small molecule HC adsorption and desorption among exhaust gas components of an internal combustion engine. The present invention provides a technical background for designing a useful oxidation catalyst multilayer system that can efficiently cope with regulations.

Claims (3)

기질 ; 상기 기질 상부에 형성된 탄화수소 흡착층 ; 상기 탄화수소 흡착층 상부에 코팅된 배기가스 산화 촉매층을 포함하는 다층 촉매 시스템에 있어서, 상기 탄화수소 흡착층은 10-30nm의 나노사이즈(nano-sized) Zeolite-A 가 소수성 제올라이트에 엥커링된 것을 특징으로 하는, 소분자 탄화수소 트랩을 가지는 다층촉매시스템.Temperament; A hydrocarbon adsorption layer formed on the substrate; In the multilayer catalyst system comprising an exhaust gas oxidation catalyst layer coated on the hydrocarbon adsorption layer, the hydrocarbon adsorption layer is characterized in that the nano-sized Zeolite-A of 10-30nm is anchored to the hydrophobic zeolite A multilayer catalyst system having a small molecule hydrocarbon trap. 제1항에 있어서, 상기 나노사이즈 Zeolite-A가 소수성 제올라이트에 엥커링된 것은, 소수성 제오라이트를 0.3 Na2O: 11.25 SiO2: 1.8 Al2O3: 13.4 (TMA)2O: 700 H2O (몰비) 조성의 Zeolite-A 용액에 투여한 후 3일간 상온에서 교반하고, 세척하면서 여과하고, 여과되지 않은 침전물을 건조한 후 소성하여 제조된 것을 특징으로 하는, 소분자 탄화수소 트랩을 가지는 다층촉매시스템.The method of claim 1, wherein the nano-size Zeolite-A is anchored to a hydrophobic zeolite, the hydrophobic zeolite 0.3 Na 2 O: 11.25 SiO 2 : 1.8 Al 2 O 3 : 13.4 (TMA) 2 O: 700 H 2 O A multi-molecular catalyst system having a small molecular hydrocarbon trap, characterized in that it is prepared by stirring at room temperature for 3 days after administration to a (molar ratio) composition, filtering while washing, drying the unfiltered precipitate, and baking. 제 1항에 있어서, 상기 소수성 제오라이트는 ZSM-5, 베타 제오라이트, Y형 제오라이트 인 것을 특징으로 하는, 소분자 탄화수소 트랩을 가지는 다층촉매시스템.The multilayer catalyst system according to claim 1, wherein the hydrophobic zeolite is ZSM-5, beta zeolite, Y-type zeolite.
KR1020040112731A 2004-12-27 2004-12-27 Multilayers catalyst system for trapping small hydrocarbons KR100629447B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040112731A KR100629447B1 (en) 2004-12-27 2004-12-27 Multilayers catalyst system for trapping small hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040112731A KR100629447B1 (en) 2004-12-27 2004-12-27 Multilayers catalyst system for trapping small hydrocarbons

Publications (2)

Publication Number Publication Date
KR20060074102A KR20060074102A (en) 2006-07-03
KR100629447B1 true KR100629447B1 (en) 2006-09-27

Family

ID=37166892

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040112731A KR100629447B1 (en) 2004-12-27 2004-12-27 Multilayers catalyst system for trapping small hydrocarbons

Country Status (1)

Country Link
KR (1) KR100629447B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11261098B2 (en) 2019-11-06 2022-03-01 Saudi Arabian Oil Company Systems and methods for preparing nano-sized crystals of BEA zeolite with metal oxide for hydrocarbon conversions

Also Published As

Publication number Publication date
KR20060074102A (en) 2006-07-03

Similar Documents

Publication Publication Date Title
RU2689059C2 (en) Emission control system with twc catalysts and scr-hct catalysts
US6093378A (en) Four-way diesel exhaust catalyst and method of use
CA2629129C (en) Diesel particulate filters having ultra-thin catalyzed oxidation coatings
USRE39553E1 (en) SOx tolerant NOx trap catalysts and methods of making and using the same
EP2802408B1 (en) Improved nox trap
EP3261746B1 (en) Passive nox adsorber
RU2692809C1 (en) Catalyst for cold start-up and its use in exhaust systems
KR102010602B1 (en) Catalyzed substrate and exhaust system for internal combustion engines
RU2744310C2 (en) Improved noх trap
US7419647B2 (en) Hydrothermally stable Ag-zeolite traps for small olefin hydrocarbon molecules
EP0831961B1 (en) Diesel engine exhaust gas purification catalyst
DK2414079T3 (en) Stable aging the catalyst for the oxidation of NO to NO2 in the exhaust gas streams
US20020182134A1 (en) SOX tolerant NOX trap catalysts and methods of making and using the same
KR20180078350A (en) Emissions treatment system with ammonia-generating and scr catalysts
JPH04231616A (en) Double converter engine exhaust mechanism to reduce emission of hydrocarbon
RU2754996C2 (en) CATALYST-ADSORBER OF NOx
RU2747358C2 (en) NOx ADSORBING CATALYST
KR20160048134A (en) Co slip catalyst and method of using
KR20150015465A (en) NOx TRAP COMPOSITION
JP2023539494A (en) particulate filter
JP3918305B2 (en) Hydrocarbon adsorbent and exhaust gas purification catalyst
KR100629447B1 (en) Multilayers catalyst system for trapping small hydrocarbons
JP2005500152A (en) Substance for removing nitrogen oxides using lamellar structure
CN117320809A (en) Synthesis of palladium-containing AFX zeolite catalyst for adsorbing NOX
KR100610424B1 (en) Multi function and multi layer catalyst for purifying automotive exhaust gas and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120710

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130917

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140918

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee