KR100609414B1 - Temperature stabilization of all-optical fiber interleaver device and its manufacturing method - Google Patents

Temperature stabilization of all-optical fiber interleaver device and its manufacturing method Download PDF

Info

Publication number
KR100609414B1
KR100609414B1 KR1020030075760A KR20030075760A KR100609414B1 KR 100609414 B1 KR100609414 B1 KR 100609414B1 KR 1020030075760 A KR1020030075760 A KR 1020030075760A KR 20030075760 A KR20030075760 A KR 20030075760A KR 100609414 B1 KR100609414 B1 KR 100609414B1
Authority
KR
South Korea
Prior art keywords
optical
optical fiber
interferometer
coupler
interleaver
Prior art date
Application number
KR1020030075760A
Other languages
Korean (ko)
Other versions
KR20050040522A (en
Inventor
신동호
여인승
이석재
정종래
반기현
장만용
Original Assignee
정보통신연구진흥원
(주)에스엘테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정보통신연구진흥원, (주)에스엘테크놀로지 filed Critical 정보통신연구진흥원
Priority to KR1020030075760A priority Critical patent/KR100609414B1/en
Publication of KR20050040522A publication Critical patent/KR20050040522A/en
Application granted granted Critical
Publication of KR100609414B1 publication Critical patent/KR100609414B1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/2935Mach-Zehnder configuration, i.e. comprising separate splitting and combining means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

본 고안은 광전송시스템(Optical Transmission System)에서 양방향(Bi-directional)으로 정보를 전송하기 위해 적용되는 수동 광부품 소자인 인터리버에 관한 것으로, 전광섬유형 인터리버 (All Fiber Type Interleaver)의 온도에 대한 안정화 방안 및 그 제조방법에 관한 것이다.The present invention relates to an interleaver, a passive optical component device that is applied to transmit information in a bi-directional direction in an optical transmission system, and stabilizes the temperature of an all fiber type interleaver. It relates to a method and a manufacturing method thereof.

이를 위하여 본 고안은 두개의 단일모드(single-mode) 광섬유를 융착한 1X2, 2X2 광섬유 커플러(coupler)를 제작하여 제1,2 접속광섬유를 일정한 길이차를 주어 간섭계의 구조가 되도록 결합하여 원하는 채널간격의 마흐젠더 간섭계(MZI: Mach-Zehnder Interferometer)를 구성한 전광섬유형의 인터리버 소자를 제작한다.To this end, the present invention manufactures 1X2 and 2X2 optical fiber couplers in which two single-mode optical fibers are fused and combines the first and second connection optical fibers to form a structure of an interferometer by giving a predetermined length difference. An all-fiber type interleaver is fabricated, comprising a Mach-Zehnder Interferometer (MZI).

기존의 전광섬유형 인터리버는 광섬유의 열광학계수 및 간섭계의 구조에서 광섬유에 가해지는 스트레스로 인해 온도에 민감하였으나, 본 고안은 마흐젠더 간섭계의 접속 광섬유에 가해지는 스트레스를 최소화하고 간섭계의 두 광섬유의 열팽창률을 상호 보완하여 수동적인 온도보상을 해 줌으로써 온도의 변화에 대한 광 출력 스펙트럼의 파장천이(wavelength-shift)를 최소화한 전광섬유형의 인터리버를 제조한다.Conventional all-optical interleaver is sensitive to temperature due to the stress applied to the optical fiber in the thermo-optic coefficient of the optical fiber and the structure of the interferometer, but the present design minimizes the stress applied to the connecting optical fiber of the Mach-Zehnder interferometer and Complementary thermal expansion by complementary thermal expansion coefficient to produce an all-fiber-type interleaver that minimizes the wavelength-shift of the light output spectrum with respect to temperature changes.

FBT, MZI, DWDM,광섬유 커플러, 광경로차, 양방향 전송 시스템, 응력, 스트레스, 열광학계수FBT, MZI, DWDM, optical fiber coupler, optical path difference, bidirectional transmission system, stress, stress, thermo-optic coefficient

Description

전광섬유형 인터리버 소자의 온도 안정화 및 그 제조방법 {Thermal Stability and Manufacture of All Fiber Type Interleaver}Temperature stabilization and manufacturing method of all-optical interleaver device {Thermal Stability and Manufacture of All Fiber Type Interleaver}

도1은 기존의 광섬유 커플러 구조도.1 is a structure diagram of a conventional optical fiber coupler.

도2는 본 고안에 이용할 광섬유 커플러 구조도.Figure 2 is a structure diagram of an optical fiber coupler to be used in the present invention.

도3은 기존의 광 인터리버의 구성도.3 is a block diagram of a conventional optical interleaver.

도4는 본 고안에서 이용된 마흐젠더 간섭계의 구성도.4 is a block diagram of a Mahzander interferometer used in the present invention.

도5는 본 고안의 광인터리버 구성도5 is a block diagram of an optical interleaver according to the present invention

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

11,12: 기존의 제1,2 광섬유 커플러 13,14: 본 고안의 제1,2 광섬유 커플러11,12: conventional first and second optical fiber coupler 13,14: first and second optical fiber coupler of the present invention

21,22: 제1,2 입력 광섬유 23,24: 제1,2 출력 광섬유21,22: first and second input optical fiber 23,24: first and second output optical fiber

25,26: 제1,2 접속 광섬유 31,32,33,34,35: 에폭시25, 26: 1st, 2nd connection optical fiber 31, 32, 33, 34, 35: epoxy

41: 광섬유 커플러의 내부 패키지 51: 제1,2 접속 광섬유 사이의 각도41: inner package of the optical fiber coupler 51: angle between the first and second connection optical fiber

61,62: 응력 71: 고정 기판61, 62: stress 71: fixed substrate

81: 스트레스81: stress

광 인터리버는 파장분할 다중화(WDM: Wavelength Division Multiplexing) 기술의 일종으로써 광통신 전송기술 분야에서 더 많은 정보를 전송하기 위한 기술이다. 이 때 전송용량은 광파장의 채널간격에 영향을 받게 되는데, 예를 들어서 수nm이하의 조밀한 채널간격(100㎓: 0.8㎚, 50㎓: 0.4㎚)을 가지는 DWDM소자는 수십nm의 채널간격(20㎚, 40㎚)을 가지는 저밀도 파장 다중화/역다중화(CWDM: Coarse Wavelength Division Multiplexer/Demultiplexer)소자보다 더 많은 채널 수를 제공함으로써 전송용량을 증대시킬 수 있다.The optical interleaver is a type of wavelength division multiplexing (WDM) technology and is a technology for transmitting more information in the field of optical communication transmission technology. At this time, the transmission capacity is influenced by the channel spacing of the optical wavelength. For example, DWDM devices having a compact channel spacing of several nm or less (100 μs: 0.8 nm, 50 μs: 0.4 nm) have a channel spacing of several tens of nm ( The transmission capacity can be increased by providing a larger number of channels than a low density wavelength multiplexing / demultiplexer (CWDM) device having 20 nm and 40 nm).

광 인터리버는 양방향 광전송 시스템에서 광반사에 의한 신호의 열화를 줄이기 위해 양방향으로 진행하는 광신호의 파장을 달리하여야 하는데, 광 인터리버는 양방향으로 파장을 배치하는 파장교대(Wavelength-Interleaved)방식으로 반대 방향으로 진행할 인접한 광신호의 파장을 교대로 배치하는 방식이다.The optical interleaver has to change the wavelength of the optical signal traveling in both directions to reduce the deterioration of the signal due to the light reflection in the two-way optical transmission system. The optical interleaver has a wavelength-interleaved method in which wavelengths are arranged in both directions. The wavelengths of adjacent optical signals to be proceeded alternately are arranged.

광 인터리버가 이용되므로써 파장교대 방식 양방향 광전송 시스템은 기존의 단방향 광전송 시스템에 비해 다음과 같은 장점이 있다.By using the optical interleaver, the wavelength shift bidirectional optical transmission system has the following advantages over the conventional unidirectional optical transmission system.

첫째, 하나의 광섬유로 두 노드간의 통신을 가능하게 하므로 노드간의 통신에 필요한 광섬유의 수를 반으로 줄일 수 있다. 장애 발생시 사용되는 여분이 보호절체용 광섬유를 고려하더라도 양방향 광전송 장치에서는 최소 두 가닥의 광섬유가 필요한 반면 단방향 광전송 시스템에서는 최소 네 가닥의 광섬유가 필요하다.First, since a single optical fiber enables communication between two nodes, the number of optical fibers required for communication between nodes can be reduced by half. Even if the redundant fiber used in the event of a failure is considered, at least two fibers are required in the bidirectional optical transmission device, while at least four fibers are required in the unidirectional optical transmission system.

둘째, 동일한 광섬유당 전송용량을 제공하는 단방향 광전송 시스템에 비해 광비선 형 현상을 줄일 수 있다. 즉, 파장교대 방식인 양방향 광전송 시스템에서는 동일한 방향으로 진행하는 채널 수가 반으로 감소하고, 채널간의 간격이 두 배로 늘어나기 때문에 광비선형 현상을 줄일 수 있다. 특히, 광섬유의 비선형 현상 중에서 상호 위상변조(Cross-Phase Modulation)와 4광파 혼합(Four-Wave Mixing)과 같은 다중 채널 비선형 현상을 줄일 수 있다.Second, the optical nonlinearity can be reduced compared to a unidirectional optical transmission system that provides the same transmission capacity per optical fiber. That is, in the bidirectional optical transmission system using the wavelength shift method, the number of channels traveling in the same direction is reduced by half, and the distance between the channels is doubled, thereby reducing the optical nonlinear phenomenon. In particular, among the nonlinear phenomena of the optical fiber, multi-channel nonlinear phenomena such as cross-phase modulation and four-wave mixing may be reduced.

셋째, 파장교대 방식인 양방향 광전송 시스템에서는 채널간의 간격이 두 배로 증가하므로 다중화/역다중화기, 그리고 각종 광 필터의 설계및 제작이 용이하다.Third, in the bidirectional optical transmission system of the wavelength alternating method, the distance between the channels is doubled, so it is easy to design and manufacture multiplexer / demultiplexer and various optical filters.

넷째. 양방향 광전송 기술을 도입하면 스펙트럼 효율(spectral efficiency)을 높일 수 있다. 앞서 언급한 바와 같이 광섬유의 비선형 현상이 감소하고 채널 선택을 위한 필터의 대역폭을 증가시킬 수 있으며 채널 사이의 간격을 줄일 수 있으므로 제한된 파장대역에서 더 많은 채널을 수용할 수 있고, 결과적으로 광섬유당 전송용량을 증가시킬 수 있다.fourth. Adopting bidirectional optical transmission technology can increase the spectral efficiency. As mentioned earlier, the nonlinearity of the fiber can be reduced, the bandwidth of the filter for channel selection can be increased, and the spacing between the channels can be reduced, allowing more channels to be accommodated in the limited wavelength band, resulting in transmission per fiber. Dose can be increased.

이런 광 인터리버를 제조하는 방법은 마흐젠더 간섭계의 구조를 갖도록 제작하고, 광 인터리버에 대한 분류는 크게 융착 광섬유(FBT: Fused Biconical Taper) 커플러를 이용한 기술, 평면도파로 (PLC: Planer Lightwave circuit)를 이용한 기술, 다층 간섭박막필터를 이용한 기술로 분류된다. 그러나, 평면도파로 기술은 실리콘 웨이퍼에 굴절률을 조절하여 제작하는데 제작공정이 난해하며 외부 온도환경에 대한 온도 특성이 나쁘기 때문에 별도의 온도제어기가 필요하다. 또한, 다층 간섭박막필터형은 기판 위에 유전체를 이용한 다층의 박막을 코팅하여 제작하는데 삽입손실(insertion loss)특성은 우수하지만 50Ghz이하의 채널간격으로 제작이 매 우 힘들다. 또한 위의 두 제조방법은 초기투자비가 많이 소요된다. 하지만 위의 두 기술과는 달리 융착 광섬유 커플러의 경우 매우 좁은 채널간격으로 제작이 가능하며, 광섬유만을 이용하므로 삽입손실이 매우 낮고 편광의존특성이 우수하다. 게다가, 초기 투자비가 적고 다른 광통신 수동 부품소자와 연결이 용이하다.The manufacturing method of the optical interleaver is manufactured to have the structure of the Mach-Zehnder interferometer, and the classification of the optical interleaver is largely classified by using a Fused Biconical Taper (FBT) coupler and a planer lightwave circuit (PLC). Technology, a technique using a multilayer interference thin film filter. However, the planar waveguide technology requires a separate temperature controller because the manufacturing process is difficult to control the refractive index of the silicon wafer and the temperature characteristics of the external temperature environment are poor. In addition, the multilayer interference thin film filter type is manufactured by coating a multilayer thin film using a dielectric on a substrate, and the insertion loss (insertion loss) characteristics are excellent, but it is very difficult to manufacture with a channel interval of less than 50Ghz. In addition, the above two manufacturing methods require a high initial investment. However, unlike the above two technologies, the fusion fiber coupler can be manufactured with very narrow channel intervals, and because only the optical fiber is used, the insertion loss is very low and the polarization dependency property is excellent. In addition, the initial investment is low and easy to connect with other optical communication passive components.

광 인터리버의 마흐젠더 간섭계를 구성하기 위한 제1,2 광섬유 커플러(11,12)는 도1에서와 같이 제1,2 광섬유(21,22,23,24)의 일부분에 열을 가하면 광섬유가 융용 인장되어 코어직경의 변화가 생기면서 양쪽으로 대칭적인 테이퍼구조가 되고 이 영역에서 광 결합이 발생하게 되는 융착 광섬유기술(FBT)을 이용하여 제조하게 된다. 이렇게 제조된 도1의 광섬유 커플러(11,12)는 에폭시(31,32)를 이용해서 석영(Quartz) 소재의 내부 패키지 구조물(41)에 고정되어 패키지 된다.The first and second optical fiber couplers 11 and 12 for constructing the Mach-Zehnder interferometer of the optical interleaver apply heat to a part of the first and second optical fibers 21, 22, 23, and 24 as shown in FIG. It is manufactured by using fused fiber optic technology (FBT), which is tensioned to produce a change in core diameter and to a symmetrical tapered structure on both sides, and light coupling occurs in this region. The optical fiber couplers 11 and 12 of FIG. 1 manufactured as described above are fixed and packaged to the internal package structure 41 of quartz material using epoxy 31 and 32.

마흐젠더 간섭계 구조는 위상차()에 의해서 출력 파장의 스펙트럼 간격(

Figure 112003040545061-pat00002
)이 변화하게 된다. 위상차는 식1과 같이 전파상수(k)와 유효경로차(
Figure 112003040545061-pat00003
)에 의해서 표현할 수 있다.The Mahzander interferometer structure has a phase difference ( By the spectral spacing of the output wavelength
Figure 112003040545061-pat00002
) Will change. The phase difference is the difference between the propagation constant (k) and the effective path (
Figure 112003040545061-pat00003
Can be expressed by

Figure 112003040545061-pat00004
Figure 112003040545061-pat00004

따라서, 위상차는 간섭계 구조에서 두 광섬유의 길이를 다르게 하거나 전파상수를 차이나게 하여 변화 가능하다. 이 위상차의 변화에서 원하는 스펙트럼간격을 얻기 위한 광경로차(

Figure 112003040545061-pat00005
)는 전파상수의 차와 유효경로차를 이용하여 식2에 의해서 구할 수 있다. Therefore, the phase difference can be changed by varying the length of the two optical fibers or different propagation constants in the interferometer structure. The optical path difference for obtaining the desired spectral spacing in the change of the phase difference
Figure 112003040545061-pat00005
) Can be obtained from Equation 2 using the difference between the propagation constant and the effective path difference.

Figure 112003040545061-pat00006
Figure 112003040545061-pat00006

이 때에 채널간격(

Figure 112003040545061-pat00007
)는 식3과 같다. At this time, the channel interval (
Figure 112003040545061-pat00007
) Is the same as Equation 3.

Figure 112003040545061-pat00008
Figure 112003040545061-pat00008

기존의 기술은 도3에서와 같이 위의 식2를 이용하여 원하는 채널간격을 얻기 위한 광경로차를 가지도록 제1 광섬유 커플러(11)의 제1,2출력광섬유(23,24)와 제2광섬유 커플러(12)의 제1,2출력광섬유(23,24)를 길이가 다르게 절단하여 접속한 후에 간섭계에서 접속된 제1,2접속광섬유(25,26)의 길이를 미세 조정하여 원하는 채널간격이 되도록 조절하였다.Existing techniques use the above equation 2 as shown in FIG. 3, so that the first and second output optical fibers 23 and 24 and the second and second output optical fibers of the first optical fiber coupler 11 have an optical path difference to obtain a desired channel spacing. After the first and second output optical fibers 23 and 24 of the optical fiber coupler 12 are cut and connected differently, the length of the first and second connection optical fibers 25 and 26 connected by the interferometer is finely adjusted to desired channel spacing. It was adjusted to be.

그러나, 이렇게 제조된 전광섬유형의 인터리버는 광섬유가 온도에 따라서 굴절률이

Figure 112003040545061-pat00009
만큼 변화되어 약0.0085㎚/℃의 파장천이가 생기게 된다. 인터리버 소자의 동작온도범위가 70℃라면 파장천이는 0.595㎚가 된다. 50㎓ 인터리버소자의 채널간격이 0.4㎚이므로 이런 파장천이는 전송시스템에서 심각한 문제를 발생하게 된다.However, the all-fiber interleaver manufactured in this way has a refractive index of optical fiber with temperature.
Figure 112003040545061-pat00009
By a wavelength shift of about 0.0085 nm / ° C. If the operating temperature range of the interleaver element is 70 ° C, the wavelength transition is 0.595 nm. Since the channel spacing of the 50 kHz interleaver is 0.4 nm, this wavelength transition causes serious problems in the transmission system.

또한 마흐젠더 간섭계의 다른 길이를 가지는 제1,2 접속 광섬유(25,26)에 가해지는 스트레스(81)의 차이에 의한 온도에 따른 제1,2 접속 광섬유(25,26)의 열팽창률의 차이로 인하여 광 경로차의 변화가 발생하여 인터리버 소자의 출력 스펙트럼특성의 변화와 파장천이의 문제가 발생하게 된다.In addition, the difference in thermal expansion coefficients of the first and second connection optical fibers 25 and 26 according to the temperature due to the difference in stress 81 applied to the first and second connection optical fibers 25 and 26 having different lengths of the Mahzander interferometer. Due to this, a change in the optical path difference occurs, thereby causing a problem of change in output spectral characteristics and wavelength shift of the interleaver.

이런 문제를 해결하기 위하여, 기존의 방법으로 외부에서 온도 컨트롤러를 이용하여 인터리버 소자의 내부를 일정하게 온도를 유지함으로써 온도에 민감한 문제를 보완하였지만, 전원이 인가되어야 하는 문제점과 최종 패키지가 커지게 된다는 단점을 가지게 된다.In order to solve this problem, the temperature-sensitive problem is solved by maintaining a constant temperature inside the interleaver by using a temperature controller from the outside, but the problem that power is applied and the final package are increased. It has a disadvantage.

마흐젠더 간섭계의 제1,2 접속 광섬유(25,26)는 온도변화에 따라 영향을 받게 되는데 굴절률과 제1,2 접속 광섬유(25,26)의 길이 차의 곱(

Figure 112003040545061-pat00010
)으로 표현할 수 있고 식4와 같다.The first and second connection optical fibers 25 and 26 of the Mahzander interferometer are affected by the temperature change, and the product of the difference between the refractive index and the length difference of the first and second connection optical fibers 25 and 26 (
Figure 112003040545061-pat00010
) Can be expressed as Equation 4.

Figure 112003040545061-pat00011
Figure 112003040545061-pat00011

여기서,

Figure 112003040545061-pat00012
는 열광학계수, C는 열팽창계수,l1,l2은 제1,2 접속 광섬유(25,26)의 길이이다.here,
Figure 112003040545061-pat00012
Is the thermo-optic coefficient, C is the thermal expansion coefficient, and l 1 and l 2 are the lengths of the first and second connection optical fibers 25 and 26.

본 고안은 상기의 문제점을 해결하기 위하여 종래의 광섬유 커플러의 구조를 변경하였다.The present invention changed the structure of the conventional optical fiber coupler to solve the above problems.

기존의 마흐젠더 간섭계에서는 제1 접속 광섬유(25)가 제 2 접속 광섬유(26)에 비해 스트레스를 많이 받게 되고 열광학계수가 크게 된다. 광섬유의 스트레스(81)는 온도 변화에 따라서 굴절률의 변화를 야기하므로 본 고안은 제1 접속 광섬유(25)의 스트레스를 최소화하고 굴절률의 변화를 줄여 수동적인 온도보상 효과에 의해서 인터리버 소자의 출력 스펙트럼특성의 변화와 파장천이가 최소화 되도록 하는 것이 목적이다. In the existing Mahzander interferometer, the first connection optical fiber 25 is more stressed than the second connection optical fiber 26 and the thermo-optic coefficient is large. Since the stress 81 of the optical fiber causes a change in the refractive index according to the temperature change, the present invention minimizes the stress of the first connection optical fiber 25 and reduces the change in the refractive index to reduce the change in the refractive index. The aim is to minimize the change in wavelength and transition.                         

이와 같은 목적을 달성하기 위하여 광섬유 커플러(13,14)를 도2와 같이 제작하면 마흐젠더 간섭계의 제1,2 접속 광섬유(25,26)가 도4와 같은 모양으로 제작된다.In order to achieve the above object, when the optical fiber couplers 13 and 14 are manufactured as shown in FIG. 2, the first and second connection optical fibers 25 and 26 of the Mahzender interferometer are manufactured as shown in FIG. 4.

또한, 광 인터리버의 온도특성을 확인하면 온도가 증가할 때 파장천이는 장파장 쪽으로 이동하게 되며, 두 커플러의 간격을 좁힐 때 제1,2 접속 광섬유(25,26)가 도4의 응력(61,62)의 반대방향으로 움직이게 되는데, 이때에도 파장천이는 장파장 쪽으로 이동하게 된다. 따라서, 도4와 같이 에폭시(34,35)로 광섬유가 움직이는 방향과 반대방향으로 응력(61,62)을 갖도록 열팽창계수가 광섬유와 같은 에폭시를 광섬유가 에폭시의 바깥부분에 접촉하도록 도포하여 역으로 온도보상을 해준다.In addition, if the temperature characteristic of the optical interleaver is checked, the wavelength shifts toward the longer wavelength when the temperature increases, and when the distance between the two couplers is narrowed, the first and second connection optical fibers 25 and 26 become stress (61, 62), the wavelength shifts toward the longer wavelength. Accordingly, as shown in FIG. 4, an epoxy such as an optical fiber is coated such that the optical fiber contacts the outer portion of the epoxy so that the thermal expansion coefficient has a stress 61 and 62 in a direction opposite to the direction in which the optical fiber moves to the epoxy 34 and 35. Temperature compensation.

이하 첨부된 도면에 의해 상세히 설명하면 다음과 같다.Hereinafter, described in detail by the accompanying drawings as follows.

본 고안에 쓰이는 광섬유 커플러는 도2와 같은 광섬유의 융용 인장(FBT)기술을 이용하여 제작된다.The optical fiber coupler used in the present invention is manufactured using the fusing tension (FBT) technology of the optical fiber as shown in FIG.

두 개의 광섬유에 열원을 이용하여 융용 인장 함으로써 인장길이에 따른 테이퍼 영역에서의 결합계수의 변화에 의한 결합률의 변화를 이용하여 광섬유 커플러(13,14)를 제조하게 된다. 이때, 광 인터리버 소자는 넓은 파장대역에서 인접한 채널간의 출력특성이 균일해야 하므로 광섬유 커플러중에서 파장에 따른 균일한 삽입손실특성을 갖는 광대역 커플러(WFC: Wavelength Flattened Coupler)를 제조하여 이용한다.The optical fiber couplers 13 and 14 are manufactured by using the heat source for the two optical fibers to melt and stretch the bonding rate by the change of the coupling coefficient in the tapered region according to the tensile length. At this time, since the optical interleaver device has to have uniform output characteristics between adjacent channels in a wide wavelength band, a wideband coupler (WFC: Wavelength Flattened Coupler) having a uniform insertion loss characteristic according to the wavelength is used in the optical fiber coupler.

기존의 융착 광섬유형 커플러는 도1과 같이 제1 광섬유(21,23)와 제2 광섬유(22,24)를 서로 평행하게 융용 인장하여 석영재질의 내부 패키지 구조물(41) 에 에폭시(31,32)로 고정하였다.Existing fusion fiber type coupler is melted and stretched in parallel to each other the first optical fibers (21, 23) and the second optical fibers (22, 24) as shown in Figure 1 epoxy (31, 32) on the inner package structure 41 of the quartz material ).

그러나, 본 고안에서는 도2와 같이 광섬유 커플러의 제1,2 광섬유(21,22)를 일정한 각도

Figure 112006000630807-pat00013
(51)로 벌어지도록 내부 패키지 구조물(41)에 에폭시(31,32)로 융착부 고정부위가 광섬유 혹은 광섬유 클래드의 지름의 2배보다 크도록 고정하여 패키지 하였다. 각도
Figure 112006000630807-pat00014
(51)는 인터리버의 채널간격에 따라 조정한다.However, in the present invention, as shown in Fig. 2, the first and second optical fibers 21 and 22 of the optical fiber coupler have a constant angle.
Figure 112006000630807-pat00013
The package was fixed to the inner package structure 41 so that the fusion part fixing portion was larger than twice the diameter of the optical fiber or the optical fiber cladding with epoxy (31, 32) so as to open to (51). Angle
Figure 112006000630807-pat00014
Reference numeral
51 adjusts according to the channel interval of the interleaver.

제1광섬유 커플러(13)의 제1,2 출력 광섬유(23,24)와 제2 광섬유 커플러(14)의 제1,2 출력 광섬유(23,24)를 원하는 길이 차가 되도록 마이크로 미터가 부착된 광섬유 절단기(Optical Fiber Cleaver)를 이용하여 제1 출력 광섬유(23)와 제 2 출력 광섬유(24)의 길이를 다르게 절단한 후에 접속기(Fusion splicer)를 이용하여 절단된 광섬유를 접속하였다. 그 다음으로, 간섭계에서 제1,2접속광섬유(25,26)를 융용 인장하면서 OSA(Optical Spectrum Analyser)로 채널간격을 확인하여 미세하게 광 경로차를 조정(tuning)하였다. Optical fiber with a micrometer so that the first and second output optical fibers 23 and 24 of the first optical fiber coupler 13 and the first and second output optical fibers 23 and 24 of the second optical fiber coupler 14 have a desired length difference. After cutting the lengths of the first output optical fiber 23 and the second output optical fiber 24 differently using an optical fiber cleaver, the cut optical fibers were connected by using a splicer. Subsequently, the optical path difference was finely tuned by checking the channel spacing with an optical spectrum analyzer (OSA) while melting and stretching the first and second connection optical fibers 25 and 26 in the interferometer.

예를 들어, 50GHz 인터리버는 제1,2 접속 광섬유(25,26)의 길이차가 약 2mm가 되므로 도1과 같은 커플러(11,12)로 제작하였을 경우 도3의 제1 접속 광섬유(25)에 스트레스(81)가 가해지므로 도2와 같은 커플러로 제1 광섬유(21)의 스트레스(81)를 최소로 줄임으로써 도5와 같이 패키지 한다.For example, since the 50 GHz interleaver has a length difference of about 2 mm between the first and second connection optical fibers 25 and 26, the 50 GHz interleaver is formed in the first connection optical fiber 25 of FIG. 3 when it is manufactured with the couplers 11 and 12 as shown in FIG. 1. Since the stress 81 is applied to the package, as shown in FIG. 5, the stress 81 of the first optical fiber 21 is minimized by a coupler as shown in FIG. 2.

또한, 온도가 증가하면 파장천이는 장파장 쪽으로 이동하게 되며, 두 커플러의 간격을 좁히면 제1,2 접속 광섬유(25,26)가 도4의 응력(61,62)의 반대방향으로 움직이게 되는데, 이때에도 파장천이는 장파장 쪽으로 이동하게 된다. 따라서, 도4와 같이 에폭시(34,35)로 광섬유가 움직이는 방향과 반대방향으로 응력(61,62)을 갖도록 에폭시의 정중앙에 광섬유가 위치하여 직접 고정되지 않고 광섬유가 에폭시에 바깥부분에 접촉하도록 도포하여 역으로 온도보상을 해준다.In addition, when the temperature increases, the wavelength shifts toward the longer wavelength, and when the distance between the two couplers is narrowed, the first and second connection optical fibers 25 and 26 move in the opposite directions of the stresses 61 and 62 of FIG. At this time, the wavelength shifts toward the longer wavelength. Therefore, as shown in FIG. 4, the optical fiber is positioned at the center of the epoxy so as to have the stresses 61 and 62 in the direction opposite to the direction in which the optical fiber moves to the epoxy 34 and 35 so that the optical fiber contacts the outer portion of the epoxy without being directly fixed. Apply temperature to reverse.

고정기판(71)에 제작된 광 인터리버를 고정할 때는 제1,2 광섬유 커플러(13,14)와 제1,2 접속 광섬유가 밀착되도록 에폭시(33)로 완전히 고정한다. 이때 제1,2 광섬유 커플러(13,14)의 간격을 크게하여 제1,2 접속 광섬유(25,26)에 인장력이 가해지지 않은 간격을 유지하여 고정함으로써 안정된 광 인터리버를 제작할 수 있게 된다.When fixing the optical interleaver manufactured on the fixed substrate 71, the first and second optical fiber couplers 13 and 14 and the first and second connection optical fibers are completely fixed by epoxy 33 so as to be in close contact with each other. In this case, the distance between the first and second optical fiber couplers 13 and 14 may be increased to maintain and fix the intervals to which the tensile force is not applied to the first and second connection optical fibers 25 and 26, thereby producing a stable optical interleaver.

본 고안은 광 인터리버는 양방향 전송 시스템에서 양방향으로 파장교대(Wavelength-interleaved) 방식을 사용하여 전송용량을 증대시키는데, 온도 보상이 이루어져 파장천이가 최소화되어 안정적으로 전송 시스템에 적용할 수 있다.According to the present invention, the optical interleaver increases the transmission capacity by using a wavelength-interleaved method in both directions in a bidirectional transmission system. The temperature compensation is minimized so that the wavelength shift can be applied to the transmission system stably.

또한, 개별 광 인터리버를 다중접속(Cascade)하여 DWDM(Dense Wavelength Division Multiplexing)소자를 제작할 수 있다.In addition, a Dense Wavelength Division Multiplexing (DWDM) device may be manufactured by cascading individual optical interleavers.

이때, 개별 광 인터리버의 각각의 온도 특성이 다르고 온도에 따른 파장천이가 커지게 되면 DWDM소자를 제작하기 어려워지는데, 본 고안의 광 인터리버롤 제작하게 되면 DWDM 소자를 제작하기가 용이하게 된다.At this time, when the temperature characteristics of the individual optical interleaver is different and the wavelength transition according to the temperature becomes large, it becomes difficult to manufacture the DWDM device. When the optical interleaver is manufactured, the DWDM device can be easily manufactured.

Claims (7)

제1의 1X2 또는 2X2 광섬유커플러와 제2의 2X2 광섬유커플러에서 제1의 광섬유커플러 출력단자들과 제2의 광섬유커플러의 입력단자들이 광학적으로 1:1 로 접속되고 접속된 각각의 광학적 간섭길이가 서로 다른 구조를 가지는 전광섬유형 마흐젠더 간섭계에 있어서, 제1의 광섬유커플러의 출력단 및 제2의 광섬유커플러의 입력단의 2개의 간섭계 구조 중 적어도 1개의 간섭계가 수평이 아닌 일정한 각도를 가지게 하여 스트레스를 최소화한 전광섬유형 마흐젠더간섭계In the first 1X2 or 2X2 optical coupler and the second 2X2 optical coupler, the first optical coupler output terminals and the input terminals of the second optical coupler are optically 1: 1 connected and each optical interference length In the all-optical Mach-Zehnder interferometer having a different structure, at least one interferometer of the two interferometer structures of the output end of the first optical coupler and the input end of the second optical fiber coupler is stressed by having a constant angle, not horizontal. Minimized all-optical Mach-Zehnder interferometer 청구항1의 전광섬유형 마흐젠더간섭계에서 스트레스를 가하거나 감할 목적으로 제1의 광섬유커플러 출력단과 제2의 광섬유커플러 입력단이 광학적으로 연결된 2개의 간섭계 부분의 윗부분 혹은 아랫부분에 에폭시에 의해 응력을 받도록 한 전광섬유형 마흐젠더 간섭계In order to stress or reduce stress in the all-optical Mach-Zenfer interferometer of claim 1, the first optical fiber coupler and the second optical fiber coupler input end are stressed by epoxy on the upper part or the lower part of the two interferometer parts optically connected. One all-optical Mahzander interferometer 삭제delete 청구항1의 전광섬유형 마흐젠더 간섭계구조에서 제1의 광섬유커플러의 출력단자들과 제2의 광섬유커플러 입력단자들이 일정한 각도를 가지도록 제1의 광섬유커플러 및 제2의 광섬유커플러의 융착부 고정 부위가 광섬유 혹은 광섬유 클래드의 지름의 2배보다 크도록 제작된 제1의 광섬유커플러 및 제2의 광섬유커플러를 가지는 전광섬유형 마흐젠더 간섭계Fusion part fixing part of the first optical fiber coupler and the second optical fiber coupler such that the output terminals of the first optical fiber coupler and the second optical fiber coupler input terminals have a predetermined angle in the all-optical fiber type Mahzender interferometer structure of claim 1 Optical fiber type Mahzander interferometer having a first optical coupler and a second optical coupler fabricated so that the optical fiber or cladding is larger than twice the diameter of the optical fiber or the optical fiber cladding 청구항2에서 스트레스를 감소하거나 증가시킬 목적으로 열팽창계수가 광섬유와 같은 실리콘을 주재료로 한 UV경화, 열 경화용 에폭시를 사용한 전광섬유형 마흐젠더 간섭계All-fiber-type Mahzender interferometer using a UV-curable, heat-curing epoxy-based silicone as the main material of thermal expansion coefficient to reduce or increase stress in claim 2 청구항2에서 에폭시 위치를 간섭계의 광섬유에 윗부분 또는 아랫부분에 도포하여 간섭계를 이루는 광섬유를 에폭시의 정중앙에 직접 고정하지 않고 에폭시의 바깥부분에 접촉하도록 도포된 전광섬유형 마흐젠더 간섭계The all-fiber type Mahzender interferometer, which is applied to contact the outer portion of the epoxy without fixing the optical fiber forming the interferometer by directly applying the epoxy position to the optical fiber of the interferometer on the upper or lower portion of the epoxy in claim 2 청구항2에서 2개의 간섭계에서 에폭시가 도포된 부위가 1개 이상인 구조를 가지는 전광섬유형 마흐젠더 간섭계The all-optical fiber type Mahzander interferometer having a structure in which at least one epoxy-coated portion of the two interferometers in claim 2
KR1020030075760A 2003-10-29 2003-10-29 Temperature stabilization of all-optical fiber interleaver device and its manufacturing method KR100609414B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030075760A KR100609414B1 (en) 2003-10-29 2003-10-29 Temperature stabilization of all-optical fiber interleaver device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030075760A KR100609414B1 (en) 2003-10-29 2003-10-29 Temperature stabilization of all-optical fiber interleaver device and its manufacturing method

Publications (2)

Publication Number Publication Date
KR20050040522A KR20050040522A (en) 2005-05-03
KR100609414B1 true KR100609414B1 (en) 2006-09-22

Family

ID=37242324

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030075760A KR100609414B1 (en) 2003-10-29 2003-10-29 Temperature stabilization of all-optical fiber interleaver device and its manufacturing method

Country Status (1)

Country Link
KR (1) KR100609414B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105425340A (en) * 2015-12-21 2016-03-23 华中科技大学 Optical comb filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105425340A (en) * 2015-12-21 2016-03-23 华中科技大学 Optical comb filter

Also Published As

Publication number Publication date
KR20050040522A (en) 2005-05-03

Similar Documents

Publication Publication Date Title
US9823418B2 (en) Waveguide-type optical diffraction grating and optical wavelength filter
JP4494495B2 (en) Optical multiplexing / demultiplexing circuit with phase generation function
US5875272A (en) Wavelength selective optical devices
US6031948A (en) Fused-fiber multi-window wavelength division multiplexer using an unbalanced Mach-Zehnder interferometer and method of making same
US10228512B2 (en) Wavelength filter
US20010028494A1 (en) Cascading of tunable optical filter elements
US20130301989A1 (en) Method of using an optical device for wavelength locking
US20090226129A1 (en) Integrated optical signal handling device
US7164478B2 (en) Apparatus and methods for stabilization and control of fiber devices and fiber devices including the same
CN105655869A (en) Multi-channel tunable laser
CA2320083A1 (en) Cascading of tunable optical filter elements
US6856732B2 (en) Method and apparatus for adding/droping optical signals in a semiconductor substrate
US6907199B2 (en) Method for polarization mode dispersion compensation
CA2335216C (en) Passive thermal compensation of all-fiber mach-zehnder interferometer
EP1343029A1 (en) Optical waveguide coupler circuit
US6324322B1 (en) Fused-fiber multi-window wavelength filter using unbalanced Michelson Interferometer
Nyman et al. Technology trends in dense WDM demultiplexers
WO1997015851A1 (en) Wavelength selective optical devices
JP4152869B2 (en) Optical multiplexing / demultiplexing circuit with phase generation function
KR100609414B1 (en) Temperature stabilization of all-optical fiber interleaver device and its manufacturing method
US20060002653A1 (en) Apparatus for an optical circuit having a flat wavelength response
US6763155B2 (en) Mach-zehnder interferomter (MZI) filter devices
US20030198438A1 (en) Tunable add/drop multiplexer
Keiser et al. Wavelength division multiplexing (WDM)
Kokubun Waveguide filters and related technologies: issues and solutions for practical use in transmission systems

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20031029

PA0201 Request for examination
N231 Notification of change of applicant
PN2301 Change of applicant

Patent event date: 20040531

Comment text: Notification of Change of Applicant

Patent event code: PN23011R01D

PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20051020

Patent event code: PE09021S01D

E90F Notification of reason for final refusal
PE0902 Notice of grounds for rejection

Comment text: Final Notice of Reason for Refusal

Patent event date: 20060324

Patent event code: PE09021S02D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20060629

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20060810

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20060810

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20090810

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20100806

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20110707

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20120725

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20130910

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20130910

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20140430

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20140430

Start annual number: 9

End annual number: 9

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20160709