KR100622747B1 - Method for suppressing brittle fracture along the friction stir welded zone for automotive body application - Google Patents

Method for suppressing brittle fracture along the friction stir welded zone for automotive body application Download PDF

Info

Publication number
KR100622747B1
KR100622747B1 KR1020050066076A KR20050066076A KR100622747B1 KR 100622747 B1 KR100622747 B1 KR 100622747B1 KR 1020050066076 A KR1020050066076 A KR 1020050066076A KR 20050066076 A KR20050066076 A KR 20050066076A KR 100622747 B1 KR100622747 B1 KR 100622747B1
Authority
KR
South Korea
Prior art keywords
friction stir
magnesium
welding
stir welding
aluminum
Prior art date
Application number
KR1020050066076A
Other languages
Korean (ko)
Inventor
홍승현
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020050066076A priority Critical patent/KR100622747B1/en
Application granted granted Critical
Publication of KR100622747B1 publication Critical patent/KR100622747B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • B23K20/1255Tools therefor, e.g. characterised by the shape of the probe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/233Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/24Preliminary treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof

Abstract

본 발명은 자동차용 차체의 마찰교반용접시 용접부의 취성 방지방법에 관한 것으로서, 주로 공구강으로 이루어진 용접장치 회전체의 숄더부 및 핀부의 표면에 물리적 증기증착법(PVD)을 통해 마그네슘을 코팅하여 마찰교반용접(FSW)시에 상기 코팅된 마그네슘이 모재와 함께 변형되어 금속간 화합물의 형성이 되는 조성적 과냉(Constitutional Liquation)을 억제시킴으로써, 알루미늄-마그네슘 합금인 이종금속 판재의 용접부에 대한 연신률, 내피로성 등을 향상시켜 품질 안정을 도모할 수 있는 자동차용 차체의 마찰교반용접시 용접부의 취성 방지방법에 관한 것이다. The present invention relates to a method for preventing brittleness of a welded portion during friction stir welding of a vehicle body, and by applying magnesium to the surface of the shoulder part and the fin part of a welding device rotating body mainly made of tool steel by physical vapor deposition (PVD) Elongation and fatigue resistance of the welded portion of the dissimilar metal sheet, which is an aluminum-magnesium alloy, by suppressing the constitutional Liquation in which the coated magnesium is deformed together with the base metal to form an intermetallic compound during welding (FSW). The present invention relates to a method for preventing brittleness of a welded portion during friction stir welding of an automobile body capable of improving quality by improving the back and the like.

자동차, 알루미늄 합금, 마그네슘 합금, 마찰교반용접, 취성 Automobile, aluminum alloy, magnesium alloy, friction stir welding, brittle

Description

자동차용 차체의 마찰교반용접시 용접부의 취성 방지방법{Method for suppressing brittle fracture along the friction stir welded zone for automotive body application}Method for suppressing brittle fracture along the friction stir welded zone for automotive body application}

도 1은 본 발명에 따른 용접장치의 회전체에 코팅된 마그네슘층을 나타내는 도면,1 is a view showing a magnesium layer coated on the rotating body of the welding apparatus according to the present invention,

도 2는 본 발명에 따른 모재인 알루미늄-마그네슘의 상태도이다. Figure 2 is a state diagram of the aluminum-magnesium base material according to the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

10 : 숄더부 11 : 핀부10: shoulder portion 11: pin portion

본 발명은 자동차용 차체의 마찰교반용접시 용접부의 취성 방지방법에 관한 것으로서, 주로 공구강으로 이루어진 용접장치 회전체의 숄더부 및 핀부의 표면에 물리적 증기증착법(PVD)을 통해 마그네슘을 코팅하여 마찰교반용접시 코팅된 마그네슘이 모재와 함께 변형되어 금속간 화합물의 형성이 되는 조성적 과냉을 억제할 수 있는 자동차용 차체의 마찰교반용접시 용접부의 취성 방지방법에 관한 것이다. The present invention relates to a method for preventing brittleness of a welded portion during friction stir welding of a vehicle body, and by applying magnesium to the surface of the shoulder part and the fin part of a welding device rotating body mainly made of tool steel by physical vapor deposition (PVD) The present invention relates to a method of preventing brittleness of a welded portion during friction stir welding of a vehicle body that can suppress compositional supercooling in which a coated magnesium is deformed together with a base material to form an intermetallic compound during welding.

일반적으로, 자동차 산업은 철계합금 및 비철계합금 등 여러 종류의 재료를 써서 다른 생산 공정을 거치는 2만여 개의 부품을 조립하여 자동차로 완성하는 복합적 성격의 대표적인 조립 제조업이다. In general, the automobile industry is a typical assembly manufacturing industry of a complex nature of assembling about 20,000 parts that go through different production processes using various types of materials, such as iron-based alloys and non-ferrous alloys to complete the automobile.

이러한 자동차 산업에 있어서, 안전 및 환경에 대한 법규를 만족시키기 위해, 자동차 제조사들은 차체 강성을 증대시키고, 연비 효율을 향상시키기 위하여 다양한 생산기술을 개발, 적용하고 있는 바, 차체의 강도 및 내피로성, 그리고 충격 등에 강한 전방위적인 특성이 요구되는 일반강, 고장력강, 철강 및 비철 등의 다양한 소재가 자동차 산업에 적용되고 있다. In the automotive industry, in order to satisfy safety and environmental legislation, automakers have developed and applied various production technologies to increase body rigidity and improve fuel efficiency. In addition, various materials such as general steel, high tensile strength steel, steel, and non-ferrous steel, which require omnidirectional characteristics resistant to impact, have been applied to the automotive industry.

또한, 연료 효율과 관련하여 1927년에 이미 100Kg의 경량화를 통해 1ℓ/100Km의 가솔린 연비 향상을 이루었는 바, 자동차 경량화를 위해 가장 손쉬운 방법 중의 하나가 차체 부품을 경량화 하는 것이다.In addition, in 1927, the fuel efficiency of 1 liter / 100 km has been improved by reducing the weight of 100 Kg in 1927. One of the easiest ways to reduce the weight of automobiles is to reduce the weight of the body parts.

이와 같이, 운전자의 안전에 큰 영향을 주지 않는 부분부터 경량화를 해 나가는 것이 설계자나 생산자의 입장에서 부담이 적으며 효과적이기 때문이다.In this way, it is because the burden from the part that does not greatly affect the driver's safety is light and effective for the designer or the producer.

차체 외판의 경량화를 위해 각광을 받는 소재가 AA6XXX 알루미늄-마그네슘-실리콘 합금 판재이다. In order to reduce the weight of the outer shell of the body, the most popular material is AA6XXX aluminum-magnesium-silicon alloy sheet.

상기 합금 판재는 소부 경화능(bake Hardening)이 있어 도장 공정 후 강도가 20%이상 향상되므로 내덴트성 확보 및 외판 강성 확보에 유리한 장점이 있어 적용량이 점차 증가하고 있다. Since the alloy plate has bake hardening, the strength is improved by 20% or more after the coating process, and thus the application amount is gradually increased because it has an advantage in securing dent resistance and outer plate rigidity.

그런데, 이러한 알루미늄 합금 판재의 외판 적용 시, 판재간의 접합 불량이 많이 발생하고 있는 바, 기존의 스틸-알루미늄 판재간의 접합에는 접합 강도 및 내피로 특성이 우수한 셀프피어싱 리벳(self piercing rivet) 접합법을 사용하였으나, 접합 비용 및 유지 관리 면에서 불리한 점이 있었다. However, when the outer plate of the aluminum alloy plate is applied, a lot of bonding failure occurs between the plate, the conventional steel-aluminum plate is used for the self-piercing rivet joining method (excellent bonding strength and fatigue resistance) is used. However, there were disadvantages in terms of bonding cost and maintenance.

최근 들어, 이종금속간의 접합법으로 마찰교반용접(Friction Stir Welding ; FSW)이 각광을 받고 있다. Recently, friction stir welding (FSW) has been in the spotlight as a method of joining dissimilar metals.

이 방법은 1991년에 영국의 TWI(The Welding Institute)에서 개발된 것으로 회전체와 시편의 마찰열원을 이용하여 기존의 용융접합에 비해 낮은 압입열로 접합을 시행하는 것으로, 낮은 잔류응력 및 변형 등과 같은 장점을 부각시키는 접합법이다. This method was developed in 1991 by the Welding Institute (TWI) in the United Kingdom, and uses the friction heat source of the rotating body and the specimen to perform the joining with lower indentation heat than the conventional melt joint. It is a bonding method that emphasizes the same advantages.

상기 마찰교반용접은 고상상태의 접합공정으로서, 접합 모재를 고정한 후 경한 재질을 갖는 비소모성 회전체와 접합 모재의 상대적 운동에 의해 마찰열을 발생시켜 상기 회전체에 삽입된 핀부 주위로 기계적 열영향부가 생기게 된다. The friction stir welding is a solid state bonding process. After fixing the bonding base material, the mechanical heat-affecting portion is generated around the fin part inserted into the rotating body by generating frictional heat by the relative motion of the non-consumable rotating body having a hard material and the bonding base material. Will be created.

또한, 상기 핀부가 접합 선을 따라 가열된 부위가 이 핀부의 전방에서 후방으로 압출되고 마찰열과 기계적 조합에 의해 고상 접합부가 생기게 된다. In addition, a portion where the fin portion is heated along the joining line is extruded from the front of the fin portion to the rear and a solid state joint is formed by frictional heat and mechanical combination.

이러한 마찰교반용접은 높은 품질 및 경제성을 가진 접합으로서 주요 특징을 요약하면 다음과 같다.Such friction stir welding is a joining with high quality and economical efficiency.

첫째, 용융접합에서 생길 수 있는 균열(응고 균열)을 방지 할 수 있고, 변형이 거의 없어 기계적 성질이 우수하다. First, it is possible to prevent cracks (solidification cracks) that may occur in the melt joint, and there is almost no deformation, so the mechanical properties are excellent.

둘째, 용가재가 필요 없는 접합법으로서, 시편과의 마찰에 의해서 접합이 이루어진다. Second, as a joining method that does not require filler metal, bonding is performed by friction with the specimen.

셋째, 환경 친화적 공법으로서, 접합 중, 연기의 발생이 없고, 적외선 및 자외선들의 유해광선이 발생하지 않는다. Third, as an environmentally friendly method, no smoke is generated during bonding, and no harmful rays of infrared rays and ultraviolet rays are generated.

상기와 같은 주요 특징에 따라 알루미늄 합금과 같이 용융용접이 어려운 재료에의 적용이 용이하고, 향후 이들 재료를 접합할 수 있는 효과적인 방법으로 기대된다. According to the above main features, it is easy to apply to materials that are difficult to melt welding, such as aluminum alloy, and is expected to be an effective method for joining these materials in the future.

상기 마찰교반용접의 경우, 기존의 용융 용접에서 문제시되는 응고 균열, 기공, 산화 등의 결함을 최소화 할 수 있으며, 기존의 마찰용접법과 상이한 메커니즘으로 인해 용접체 설계의 다양성을 확보할 수 있으며, 기존의 용접법보다 우수한 품질과 경제성을 확보 할 수 있는 장점을 가지고 있다. In the case of the friction stir welding, defects such as solidification cracks, pores, and oxidation, which are problematic in conventional melt welding, can be minimized, and a variety of welded designs can be secured due to a mechanism different from the conventional friction welding method. It has the advantage of ensuring superior quality and economic efficiency than welding method.

그런데, 상기 마찰교반용접은 낮은 압입열로 인해 모재의 용융이 일어나지 않은 상태에서 소성변형에 의한 접합이 발생해야 하나, 이종금속의 경우, 금속간의 조성적 과냉(Constitutional Liquation)에 의해 용융이 일어나 금속간 화합물 형성, 공정 조직 형성 등을 통해 기계적 성질을 저하시키는 문제점이 있다. By the way, the friction stir welding should be caused by plastic deformation in a state in which the base metal is not melted due to low indentation heat. There is a problem of lowering mechanical properties through liver compound formation, process tissue formation, and the like.

따라서, 본 발명은 상기와 같은 문제점을 해결하기 위해 발명한 것으로서, 알루미늄-마그네슘 합금 판재를 마찰교반용접 시, 주로 공구강으로 제조되는 용접장치 회전체의 숄더부 및 핀부를 물리적 증기증착법을 이용하여 마그네슘을 코팅한 후 용접을 실시하게 되는 바, 용접시 코팅된 마그네슘이 회전체의 회전을 통해 용접부에 고상형태로 유입되어 조성적 과냉을 억제함으로써, 궁극적으로 상기 용접부 의 취성을 일으키는 금속간 화합물의 형성을 방지할 수 있는 자동차용 차체의 마찰교반용접시 용접부의 취성 방지방법을 제공하는데 그 목적이 있다. Accordingly, the present invention has been invented to solve the above problems, when the friction stir welding aluminum-magnesium alloy plate, the shoulder part and the pin part of the rotating body of the welding device mainly made of tool steel by using a physical vapor deposition method After the coating is carried out by welding, the coated magnesium is introduced into the welded portion in the solid state through the rotation of the rotating body to suppress the compositional supercooling, thereby ultimately forming the intermetallic compound causing brittleness of the welded portion. An object of the present invention is to provide a method for preventing brittleness of a welded portion during friction stir welding of a vehicle body that can prevent the occurrence of friction.

이하, 상기와 같은 목적을 달성하기 위한 본 발명의 특징에 대해 설명하면 다음과 같다. Hereinafter, the features of the present invention for achieving the above object are as follows.

본 발명에 따른 자동차용 차체의 마찰교반용접시 용접부의 취성 방지방법은, 알루미늄-마그네슘 합금 판재의 마찰교반용접(FSW)시 숄더부 및 핀부를 포함한 용접장치 회전체의 표면에 마그네슘을 코팅처리하여 용접 공정을 실시하는 공정으로 이루어진 것을 특징으로 한다. The method of preventing brittleness of the welded portion during friction stir welding of a vehicle body according to the present invention comprises: coating magnesium on the surface of a rotating body of a welding device including a shoulder portion and a pin portion during friction stir welding (FSW) of an aluminum-magnesium alloy plate. It is characterized by consisting of a step of performing a welding step.

특히, 상기 코팅 공정은 물리적 증기증착법(PVD)을 통해 이루어진 것을 특징으로 한다.In particular, the coating process is characterized in that it is made through physical vapor deposition (PVD).

또한, 상기 마그네슘은 그 두께가 20㎛ 이상으로 코팅처리된 것을 특징으로 한다. In addition, the magnesium has a thickness of 20㎛ or more characterized in that the coating treatment.

이하, 첨부도면을 참조하여 본 발명에 대해 상세하게 설명하면 다음과 같다. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

첨부한 도 1은 본 발명에 따른 용접장치의 회전체에 코팅된 마그네슘층을 나타내는 도면이며, 도 2는 본 발명에 따른 모재인 알루미늄-마그네슘의 상태도이다. 1 is a view showing a magnesium layer coated on the rotating body of the welding apparatus according to the present invention, Figure 2 is a state diagram of the aluminum-magnesium base material according to the present invention.

본 발명에 따르면, 일반적으로 자동차용으로 사용되는 AA6XXX 계 알루미늄 합금 판재(알루미늄-마그네슘-실리콘 합금)와 AZ31 마그네슘 합금 판재(마그네슘 2 ~ 3중량%, 알루미늄 1중량%, 아연 합금)을 마찰교반용접 시, 용접부의 Al12Mg17 금속간 화합물 형성을 억제하기 위해 용접장치 회전체의 숄더부(10) 및 핀부(11)의 표면에 마그네슘을 물리적 증기증착법(Physical Vapor Deposition)으로 코팅하게 된다. According to the present invention, friction stir welding of AA6XXX-based aluminum alloy sheet (aluminum-magnesium-silicon alloy) and AZ31 magnesium alloy sheet (magnesium 2-3 wt%, aluminum 1 wt%, zinc alloy) generally used for automobile In order to suppress the formation of the Al 12 Mg 17 intermetallic compound of the weld, magnesium is coated on the surface of the shoulder 10 and the fin 11 of the welding apparatus rotating body by physical vapor deposition.

도 1에 도시된 바와 같이, 물리적 증기 증착법을 이용하여 마그네슘을 코팅하여 마찰교반용접을 할 경우, 코팅된 마그네슘이 용접 모재의 소성변형시 유입되어 유동층의 조성을 조절하게 됨으로써, 조성적 과냉(Constitutional Liquation)을 억제하게 된다. As shown in FIG. 1, when friction stir welding by coating magnesium using physical vapor deposition, the coated magnesium is introduced during plastic deformation of the welding base material to adjust the composition of the fluidized bed, thereby forming a constitutional liquation. ) Will be suppressed.

도 2는 본 발명에 따른 모재인 알루미늄-마그네슘의 상태도로서, 도시된 바와 같이, 점선으로 표시한 부분이 AZ31 마그네슘 합금 판재의 조성 구간으로 최적화된 마찰교반용접의 조업 조건인 회전체의 회전속도 2450rpm 및 용접속도 1.5mm/s에서, 상승 가능한 온도인 773K(500℃)에서 용융이 일어나지 않게 된다. Figure 2 is a state diagram of the aluminum-magnesium base material according to the present invention, as shown, the portion shown in dotted line is the rotational speed of the rotor is the operating condition of the friction stir welding optimized to the composition section of the AZ31 magnesium alloy sheet And at a welding speed of 1.5 mm / s, no melting occurs at 773 K (500 ° C.), which is a riseable temperature.

그러나, 상기 회전체에 의해 소성유동이 발생하여 알루미늄 합금 판재와 마그네슘 합금 판재가 회오리 형태의 소성변형을 받아 섞이게 되며, 773K온도에서 알루미늄 원자 및 마그네슘 원자의 고체 확산이 일어나게 된다. However, plastic flow is generated by the rotating body, and the aluminum alloy sheet and the magnesium alloy sheet are subjected to the whirlwind plastic deformation, and the solid diffusion of the aluminum and magnesium atoms occurs at 773 K.

이 경우 확산층의 조성은 도 2의 "용융구간"으로 표시한 알루미늄 60 ~ 70중량%와, 마그네슘이 된다. In this case, the composition of the diffusion layer is 60 to 70% by weight of aluminum, and magnesium, indicated by the "melting section" in FIG.

이 조성 구간에서는 비록 온도가 알루미늄-마그네슘 합금 판재의 모재가 용융될 온도가 아니라 하더라도 이 부분이 용융된다. In this composition section, even if the temperature is not the temperature at which the base metal of the aluminum-magnesium alloy sheet is to be melted, this portion is melted.

이를 조성적 과냉(Constitutional Liquation)이라고 한다. This is called Constitutional Liquation.

이러한 조성적 과냉이 일어나 용접부가 용융되고 난 후 응고되는 과정에서의 미세조직은 마그네슘 고용체와 Al12Mg17 금속간 화합물로 변하게 된다. This compositional supercooling causes the microstructures in the solidification process after melting of the welded part to change into a magnesium solid solution and an Al 12 Mg 17 intermetallic compound.

상기 조성적 과냉이 일어나지 않았을 경우에는 알루미늄 고용체-마그네슘 고용체의 단순한 조직을 보이며 연성이 확보 되나, 조성적 과냉을 거쳐 미세조직이 달라지게 되면 취성이 강한 Al12Mg17 금속간 화합물로 인해 용접부가 충격 및 변형에 대해 취약하게 되므로 본 발명은 이를 억제해야 하는 목적이 있다. When the compositional supercooling does not occur, the aluminum solid solution-magnesium solid solution shows a simple structure and ductility is secured, but when the microstructure is changed through the compositional supercooling, the weld part is impacted by the brittle Al 12 Mg 17 intermetallic compound. And because it becomes vulnerable to deformation, the present invention has an object to suppress it.

이를 실현하여 상기 조성적 과냉을 방지하기 위해서는 용접시 온도를 773K이상이 되지 않도록 하며, 고체 확산이 일어나지 않도록 해야 한다. In order to realize this, in order to prevent the compositional subcooling, the welding temperature should not be higher than 773 K, and solid diffusion should not occur.

이는 현실적으로 용접온도를 제어하기에는 어려움이 있으며, 국부적으로 상승하는 온도는 제어할 수 없을 뿐만 아니라, 소성변형에 의한 고체 확산은 가속되는 것이 일반적인 현상이므로 이 역시 제어하기에는 어려움이 있다.This is difficult to control the welding temperature in reality, not only can not control the locally rising temperature, but also because it is a general phenomenon that the solid diffusion due to plastic deformation is difficult to control this.

이를 해결하여 조성적 과냉시 금속간 화합물 형성을 억제하기 위해서는 마찰교반용접 시, 용접장치 회전체의 표면에 코팅한 마그네슘이 유입되도록 하는 바, 도 2의 상태도에 보이는 바와 같이, L(액상)+마그네슘 또는 마그네슘 구간으로 조성이 변하게 된다. To solve this problem, in order to suppress the formation of intermetallic compounds during compositional supercooling, the coated magnesium is introduced into the surface of the rotating body of the welding apparatus during friction stir welding. As shown in the state diagram of FIG. 2, L (liquid) + The composition is changed to magnesium or magnesium section.

이 경우, 온도가 상승하더라도 조성적 과냉이 일어나지 않게 되며, 모재의 고상을 유지하게 된다.In this case, even if the temperature rises, the compositional subcooling does not occur, and the solid phase of the base material is maintained.

이하, 바람직한 실시예에 의하여 본 발명을 보다 구체적으로 설명하겠는 바, 본 발명이 다음 실시예에 의하여 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to preferred embodiments, but the present invention is not limited by the following examples.

실시예Example

통상의 자동차용 6XXX 알루미늄 합금인 알루미늄 0.45 ~ 0.7중량%와, 마그네슘 0.8 ~ 0.15중량%와, 실리콘 0.01 ~ 0.11중량%와, 구리 및 기타 불순물로 이루어진 AA6022 합금과 AZ31(마그네슘 2 ~ 3중량%, 알루미늄 1중량%, 아연) 합금을 맞대기 용접한 후 용접부를 90도 굽힘 시험을 실시하여 균열 발생 여부를 평가하였다.0.46 to 0.7 weight percent aluminum, 0.8 to 0.15 weight percent magnesium, 0.01 to 0.11 weight percent silicon, copper and other impurities, AA6022 alloy and AZ31 (2 to 3 weight percent magnesium) After butt welding an aluminum 1% by weight, zinc) alloy, the weld was subjected to a 90 degree bending test to evaluate whether a crack occurred.

마찰교반용접은 알루미늄-마그네슘 합금 판재간의 접합시 최적화된 회전체의 회전속도 2450rpm과, 용접속도 1.5mm/s를 시행하였으며, 용접 시편 두께는 마찰교반용접의 한계점이라 알려진 1mm를 사용하였다. Friction stir welding was performed with the rotational speed of 2450rpm and the welding speed of 1.5mm / s optimized for the joining of aluminum-magnesium alloy plate, and the welding specimen thickness was 1mm which is known as the limit of friction stir welding.

상기 회전체는 실시예로 공구강 + 마그네슘 코팅(PVD) 및 비교예로 공구강을 사용하였다.The rotating body used tool steel + magnesium coating (PVD) as an example and tool steel as a comparative example.

다음 표 1은 실시예 및 비교예에 따른 용접장치 회전체의 코팅에 대한 용접부의 취성을 표시하였다. Table 1 shows the brittleness of the weld to the coating of the welding device rotor according to the Examples and Comparative Examples.

Al12Mg17 금속간 화합물의 분률은 용접부의 중심부에서 ±5mm(전체 길이 10mm)에서 광학현미경 및 화상분석기를 통해 측정하였다. The fraction of Al 12 Mg 17 intermetallic compound was measured by an optical microscope and an image analyzer at ± 5 mm (total length 10 mm) at the center of the weld.

상기 실시예를 통해 용접부에서 Al12Mg17 금속간 화합물의 형성을 억제하여 상기 용접부의 취성을 감소시킴에 따라 90도 굽힘시험 시, 크랙 발생을 방지할 수 있게 된다. Through the above embodiment, by suppressing the formation of the Al 12 Mg 17 intermetallic compound in the welded part to reduce the brittleness of the welded part, it is possible to prevent the occurrence of cracks during the 90 degree bending test.

비교예를 통해 용접한 경우, 상기 금속간 화합물의 분률이 52%에 달해 취성이 강함을 알 수 있었다. In the case of welding through a comparative example, it was found that the fraction of the intermetallic compound reached 52% and the brittleness was strong.

마그네슘 코팅층의 두께가 20㎛ 미만인 경우에는 금속간 화합물의 분률(11%)을 낮추는 효과가 있기는 하지만, 유입되는 양의 한계로 인해 목적하는 효과를 얻을 수는 없었다.When the thickness of the magnesium coating layer is less than 20㎛ has the effect of lowering the fraction (11%) of the intermetallic compound, but the desired effect was not obtained due to the limit of the amount introduced.

상술한 바와 같이, 본 발명에 따른 자동차용 차체의 마찰교반용접시 용접부의 취성 방지방법에 의하면, 자동차용 AA6XXX 알루미늄-마그네슘 합금 판재를 접합 시, 용접장치 회전체의 표면에 20㎛ 이상의 마그네슘을 PVD하고 이를 마찰교반용접함으로써, 용접부의 Al12Mg17 금속간 화합물의 분률을 9이하로 낮춰 취성을 저하시키는 효과를 얻을 수 있으며, 이를 통해 알루미늄-마그네슘 합금인 이종금속 판재의 용접부 품질을 향상시켜 용접부의 연신률, 내피로성 등을 향상시킬 수 있는 효과가 있다. As described above, according to the method for preventing brittleness of the welded portion during friction stir welding of the automobile body according to the present invention, when joining the AA6XXX aluminum-magnesium alloy sheet for automobiles, 20 μm or more of magnesium is PVD on the surface of the welding device rotor. By friction stir welding, the fraction of Al 12 Mg 17 intermetallic compound in the weld zone can be lowered to 9 or less, thereby reducing the brittleness, thereby improving the weld quality of the dissimilar metal sheet of aluminum-magnesium alloy. Has an effect of improving the elongation, fatigue resistance and the like.

Claims (3)

알루미늄-마그네슘 합금 판재의 마찰교반용접(FSW)시 숄더부 및 핀부를 포함한 용접장치 회전체의 표면에 마그네슘을 물리적 증기증착법(PVD)을 통해 코팅처리하여 용접 공정을 실시하는 공정으로 이루어진 것을 특징으로 하는 자동차용 차체의 마찰교반용접시 용접부의 취성 방지방법.In the friction stir welding of aluminum-magnesium alloy plate (FSW), magnesium is coated on the surface of the rotating body of the welding apparatus including the shoulder part and the pin part by physical vapor deposition (PVD) to perform a welding process. Method for preventing brittleness of the welded part during friction stir welding of the vehicle body. 삭제delete 청구항 1에 있어서,The method according to claim 1, 상기 마그네슘은 그 두께가 20㎛ 이상으로 코팅처리된 것을 특징으로 하는 자동차용 차체의 마찰교반용접시 용접부의 취성 방지방법.The magnesium is a brittle prevention method of the welded portion during friction stir welding of the vehicle body, characterized in that the coating is coated with a thickness of 20㎛ or more.
KR1020050066076A 2005-07-21 2005-07-21 Method for suppressing brittle fracture along the friction stir welded zone for automotive body application KR100622747B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050066076A KR100622747B1 (en) 2005-07-21 2005-07-21 Method for suppressing brittle fracture along the friction stir welded zone for automotive body application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050066076A KR100622747B1 (en) 2005-07-21 2005-07-21 Method for suppressing brittle fracture along the friction stir welded zone for automotive body application

Publications (1)

Publication Number Publication Date
KR100622747B1 true KR100622747B1 (en) 2006-09-11

Family

ID=37624676

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050066076A KR100622747B1 (en) 2005-07-21 2005-07-21 Method for suppressing brittle fracture along the friction stir welded zone for automotive body application

Country Status (1)

Country Link
KR (1) KR100622747B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109699129A (en) * 2019-01-22 2019-04-30 广东气派科技有限公司 Solve method and SMD component that SMD component crosses wave-soldering bridge

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150180A (en) 1997-08-06 1999-02-23 Hitachi Ltd Welded structure
JP2003326372A (en) 2002-05-10 2003-11-18 Nachi Fujikoshi Corp Tool for friction-stirring joining
JP2004042117A (en) 2002-07-15 2004-02-12 Hitachi Ltd Friction stir welding method and part welded by the method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150180A (en) 1997-08-06 1999-02-23 Hitachi Ltd Welded structure
JP2003326372A (en) 2002-05-10 2003-11-18 Nachi Fujikoshi Corp Tool for friction-stirring joining
JP2004042117A (en) 2002-07-15 2004-02-12 Hitachi Ltd Friction stir welding method and part welded by the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109699129A (en) * 2019-01-22 2019-04-30 广东气派科技有限公司 Solve method and SMD component that SMD component crosses wave-soldering bridge

Similar Documents

Publication Publication Date Title
Manladan et al. A review on resistance spot welding of magnesium alloys
Park et al. Effect of material locations on properties of friction stir welding joints of dissimilar aluminium alloys
US11267081B2 (en) Aluminum welding filler composition suitable for formation into wire used for fusion welding
JP5893749B2 (en) Aluminum alloy
WO2009150904A1 (en) Steel material for dissimilar metal joining, joined body of dissimilar metals and process for joining dissimilar metal materials
Kang et al. A review of joining processes for high strength 7xxx series aluminum alloys
JP2005526901A (en) Weldable high strength Al-Mg-Si alloy
JP2015501877A5 (en)
US20170136584A1 (en) Aluminum Welding Filler Metal
Khajeh et al. Strength-ductility synergic enhancement in friction stir welded AA2024 alloy and copper joints: Unravelling the role of Zn interlayer's thickness
KR20180089129A (en) HEAT TREATMENT METHOD FOR HOT STAMPING Al ALLOY COATED HIGH STRENGTH STEEL FOR THE TAYLOR WELDED BLANK
Mehdi et al. Effect of intermetallic compounds on mechanical and microstructural properties of dissimilar alloys Al-7Si/AZ91D
Kotadia et al. Challenges and opportunities in remote laser welding of steel to aluminium
KR100622747B1 (en) Method for suppressing brittle fracture along the friction stir welded zone for automotive body application
JP2022533827A (en) Aluminum alloys for fluxless brazing applications, methods of making the same, and uses thereof
Sharma et al. Effect of welding processes on tensile behavior of aluminum alloy joints
Ferrari et al. Effects of semi-solid structure on interface formation of dissimilar aluminum to galvanized steel welds produced by load-controlled Refill Friction Stir Spot Welding
JP2004360054A (en) Jointed heat-treated aluminum alloy material excellent in ductility
JP2009279605A (en) Method for joining dissimilar metal of magnesium alloy and steel, and joint structure of the same metal
JP2008207249A (en) Method for welding aluminum alloy material having excellent weld crack resistance, and method for evaluating weld crack resistance of aluminum alloy material
Santella et al. The use of friction-stir technology to modify the surfaces of AM60B magnesium die castings
WO2023167312A1 (en) Al-si alloy for casting, al-si alloy casting and al-si alloy casting joint
AU2017204285A1 (en) Aluminum welding filler metal, casting and wrought metal alloy
JP2007146200A (en) Hot-dip aluminum-plated steel sheet having excellent spot weldability to aluminum material
JP2002115019A (en) Aluminum alloy having excellent weld crack resistance

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120831

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130830

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140901

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150831

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee