KR100605516B1 - Diene copolymer modified polar siloxyalkyl ammonium, and dien rubber nanocomposites using them - Google Patents

Diene copolymer modified polar siloxyalkyl ammonium, and dien rubber nanocomposites using them Download PDF

Info

Publication number
KR100605516B1
KR100605516B1 KR1020050060899A KR20050060899A KR100605516B1 KR 100605516 B1 KR100605516 B1 KR 100605516B1 KR 1020050060899 A KR1020050060899 A KR 1020050060899A KR 20050060899 A KR20050060899 A KR 20050060899A KR 100605516 B1 KR100605516 B1 KR 100605516B1
Authority
KR
South Korea
Prior art keywords
diene
copolymer
formula
modified
diene copolymer
Prior art date
Application number
KR1020050060899A
Other languages
Korean (ko)
Inventor
한미정
이경섭
맹지영
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020050060899A priority Critical patent/KR100605516B1/en
Application granted granted Critical
Publication of KR100605516B1 publication Critical patent/KR100605516B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 극성 실록시알킬암모늄으로 개질된 디엔 공중합체와 이를 이용한 디엔계 나노복합재에 관한 것으로서, 더욱 상세하게는 극성 실록시알킬암모늄이 결합된 신규 디엔 공중합체와, 상기한 신규 디엔 공중합체에 무기층상화합물을 혼합하여 제조된 혼화성이 우수한 마스터배치와, 상기한 마스터배치와 디엔 고무를 일정 함량비로 혼합하고 가황 가공하여 제조된 기계적 강도, 열안정성, 내후성 등의 제반 물성이 우수한 나노복합재에 관한 것이다.The present invention relates to a diene copolymer modified with a polar siloxyalkylammonium and a diene-based nanocomposite using the same, and more particularly, to a novel diene copolymer having a polar siloxyalkylammonium bonded thereto, and to the new diene copolymer described above. The masterbatch prepared by mixing the inorganic layered compound and the nanobatch having excellent physical properties such as mechanical strength, thermal stability, weather resistance, etc., which are prepared by mixing the masterbatch and the diene rubber in a predetermined content ratio and vulcanizing the mixture. It is about.

극성 실록시알킬암모늄, 개질, 디엔 공중합체, 무기층상화합물, 나노복합재 Polar siloxyalkylammonium, modified, diene copolymers, inorganic layered compounds, nanocomposites

Description

극성 실록시알킬암모늄으로 개질된 디엔 공중합체와 이를 이용한 디엔계 나노복합재{Diene copolymer modified polar siloxyalkyl ammonium, and dien rubber nanocomposites using them}Diene copolymer modified with polar siloxyalkylammonium and diene-based nanocomposite using the same {Diene copolymer modified polar siloxyalkyl ammonium, and dien rubber nanocomposites using them}

도 1은 본 발명의 나노복합재(a) 및 종래의 나노복합재(b)의 층간거리를 나타내는 XRD이다.1 is an XRD showing the interlayer distance between the nanocomposite (a) and the conventional nanocomposite (b) of the present invention.

본 발명은 극성 실록시알킬암모늄으로 개질된 디엔 공중합체와 이를 이용한 디엔계 나노복합재에 관한 것으로서, 더욱 상세하게는 극성 실록시알킬암모늄이 결합된 신규 디엔 공중합체와, 상기한 신규 디엔 공중합체에 무기층상화합물을 혼합하여 제조된 혼화성이 우수한 마스터배치와, 상기한 마스터배치와 디엔 고무를 일정 함량비로 혼합하고 가황 가공하여 제조된 기계적 강도, 열안정성, 내후성 등의 제반 물성이 우수한 나노복합재에 관한 것이다.The present invention relates to a diene copolymer modified with a polar siloxyalkylammonium and a diene-based nanocomposite using the same, and more particularly, to a novel diene copolymer having a polar siloxyalkylammonium bonded thereto, and to the new diene copolymer described above. The masterbatch prepared by mixing the inorganic layered compound and the nanobatch having excellent physical properties such as mechanical strength, thermal stability, weather resistance, etc., which are prepared by mixing the masterbatch and the diene rubber in a predetermined content ratio and vulcanizing the mixture. It is about.

디엔계 고무로서 대표되는 부타디엔계 고무는 아크릴로니트릴-부타디엔 고무 (이하, 'NBR'로 약칭함)와 스티렌-부타디엔 고무(이하, 'SBR'로 약칭함) 등이 포함될 수 있다. SBR은 부타디엔과 스티렌을 중합해 제조한 공중합체로 천연고무에 비해 내마모성, 내노화성, 내열성이 우수한 장점을 가지고 있으며 가공성이 용이하고 가황 특성이 안정적이어서 타이어, 신발, 고무호스, 벨트 등 대부분의 일반고무 제품에 사용이 가능하여 합성고무 수요의 80%를 차지할 만큼 가장 널리 사용되고 있는 합성고무 중의 하나다. SBR은 그 제조방법에 따라 유화중합 SBR과 용액중합 SBR로 구분되는데, 유화중합 SBR의 경우 스티렌 함량은 약 23%이고 부타디엔 구조는 cis-1,4 구조가 18%, trans-1,4 구조가 65 %, 비닐 구조가 17% 정도이다. 유화중합에 의해 생산되는 SBR은 중합온도에 따라 2가지로 구분되는데, 50 ℃ 이상에서 중합시키는 핫 러버(hot rubber)와 10 ℃ 내외에서 중합시키는 콜드 러버(cold rubber)가 있다.Butadiene rubbers represented as diene rubbers may include acrylonitrile-butadiene rubber (hereinafter abbreviated as 'NBR') and styrene-butadiene rubber (hereinafter abbreviated as 'SBR'). SBR is a copolymer made by polymerizing butadiene and styrene. It has the advantages of abrasion resistance, aging resistance, and heat resistance compared to natural rubber, and is easy to process and stable in vulcanization characteristics. It is one of the most widely used synthetic rubbers that can be used in rubber products, accounting for 80% of the demand for synthetic rubber. SBR is divided into emulsion polymerization SBR and solution polymerization SBR according to the preparation method. In the case of emulsion polymerization SBR, the styrene content is about 23%, butadiene structure is 18% cis-1,4 structure, trans-1,4 structure is 65%, vinyl structure 17%. SBR produced by emulsion polymerization is classified into two types according to the polymerization temperature. There are a hot rubber which is polymerized at 50 ° C. or higher and a cold rubber which is polymerized at around 10 ° C.

SBR은 화학적인 불규칙성으로 인한 비결정성 폴리머로 보강성 충진재를 다량으로 배합하지 않으면 요구하는 물성을 얻기 어렵고 점착성이 부족하고 수축율이 커 카렌가 가공, 압출가공이 어려운 단점이 있다. SBR의 강도와 내후성 등의 물성을 증가시키기 위한 가장 우수한 보강성 충진재는 카본블랙으로, SBR의 열에 의한 내노화성과 내마모성을 향상시킬 수 있다. 이와 같이 고무는 카본블랙, 금속 세라믹 등과 같은 이종의 필러를 30 ~ 50 중량부 정도로 다량 첨가시켜 그 강도를 증가시켜 왔으나, 이종의 재료를 다량 첨가함으로써 소재의 중량이 크게 증가하고 가공성이 저하되며 경제적이지 못한 문제점이 있다.SBR is a non-crystalline polymer due to chemical irregularities, it is difficult to obtain the required physical properties without a large amount of reinforcing fillers, lack of adhesiveness and shrinkage rate is difficult to Karena processing, extrusion processing is difficult. The most excellent reinforcing filler for increasing the physical properties such as strength and weather resistance of SBR is carbon black, which can improve aging resistance and abrasion resistance by heat of SBR. As such, rubber has been increased in strength by adding a large amount of heterogeneous fillers such as carbon black and metal ceramics to about 30 to 50 parts by weight, but by adding a large amount of heterogeneous materials, the weight of the material is greatly increased, and workability is reduced and economical. There is a problem.

대한민국 특허 제108956호에는 비결정성 폴리스티렌 수지 20 ~ 70 중량부와 고무 변성된 스티렌 수지 80 ~ 30 중량부로 구성된 스티렌 수지 100 중량부에, 폴리실록산 0.3 ~ 1.0 중량부와 유리섬유를 첨가되는 것을 특징으로 하는 스티렌계 수지 조성물이 기재되어 있다. 그러나, 상기 특허는 스티렌 수지에 폴리실록산을 분산시킴으로써 제조되는 유기 고분자 복합재에 관한 기술로서, 폴리실록산과 고분자 사이에 화학결합이 없어서 상분리가 일어나기 쉽고, 또한 무기 충진재와의 상용성에 문제가 있어 복합재의 물성을 향상시키는데 한계가 있다.Korean Patent No. 108956 discloses that 100 parts by weight of styrene resin composed of 20 to 70 parts by weight of amorphous polystyrene resin and 80 to 30 parts by weight of rubber-modified styrene resin are added, and 0.3 to 1.0 parts by weight of polysiloxane and glass fiber are added. Styrene-based resin compositions are described. However, the patent relates to an organic polymer composite prepared by dispersing polysiloxane in a styrene resin, and there is no chemical bond between the polysiloxane and the polymer, so that phase separation easily occurs, and there is a problem in compatibility with the inorganic filler, and thus the physical properties of the composite There is a limit to improvement.

따라서, 폴리실록산과 고분자 사이의 상용성을 향상시키고 무기충진재와의 혼화성을 증대시키기 위하여 실록산기가 고분자에 치환된 형태가 연구되어 왔다. 그 예로, 펜타메틸디실록산으로 치환된 폴리(이소프렌) 블록공중합체가 발표된 바 있다[Gabor, Allen H.; Lehner, Eric A.; Mao, Guoping; Schneggenburger, Lizabeth A.; Ober, Christopher K., Chem. Mater. (1994), 6(7), 927~34]. 그러나, 상기의 공중합체는 실록산 자체에 극성기 부분이 없어 무기충진재와의 상호작용이 낮은 단점이 있다.Therefore, in order to improve compatibility between the polysiloxane and the polymer and increase the compatibility with the inorganic filler, the form in which the siloxane group is substituted with the polymer has been studied. For example, poly (isoprene) block copolymers substituted with pentamethyldisiloxane have been published [Gabor, Allen H .; Lehner, Eric A .; Mao, Guoping; Schneggenburger, Lizabeth A .; Ober, Christopher K., Chem. Mater . (1994), 6 (7), 927--34. However, the copolymer has a disadvantage of low interaction with the inorganic filler because the siloxane itself does not have a polar group portion.

이에, 본 발명자들은 상기한 종래 기술에서의 문제점을 해결하기 위하여 연구 노력한 결과, 특정범위의 분자량을 가지는 디엔 공중합체에 극성 실록시알킬암모늄을 도입하여 무기층상화합물과의 혼화성이 우수한 신규의 개질된 디엔 공중합체를 합성하고, 또한 합성된 신규 디엔 공중합체에 무기층상화합물을 혼합하여 마스터배치를 제조하고, 제조된 혼화성이 우수한 마스터배치를 사용하여 디엔계 고무 와 일정 함량비로 배합하면 무기층상화합물의 층간으로 디엔계 고무 삽입이 용이하여 디엔계 고무와 무기층상화합물간의 상용성이 증대하여 인장강도, 열안정성, 내후성 등이 향상된 나노복합재를 재조할 수 있음을 알게 됨으로써 본 발명을 완성하게 되었다.Accordingly, the present inventors have made efforts to solve the above problems in the prior art, and as a result, by introducing a polar siloxyalkylammonium in a diene copolymer having a specific range of molecular weight, a novel modification with excellent inorganic layered compound Synthesized diene copolymer, and mixed with the synthesized new diene copolymer inorganic layer compound to prepare a master batch, and using a prepared master batch with excellent compatibility with the diene rubber in a certain content ratio inorganic layer phase The present invention was completed by knowing that it is easy to insert the diene rubber into the interlayer of the compound, thereby increasing the compatibility between the diene rubber and the inorganic layered compound to prepare a nanocomposite having improved tensile strength, thermal stability, and weather resistance. .

즉, 본 발명에서는 디엔계 나노복합재 제조에 사용되는 마스터배치를 디엔고무와 화학적으로 유사한 구조를 가지도록 함으로써 유기고분자와 무기층상화합물간의 혼화성을 증대시키고, 특히 무기층상화합물과 유기 고분자가 균일하게 분산되어 있음으로써 디엔계 나노복합재가 보다 우수한 기계적 강도 및 내후성을 나타낼 수 있도록 한 것이다. That is, the present invention increases the miscibility between the organic polymer and the inorganic layered compound by making the masterbatch used for the production of the diene-based nanocomposite chemically have a structure similar to that of the diene rubber, in particular the inorganic layered compound and the organic polymer uniformly By being dispersed, the diene-based nanocomposites can exhibit more excellent mechanical strength and weather resistance.

따라서, 본 발명은 극성 실록시알킬암모늄으로 개질된 신규의 디엔 공중합체를 제공하는데 그 목적이 있다.It is therefore an object of the present invention to provide novel diene copolymers modified with polar siloxyalkylammonium.

또한, 본 발명은 상기한 신규의 디엔 공중합체와 무기층상화합물을 혼합하여 제조된 디엔-무기층상화합물 마스터 배치를 제공하는데 다른 목적이 있다.Another object of the present invention is to provide a diene-inorganic layered compound master batch prepared by mixing the new diene copolymer and the inorganic layered compound.

또한, 본 발명은 상기한 마스터 배치와 디엔계 고무를 배합하여 유-무기물의 분산특성이 우수하여 제반 기계적 특성이 향상된 나노복합재를 제공하는데 또 다른 목적이 있다.In addition, the present invention is another object to provide a nanocomposite with improved mechanical properties by combining the master batch and the diene-based rubber is excellent in the dispersion properties of organic-inorganic.

본 발명은 다음 화학식 1로 표시되는 극성 실록시알킬암모늄이 결합되어 개질된 디엔 공중합체를 그 특징으로 한다.The present invention is characterized by a diene copolymer modified by combining a polar siloxyalkylammonium represented by the following formula (1).

Figure 112005036641111-pat00001
Figure 112005036641111-pat00001

상기 화학식 1에서, R1, R2, R3, R4, R5, R6, 및 R7은 각각 수소원자 또는 탄소수 1 내지 20의 알킬기를 나타내고; X는 탄소수 1 내지 10의 알킬렌기 또는 페닐기를 나타내고; p는 2 내지 6의 정수를 나타내고; q는 0 또는 1 내지 6의 정수를 나타낸다.In Formula 1, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , and R 7 each represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms; X represents an alkylene group or a phenyl group having 1 to 10 carbon atoms; p represents an integer from 2 to 6; q represents 0 or the integer of 1-6.

또한, 본 발명은 상기한 개질된 디엔 공중합체 40 ~ 99.9 중량%와, 무기층상화합물 0.1 ~ 60 중량%가 함유되어 있는 디엔-무기층상화합물 마스터 배치를 포함한다.The present invention also includes a master batch of a diene-inorganic layered compound containing 40 to 99.9% by weight of the modified diene copolymer and 0.1 to 60% by weight of the inorganic layered compound.

또한, 본 발명은 상기한 디엔-무기층상화합물 마스터 배치 1 ~ 30 중량%와 디엔 고무 70 ~ 99 중량%를 혼합하여 용융가공, 가황 및 압축성형하여 제조한 나노복합재를 포함한다.In addition, the present invention includes a nanocomposite prepared by melting, vulcanizing and compression molding by mixing the diene-inorganic layered compound master batch 1 to 30% by weight and diene rubber 70 to 99% by weight.

이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.Referring to the present invention in more detail as follows.

본 발명은 디엔 공중합체를 상기 화학식 1로 표시되는 극성 실록시알킬암모늄으로 개질시켜 무기층상화합물과의 상용성이 개선된 신규 개질된 디엔 공중합체에 관한 것으로, 이 개질된 디엔 공중합체는 무기층상화합물과의 혼화성이 우수하므로 디엔-무기층상화합물 마스터 배치에 디엔 고무를 혼합한 후에 용융, 가황 및 압축성형하여 제조된 나노복합재는 디엔 고무가 무기층상화합물의 층간에 용이하게 삽입될 수 있어 나노 수준으로 고루 분산될 수 있게 됨으로써, 기존의 디엔 고무와 무기층상화합물만으로 제조한 복합재에 비해 기계적 강도, 열안정성, 내후성 등의 물성이 향상된 효과를 얻을 수 있다. The present invention relates to a novel modified diene copolymer having improved compatibility with the inorganic layered compound by modifying the diene copolymer with the polar siloxyalkylammonium represented by Formula 1, wherein the modified diene copolymer The nanocomposite prepared by mixing diene rubber in the diene-inorganic layered master batch after melting, vulcanization and compression molding because of its excellent miscibility with the compound can easily insert the diene rubber between the layers of the inorganic layered compound. By being able to be evenly dispersed at a level, it is possible to obtain an effect of improved physical properties, such as mechanical strength, thermal stability, weather resistance, compared to the composite material prepared only with conventional diene rubber and inorganic layered compound.

즉, 본 발명은 디엔 공중합체의 유기화합물과 무기층상화합물간의 상용성을 증대시키기 위해 상기 화학식 1로 표시되는 극성 실록시알킬암모늄을 디엔 공중합체에 도입하여 개질시켰고, 상기 개질된 디엔 공중합체는 무기층상화합물과의 분산성이 증대되어 기존의 디엔계 나노복합재에 비교하여 월등하게 향상된 물성을 나타내도록 한데 기술적 특징이 있다.That is, the present invention was modified by introducing a polar siloxyalkylammonium represented by the formula (1) to the diene copolymer in order to increase the compatibility between the organic compound and the inorganic layer compound of the diene copolymer, the modified diene copolymer The dispersibility with the inorganic layered compound is increased to show a significantly improved physical properties compared to the conventional diene-based nanocomposites.

본 발명이 개질을 위해 사용하는 디엔 공중합체는 알드리치 등의 제조회사로부터 상업적으로 구매가 가능한 통상의 고분자로서, 이의 선택에 있어 특별한 제한을 두고 있지 않다. 상기한 디엔 공중합체를 구체적으로 예시하면, 스티렌-부타디엔 공중합체, 아크릴로니트릴-부타디엔 공중합체, 아크릴레이트-부타디엔 고무, 아크릴로니트릴-부타디엔-스티렌 공중합체, 에틸렌-프로필렌-디엔계 중합체가 포함될 수 있으며, 또한 상기한 공중합체가 부분적으로 수소화, 에폭시화 또는 브롬화된 중합체를 사용할 수도 있다. 다만, 선택 사용되는 디엔 공중합체의 수평균분자량이 500 ~ 15000인 것을 사용하는 것이 바람직한 바, 분자량이 500 미만이면 열안정성과 기계적 물성의 효과적인 개선을 얻기 어렵고, 15000을 초과하면 화학적으로 개질하고 정제하는 과정이 복잡하고 무기층상화합물과의 상용성이 낮은 문제점이 있기 때문이다.The diene copolymers used for the modification of the present invention are conventional polymers commercially available from Aldrich et al., And there is no particular limitation in their selection. Specific examples of the diene copolymer described above include styrene-butadiene copolymer, acrylonitrile-butadiene copolymer, acrylate-butadiene rubber, acrylonitrile-butadiene-styrene copolymer, and ethylene-propylene-diene-based polymer. It is also possible to use polymers in which the aforementioned copolymers are partially hydrogenated, epoxidized or brominated. However, it is preferable to use a number average molecular weight of 500 ~ 15000 of the diene copolymer to be used. If the molecular weight is less than 500, it is difficult to obtain effective improvement of thermal stability and mechanical properties, and if it exceeds 15000, it is chemically modified and purified. This is because the process is complicated and the compatibility with the inorganic layer compound is low.

본 발명은 디엔 공중합체의 개질제로서 상기 화학식 1로 표시되는 극성 실록 시알킬암모늄을 사용한다. 상기 화학식 1로 표시되는 실록시알킬암모늄에 있어, 바람직하기로는 R1, R2, R3, 및 R4는 각각 수소원자 또는 메틸기를 나타내고, R5, R6, 및 R7은 각각 수소원자 또는 탄소수 5 내지 20의 알킬기를 나타내고, X는 탄소수 1 내지 3의 알킬렌기 또는 페닐기를 나타내고, p는 2 내지 6의 정수를 나타내고, q는 0 또는 1 내지 6의 정수를 나타내는 경우이다. 상기한 실록시알킬암모늄을 보다 구체적으로 예시하면, 테트라메틸디실록시에틸 디메틸 옥틸 암모늄, 테트라메틸디실록시에틸벤질 디메틸 옥틸 암모늄, 테트라메틸디실록시에틸벤질 디메틸 도데실 암모늄, 테트라메틸디실록시에틸벤질 디메틸 옥타데실 암모늄, 테트라메틸디실록시운데실 디메틸 암모늄 등을 사용할 수 있다.The present invention uses a polar siloxane alkylammonium represented by the formula (1) as a modifier of the diene copolymer. In the siloxyalkylammonium represented by Formula 1, preferably, R 1 , R 2 , R 3 , and R 4 each represent a hydrogen atom or a methyl group, and R 5 , R 6 , and R 7 each represent a hydrogen atom. Or an alkyl group having 5 to 20 carbon atoms, X represents an alkylene group or phenyl group having 1 to 3 carbon atoms, p represents an integer of 2 to 6, and q represents 0 or an integer of 1 to 6; Specific examples of the above-described siloxyalkylammonium include tetramethyldisiloxyethyl dimethyl octyl ammonium, tetramethyldisiloxyethylbenzyl dimethyl octyl ammonium, tetramethyldisiloxyethylbenzyl dimethyl dodecyl ammonium, tetramethyldisiloxane Cethyl ethyl benzyl dimethyl octadecyl ammonium, tetramethyl disiloxy undecyl dimethyl ammonium, etc. can be used.

본 발명에 따른 개질된 디엔 공중합체의 제조방법을 각 과정별로 구체적으로 설명하면 다음과 같다.The process for producing the modified diene copolymer according to the present invention will be described in detail for each process as follows.

다음 화학식 2로 표시되는 디실록산 화합물과 다음 화학식 3으로 표시되는 알케닐 할라이드 화합물을 백금촉매 하에서 반응시켜, 다음 화학식 4로 표시되는 디실록산알킬 할라이드 화합물을 제조한다.The disiloxane compound represented by the following formula (2) and the alkenyl halide compound represented by the following formula (3) are reacted under a platinum catalyst to prepare a disiloxane alkyl halide compound represented by the following formula (4).

Figure 112005036641111-pat00002
Figure 112005036641111-pat00002

상기에서, R1, R2, R3, R4, X, p, 및 q는 각각 상기 화학식 1에서 정의한 바와 같고, Y는 할로겐원자를 나타낸다.In the above, R 1 , R 2 , R 3 , R 4 , X, p, and q are as defined in the formula (1), respectively, Y represents a halogen atom.

그런 다음, 다음 화학식 5로 표시되는 디엔 공중합체와 상기 화학식 4로 표 시되는 디실록산알킬 할라이드 화합물을 백금촉매 하에서 반응시켜, 다음 화학식 6으로 표시되는 디실록시기로 치환된 디엔 공중합체를 제조한다.Then, the diene copolymer represented by the following formula (5) and the disiloxane alkyl halide compound represented by the formula (4) are reacted under a platinum catalyst to prepare a diene copolymer substituted with the disiloxy group represented by the following formula (6). .

Figure 112005036641111-pat00003
Figure 112005036641111-pat00003

상기에서, R1, R2, R3, R4, R5, R6, R7, X, p, 및 q는 각각 상기 화학식 1에서 정의한 바와 같고, ℓ과 n은 각각 28 ~ 78이고, m과 o는 각각 0.1 ~ 30이며, ℓ+m+n+o= 100을 나타내며, Y는 할로겐원자를 나타낸다.In the above, R 1 , R 2 , R 3 , R 4 , R 5 , R 6, R 7, X, p, and q are as defined in Formula 1, respectively, l and n are 28 to 78, respectively, m and o are 0.1-30, respectively, and represent l + m + n + o = 100, and Y represents a halogen atom.

그런 다음, 상기 화학식 6으로 표시되는 디실록산기로 치환된 디엔 공중합체를 다음 화학식 7로 표시되는 아민 화합물과 반응시켜, 극성 실록시알킬암모늄이 결합되어 있는 다음 화학식 8로 표시되는 개질된 디엔 공중합체를 제조한다.Then, the diene copolymer substituted with the disiloxane group represented by Chemical Formula 6 is reacted with the amine compound represented by the following Chemical Formula 7, and the modified diene copolymer represented by the following Chemical Formula 8 having the polar siloxyalkylammonium bonded thereto To prepare.

Figure 112005036641111-pat00004
Figure 112005036641111-pat00004

상기에서, R1, R2, R3, R4, R5, R6, R7, X, p, 및 q는 각각 상기 화학식 1에서 정의한 바와 같고, ℓ과 n은 각각 28 ~ 78이고, m과 o는 각각 0.1 ~ 30이며, ℓ+m+n+o= 100을 나타내며, Y는 할로겐원자를 나타낸다.In the above, R 1 , R 2 , R 3 , R 4 , R 5 , R 6, R 7, X, p, and q are as defined in Formula 1, respectively, l and n are 28 to 78, respectively, m and o are 0.1-30, respectively, and represent l + m + n + o = 100, and Y represents a halogen atom.

상기한 개질된 디엔 공중합체 제조과정 중에 사용되는 실릴화 촉매로는 크로로프라틴산, 팔라듐, 로듐, 플라티늄과 같은 전이금속 또는 이들 전이금속의 착화합물을 사용할 수 있으며, 이러한 실릴화 촉매는 알드리치 등 제조회사로부터 상업적으로 구매 가능하나 공지의 방법으로 합성이 가능하다.As the silylation catalyst used during the production of the modified diene copolymer, transition metals such as croropratinic acid, palladium, rhodium, and platinum, or complex compounds of these transition metals may be used. It is commercially available from the company but can be synthesized by known methods.

상기한 실릴화 및 아민치환반응은 -10 ℃ 내지 150 ℃의 범위에서 수행하도록 하고, 바람직하게는 20 ℃ 내지 120 ℃의 온도범위 및 질소분위기 하에서 수행하는 것이다. 반응 용매로는 벤젠, 톨루엔, 크실렌 등 유기 용매를 사용하며 특별히 제한하지 않는다. 반응 시간은 특별히 한정되어 있지 않으나 30분 내지 1주일 정도이다.The above silylation and amine substitution reaction is to be carried out in the range of -10 ℃ to 150 ℃, preferably carried out in a temperature range of 20 ℃ to 120 ℃ and nitrogen atmosphere. As the reaction solvent, organic solvents such as benzene, toluene and xylene are used and are not particularly limited. Although reaction time is not specifically limited, It is about 30 minutes-about 1 week.

상기 화학식 1로 표시되는 극성 실록시알킬암모늄의 치환율에 대해서는 특별한 제한을 두지 않으나, 바람직하기로는 상기 화학식 8로 표시되는 개질된 디엔 공중합체를 구성하는 전체 반복단위 수(ℓ+m+n+o)에 대하여 극성 실록시알킬암모늄이 치환된 반복단위 수(m)의 비가 0.1 내지 50 % 범위를 유지하는 것이 바람직하다.The substitution rate of the polar siloxyalkylammonium represented by Chemical Formula 1 is not particularly limited, but preferably the total number of repeating units constituting the modified diene copolymer represented by Chemical Formula 8 (l + m + n + o) It is preferable to maintain the ratio of the number of repeating units (m) substituted with polar siloxyalkylammonium in the range of 0.1 to 50% relative to).

한편, 본 발명은 상기한 개질된 디엔 공중합체 40 ~ 99.9 중량%와 무기층상화합물 0.1 ~ 60 중량%가 포함되어 이루어진 디엔-무기층상화합물 마스터 배치를 권리범위로 포함한다.On the other hand, the present invention includes a diene-organic layered compound master batch composed of 40 to 99.9% by weight of the modified diene copolymer and 0.1 to 60% by weight of the inorganic layered compound as a scope.

무기층상화합물은 당 분야에서 복합재 제조 시에 통상적으로 사용되어온 물질로서, 본 발명은 무기층상화합물의 선택에 있어 특별한 제한을 두고 있지는 않다. 무기층상화합물로는 천연 또는 합성 점토 광물을 사용할 수 있고, 또는 친유기화된 천연 또는 합성 점토 광물을 사용할 수 있다. 구체적으로는 광물학적 스멕타이트 그룹(smectite group)에 속하며, 운모형태(mica type)의 층상 규산염(layered silicates) 광물을 이용할 수 있는데, 예를 들어 몬모릴로나이트(montmorillonite), 벤토나이트(bentonite) 등이 포함될 수 있다.Inorganic layered compounds have been commonly used in the manufacture of composites in the art, and the present invention does not place any particular limitation on the selection of the inorganic layered compound. As the inorganic layered compound, natural or synthetic clay minerals may be used, or lipophilic natural or synthetic clay minerals may be used. Specifically, it belongs to the mineralogy smectite group, and may use mica type layered silicates minerals, for example, montmorillonite, bentonite, and the like. .

한편, 본 발명은 상기한 디엔-무기층상화합물 마스터 배치 1 ~ 30 중량%와 디엔 고무 70 ~ 99 중량%를 혼합, 가황 가공하여 제조된 나노복합재를 권리범위로 포함한다.On the other hand, the present invention includes the nanocomposite prepared by mixing and vulcanizing the diene-inorganic layered compound master batch 1 to 30% by weight and diene rubber 70 to 99% by weight as a right range.

디엔 고무는 스티렌-부타디엔 공중합체, 아크릴로니트릴-부타디엔 공중합체, 아크릴레이트-부타디엔 고무, 아크릴로니트릴-부타디엔-스티렌 공중합체, 에틸렌-프로필렌-디엔계 중합체가 포함될 수 있으며, 또한 상기한 공중합체가 부분적으로 수소화, 에폭시화 또는 브롬화된 중합체를 사용할 수도 있다The diene rubber may include styrene-butadiene copolymer, acrylonitrile-butadiene copolymer, acrylate-butadiene rubber, acrylonitrile-butadiene-styrene copolymer, ethylene-propylene-diene-based polymer, and also the copolymer It is also possible to use partially hydrogenated, epoxidized or brominated polymers.

본 발명의 나노복합재를 제조함에 있어, 마스터 배치의 함유량이 1 중량% 미만이면 나노복합재의 물성 향상효과를 얻기가 어렵고, 30 중량%를 초과하면 무기층상화합물의 응집(aggregation) 및 경제적인 측면에서의 문제점이 있다.In manufacturing the nanocomposite of the present invention, if the content of the master batch is less than 1% by weight, it is difficult to obtain the effect of improving the physical properties of the nanocomposite, and if it exceeds 30% by weight in terms of aggregation and economics of the inorganic layered compound, There is a problem.

본 발명의 나노복합재는 공지의 방법으로 혼합 및 가황 가공하여 제조할 수 있다. 예를 들어, 용융가공법으로 제조하는 경우, 디엔 고무를 20 ℃ 내지 150 ℃로 예열되어 있는 브라벤더 믹서에 넣어 용융한 다음, 디엔-무기층상화합물 마스 터 배치를 첨가하여 2 분 내지 150 분간 용융 혼합하고, 여기에 기타첨가제를 첨가하여 1 분 내지 30 분간 용융 혼합한다. 그런 다음, 황을 첨가하여 용융 혼합된 샘플을 두께 0.1 mm 내지 5 mm의 몰드에 넣고 50 ℃ 내지 250 ℃로 예열된 프레스(hot press)를 이용하여 2 분 내지 150 분간 압축성형하고 냉각하여 나노복합재를 제조할 수 있다. The nanocomposite of the present invention can be produced by mixing and vulcanizing by a known method. For example, in the case of manufacturing by melt processing, the diene rubber is melted in a Brabender mixer preheated at 20 ° C. to 150 ° C., and then melt mixed for 2 to 150 minutes by adding a diene-inorganic layer master master batch. Then, other additives are added thereto and melt mixed for 1 to 30 minutes. Subsequently, the melt-mixed sample by adding sulfur was placed in a mold having a thickness of 0.1 mm to 5 mm, press-molded and cooled for 2 to 150 minutes using a hot press preheated to 50 ° C to 250 ° C, and then the nanocomposite material. Can be prepared.

상기 용융가공법을 수행하는 과정 중에 추가로 가소제를 상기 나노복합재 조성물 100 중량부에 대하여 0.1 ~ 80 중량부 범위 내에서 혼합하여 사용할 수 있고, 공지의 수지 중 선택된 하나 이상의 수지를 첨가하여 제조할 수도 있다. 그리고, 염료, 안료, 실리카, 카본블랙, 금속분말 및 세라믹 등 당 분야에서 공지된 첨가제를 첨가하여 제조할 수도 있고, 상기 첨가제로서 산화제, 자외선 안정제, 커플링제, 난연제 및 가교제 중에서 선택된 통상의 복합재 제조용 첨가제를 상기 나노복합재 100 중량부에 대하여 0.1 ~ 10 중량부 추가로 첨가하여 제조할 수 있다.In the process of performing the melt processing method, a plasticizer may be further mixed and used within the range of 0.1 to 80 parts by weight based on 100 parts by weight of the nanocomposite composition, and may be prepared by adding one or more resins selected from known resins. . In addition, dyes, pigments, silica, carbon black, metal powder and ceramics may be prepared by adding additives known in the art, and as the additives for the production of conventional composite materials selected from oxidizing agents, UV stabilizers, coupling agents, flame retardants and crosslinking agents. An additive may be prepared by adding additional 0.1 to 10 parts by weight based on 100 parts by weight of the nanocomposite.

이상의 제조방법으로 제조된 본 발명의 나노복합재는 무기층상화합물의 균일한 분산과 적절한 가황 가공조건으로 우수한 기계적 성질을 나타내었다. The nanocomposite of the present invention prepared by the above production method showed excellent mechanical properties with uniform dispersion of inorganic layered compound and suitable vulcanization processing conditions.

따라서, 본 발명에서는 디엔계 나노복합재 제조에 사용되는 마스터배치를 디엔고무와 화학적으로 유사한 구조를 가지도록 함으로써 유기고분자와 무기층상화합물간의 혼화성을 증대시키고, 특히 무기층상화합물과 유기 고분자가 균일하게 분산되어 있음으로써 디엔계 나노복합재가 보다 우수한 기계적 강도 및 내후성을 가질 수 있는 것이다. Therefore, in the present invention, the masterbatch used for the production of diene-based nanocomposites has a chemically similar structure to that of the diene rubber, thereby increasing the miscibility between the organic polymer and the inorganic layered compound, and in particular, the inorganic layered compound and the organic polymer uniformly. By being dispersed, the diene-based nanocomposite may have more excellent mechanical strength and weather resistance.

이와 같은 본 발명은 다음의 실시예에 의거하여 더욱 상세히 설명하겠는바, 본 발명이 이에 한정되는 것은 아니다.Such a present invention will be described in more detail based on the following examples, but the present invention is not limited thereto.

합성예 : 개질된 디엔 공중합체의 제조Synthesis Example: Preparation of Modified Diene Copolymer

합성예 1 : 폴리부타디엔-[(1,1,3,3-테트라메틸-디실록시)-에틸-벤질]-디메틸-옥틸-암모늄 (PB-TMDSEB-DMOA)의 합성 Synthesis Example 1 Synthesis of Polybutadiene-[(1,1,3,3-tetramethyl-disiloxy) -ethyl-benzyl] -dimethyl-octyl-ammonium (PB-TMDSEB-DMOA)

Figure 112005036641111-pat00005
Figure 112005036641111-pat00005

1) 1-[2-(4-클로로 메틸-페닐)-에틸]-1,1,3,3-테트라메틸-디실록산 합성 1) 1- [2- (4-chloromethyl-phenyl) -ethyl] -1,1,3,3-tetramethyl-disiloxane synthesis

1000 mL의 3구 둥근 바닥 플라스크에 마그네틱 교반기, 질소기체 흡입관 및 콘덴서를 장착한 뒤 4-비닐벤질클로라이드(70 g, 0.46 mol)를 무수 톨루엔(500 mL)에 용해한 후 플라티늄(0)-1,3-디비닐-1,1,3,3-테트라메틸실란 촉매(쟈일렌 용액) (0.5 mL)을 첨가하여 실온에서 10분 교반하였다. 이 혼합용액에 1,1,3,3-테트라메틸디실록산(92,4 g, 0.69 mol)를 적하하였다. 이 반응 혼합물을 서서히 가열하여 80 ℃에서 12시간 교반한 후 온도를 상온까지 내렸다. 백금촉매를 제거하기 위하여 활성탄을 첨가하여 4시간동안 교반 후 셀라이트(Celite)를 이용하여 거른 후 감압 하에서 용매를 제거하여 1-[2-(4-클로로 메틸-페닐)-에틸]-1,1,3,3-테트라메틸-디실록산을 제조하였다.A 1000 mL three-necked round bottom flask was equipped with a magnetic stirrer, a nitrogen gas suction tube, and a condenser, and 4-vinylbenzyl chloride (70 g, 0.46 mol) was dissolved in anhydrous toluene (500 mL), followed by platinum (0) -1, 3-divinyl-1,1,3,3-tetramethylsilane catalyst (xylene solution) (0.5 mL) was added and stirred at room temperature for 10 minutes. 1,1,3,3-tetramethyldisiloxane (92,4 g, 0.69 mol) was added dropwise to this mixed solution. The reaction mixture was slowly heated, stirred at 80 ° C. for 12 hours, and then the temperature was lowered to room temperature. Activated carbon was added to remove the platinum catalyst, stirred for 4 hours, filtered through Celite, and then the solvent was removed under reduced pressure to remove 1- [2- (4-chloromethyl-phenyl) -ethyl] -1, 1,3,3-tetramethyl-disiloxane was prepared.

1H NMR(300 MHz, CDCl3) δ-0.08~0.08 (m, 12H), 0.18 (m, 2H), 2.54(m, 2H), 4.39 (s, 2H), 7.05~7.17(m, 4H). 1 H NMR (300 MHz, CDCl 3 ) δ-0.08 to 0.08 (m, 12H), 0.18 (m, 2H), 2.54 (m, 2H), 4.39 (s, 2H), 7.05 to 7.17 (m, 4H) .

2) 폴리부타디엔 1-[2-(4- 클로로 메틸-페닐)-에틸]-1,1,3,3-테트라메틸-디실록산 합성 2) Polybutadiene 1- [2- (4 - chloromethyl-phenyl) -ethyl] -1,1,3,3-tetramethyl-disiloxane synthesis

1000 mL의 3구 둥근 바닥 플라스크에 마그네틱 교반기, 질소기체 흡입관 및 콘덴서를 장착한 뒤 폴리부타디엔(50 g, 0.92 mol)을 무수 톨루엔(300 mL)에 용해한 후 플라티늄(0)-1,3-디비닐-1,1,3,3-테트라메틸실란 촉매(쟈일렌 용액) (0.5 mL)을 첨가하여 실온에서 10분 교반하였다. 이 혼합용액에 1-[2-(4-클로로 메틸-페닐)-에틸]-1,1,3,3-테트라메틸-디실록산 (26.52 g, 0.09 mol)를 적하하였다. 이 반응 혼합물을 서서히 가열하여 80 ℃에서 12시간 교반한 후 온도를 상온까지 내렸다. 백금촉매를 제거하기 위하여 활성탄을 첨가하여 4시간 교반 후 셀라이트를 이용하여 거른 후 감압 하에서 용매를 제거하여 폴리부타디엔-1-[2-(4-클로로 메틸-페닐)-에틸]-1,1,3,3-테트라메틸-디실록산을 제조하였다.A 1000 mL three-necked round bottom flask was equipped with a magnetic stirrer, a nitrogen gas inlet tube, and a condenser, followed by dissolving polybutadiene (50 g, 0.92 mol) in anhydrous toluene (300 mL), followed by platinum (0) -1,3-di Vinyl-1,1,3,3-tetramethylsilane catalyst (xylene solution) (0.5 mL) was added and stirred at room temperature for 10 minutes. 1- [2- (4-chloromethyl-phenyl) -ethyl] -1,1,3,3-tetramethyl-disiloxane (26.52 g, 0.09 mol) was added dropwise to this mixed solution. The reaction mixture was slowly heated, stirred at 80 ° C. for 12 hours, and then the temperature was lowered to room temperature. Activated carbon was added to remove the platinum catalyst, stirred for 4 hours, filtered through celite, and then the solvent was removed under reduced pressure to remove polybutadiene-1- [2- (4-chloromethyl-phenyl) -ethyl] -1,1 , 3,3-tetramethyl-disiloxane was prepared.

1H NMR(300 MHz, CDCl3) δ-0.1~0.1(m, 12H), 0.79 (m, H), 1.27(m, H), 1.87~2.21(m, H), 2.56(m, 2H), 4.46(s, 2H), 4.89(m, H), 5.21~5.69(m, H), 7.06~7.13(m, 4H). 1 H NMR (300 MHz, CDCl 3 ) δ-0.1 to 0.1 (m, 12H), 0.79 (m, H), 1.27 (m, H), 1.87 to 2.21 (m, H), 2.56 (m, 2H) , 4.46 (s, 2H), 4.89 (m, H), 5.21-5.69 (m, H), 7.06-7.13 (m, 4H).

3) 폴리부타디엔-[(1,1,3,3-테트라메틸-디실록시)-에틸-벤질]-디메틸-옥틸-암모늄 합성 3) Polybutadiene-[(1,1,3,3-tetramethyl-disiloxy) -ethyl-benzyl] -dimethyl-octyl-ammonium synthesis

1000 mL의 3구 둥근 바닥 플라스크에 마그네틱 교반기, 질소기체 흡입관 및 콘덴서를 장착한 뒤, 폴리부타디엔-1-[2-(4-클로로 메틸-페닐)-에틸]-1,1,3,3-테트라메틸-디실록산(50 g)을 무수 테트라히드로퓨란(60 mL)에 용해한 후 디메틸옥틸아민(8.65 g)을 첨가하여 70 ℃에서 24시간 교반한 후 온도를 상온까지 내렸다. 이 용액을 감압 하에서 용매를 제거하여 폴리부텐-[(1,1,3,3-테트라메틸-디실록시)-에틸-벤질]-디메틸-옥틸-암모늄(55g, 수율95%)을 제조하였다.A 1000 mL three-necked round bottom flask was equipped with a magnetic stirrer, a nitrogen gas suction tube and a condenser, and then polybutadiene-1- [2- (4-chloro methyl-phenyl) -ethyl] -1,1,3,3- Tetramethyl-disiloxane (50 g) was dissolved in anhydrous tetrahydrofuran (60 mL), dimethyloctylamine (8.65 g) was added thereto, stirred at 70 ° C for 24 hours, and the temperature was lowered to room temperature. The solvent was removed under reduced pressure to prepare polybutene-[(1,1,3,3-tetramethyl-disiloxy) -ethyl-benzyl] -dimethyl-octyl-ammonium (55 g, 95% yield). .

1H NMR(300 MHz, CDCl3) δ-0.10~0.1(m, 12H), 0.79 (m, H), 1.02~1.24(m, H), 1.75~2.21(m, H), 2.56(m, 2H), 3.24(s, 6H), 4.92(m, H), 5.21~5.69(m, H), 7.06~7.13(m, 4H). 1 H NMR (300 MHz, CDCl 3 ) δ-0.10 to 0.1 (m, 12H), 0.79 (m, H), 1.02 to 1.24 (m, H), 1.75 to 2.21 (m, H), 2.56 (m, 2H), 3.24 (s, 6H), 4.92 (m, H), 5.21-5.69 (m, H), 7.06-7.13 (m, 4H).

합성예 2 : 폴리부타디엔-[(1,1,3,3-테트라메틸-디실록시)-에틸-벤질]-디메틸-도데실-암모늄 (PB-TMDSEB-DMDDA)의 합성Synthesis Example 2 Synthesis of Polybutadiene-[(1,1,3,3-tetramethyl-disiloxy) -ethyl-benzyl] -dimethyl-dodecyl-ammonium (PB-TMDSEB-DMDDA)

Figure 112005036641111-pat00006
Figure 112005036641111-pat00006

1000 mL의 3구 둥근 바닥 플라스크에 마그네틱 교반기, 질소기체 흡입관 및 콘덴서를 장착한 뒤, 상기 합성예 1-2)의 폴리부타디엔-1-[2-(4-클로로 메틸-페닐)-에틸]-1,1,3,3-테트라메틸-디실록산(50 g)을 무수 테르라히드로퓨란(60 mL)에 용해한 후 디메틸도데실아민(9.82 g)을 첨가하여 70 ℃에서 24시간 교반한 후 온도를 상온까지 내렸다. 이 용액을 감압 하에서 용매를 제거하여 폴리부타디엔-[(1,1,3,3-테트라메틸-디실록시)-에틸-벤질]-디메틸-도데실-암모늄(54g, 수율92%)을 제조하였다.A 1000 mL three-necked round bottom flask was equipped with a magnetic stirrer, a nitrogen gas suction tube, and a condenser, and then polybutadiene-1- [2- (4-chloromethyl-phenyl) -ethyl]-of Synthesis Example 1-2)- Dissolve 1,1,3,3-tetramethyl-disiloxane (50 g) in anhydrous terahydrofuran (60 mL), add dimethyldodecylamine (9.82 g), and stir at 70 ° C. for 24 hours. Lowered to room temperature. The solvent was removed under reduced pressure to prepare polybutadiene-[(1,1,3,3-tetramethyl-disiloxy) -ethyl-benzyl] -dimethyl-dodecyl-ammonium (54 g, 92% yield). It was.

1H NMR(300 MHz, CDCl3) δ-0.10~0.1(m, 12H), 0.75 (m, H), 1.02~1.29(m, H), 1.77~2.30(m, H), 2.56(m, 2H), 3.31(s, 6H), 4.97(m, H), 5.21~5.70(m, H), 7.06~7.13(m, 4H). 1 H NMR (300 MHz, CDCl 3 ) δ-0.10 to 0.1 (m, 12H), 0.75 (m, H), 1.02 to 1.29 (m, H), 1.77 to 2.30 (m, H), 2.56 (m, 2H), 3.31 (s, 6H), 4.97 (m, H), 5.21-5.70 (m, H), 7.06-7.13 (m, 4H).

합성예 3 : 폴리부타디엔-[(1,1,3,3-테트라메틸-디실록시)-에틸-벤질]-디메틸-옥타데실-암모늄 (PB-TMDSEB-DMODA)의 합성Synthesis Example 3 Synthesis of Polybutadiene-[(1,1,3,3-tetramethyl-disiloxy) -ethyl-benzyl] -dimethyl-octadecyl-ammonium (PB-TMDSEB-DMODA)

Figure 112005036641111-pat00007
Figure 112005036641111-pat00007

1000 mL의 3구 둥근 바닥 플라스크에 마그네틱 교반기, 질소기체 흡입관 및 콘덴서를 장착한 뒤 상기 합성예 1-2)의 폴리부타디엔-1-[2-(4-클로로 메틸-페닐)-에틸]-1,1,3,3-테트라메틸-디실록산(50 g)을 무수 테르라히드로퓨란(60 mL)에 용해 한 후 디메틸옥타데실아민(13.69 g)을 첨가하여 70 ℃에서 24시간 교반한 후 온도를 상온까지 내렸다. 이 용액을 감압 하에서 용매를 제거하여 폴리부타디엔-[(1,1,3,3-테트라메틸-디실록시)-에틸-벤질]-디메틸-옥타데실-암모늄(59g, 수율94%)을 제조하였다.A 1000 mL three-neck round bottom flask was equipped with a magnetic stirrer, a nitrogen gas suction tube, and a condenser, and then polybutadiene-1- [2- (4-chloromethyl-phenyl) -ethyl] -1 of Synthesis Example 1-2). Dissolve 1,3,3-tetramethyl-disiloxane (50 g) in anhydrous terahydrofuran (60 mL), add dimethyloctadecylamine (13.69 g), and stir at 70 ° C. for 24 hours. Lowered to room temperature. The solvent was removed under reduced pressure to prepare polybutadiene-[(1,1,3,3-tetramethyl-disiloxy) -ethyl-benzyl] -dimethyl-octadecyl-ammonium (59 g, 94% yield). It was.

1H NMR(300 MHz, CDCl3) δ-0.10~0.13(m, 12H), 0.75 (m, H), 1.02~1.24(m, H), 1.75~2.25(m, H), 2.51(m, 2H), 3.22(s, 6H), 4.88(m, H), 5.21~5.71(m, H), 7.06~7.18(m, 4H). 1 H NMR (300 MHz, CDCl 3 ) δ-0.10 to 0.13 (m, 12H), 0.75 (m, H), 1.02 to 1.24 (m, H), 1.75 to 2.25 (m, H), 2.51 (m, 2H), 3.22 (s, 6H), 4.88 (m, H), 5.21-5.71 (m, H), 7.06-7.18 (m, 4H).

합성예 4 : 폴리부타디엔-[(1,1,3,3-테트라메틸-디실록시)-운데실]-디메틸-아민 염산염 (PB-TMDSUD-DMA HCl)의 합성Synthesis Example 4 Synthesis of Polybutadiene-[(1,1,3,3-tetramethyl-disiloxy) -undecyl] -dimethyl-amine hydrochloride (PB-TMDSUD-DMA HCl)

Figure 112005036641111-pat00008
Figure 112005036641111-pat00008

1) 폴리부타디엔-[(1,1,3,3-테트라메틸-디실록시)-운데실]-디메틸-아마이드 합성1) Polybutadiene-[(1,1,3,3-tetramethyl-disiloxy) -undecyl] -dimethyl-amide synthesis

1000 mL의 3구 둥근 바닥 플라스크에 마그네틱 교반기, 질소기체 흡입관 및 콘덴서를 장착한 뒤 상기 합성예 1-2)의 방법으로 제조된 폴리부타디엔-[(1,1,3,3-테트라메틸-디실록시)-운데카노일 클로라이드(50 g, 8.8 mmol)를 무수 디클로로메탄(200 mL)에 녹인 후 트리에틸아민(3.07 mL, 22 mmol)과 디메틸아민염산염(0.92g, 11 mmol)을 0 ℃에서 가하였다. 반응혼합물을 0 ℃에서 2시간 동안 교반한 후 소금물로 세척하고, 무수 마그네슘 설페이트로 건조한 후 감압 농축한 다음 칼럼 크로마토그리피법(Hexane:EtOAc=1;1)으로 정제하여 폴리부타디엔-[(1,1,3,3-테트라메틸-디실록시)-운데실]-디메틸-아마이드(수율 81.5%)를 제조하였다.A polybutadiene-[(1,1,3,3-tetramethyl-di) prepared by the method of Synthesis Example 1-2 after mounting a magnetic stirrer, a nitrogen gas suction tube and a condenser in a 1000 mL three-neck round bottom flask. Dissolve siloxy) -undecanoyl chloride (50 g, 8.8 mmol) in anhydrous dichloromethane (200 mL), and then triethylamine (3.07 mL, 22 mmol) and dimethylamine hydrochloride (0.92 g, 11 mmol) at 0 ° C. Was added in. The reaction mixture was stirred at 0 ° C. for 2 hours, washed with brine, dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and purified by column chromatography (Hexane: EtOAc = 1; 1) to give polybutadiene-[(1, 1,3,3-tetramethyl-disiloxy) -undecyl] -dimethyl-amide (yield 81.5%) was prepared.

2) 폴리부타디엔-[(1,1,3,3-테트라메틸-디실록시)-운데실]-디메틸-아민 합성2) Polybutadiene-[(1,1,3,3-tetramethyl-disiloxy) -undecyl] -dimethyl-amine synthesis

폴리부타디엔-[(1,1,3,3-테트라메틸-디실록시)-운데실]-디메틸-아마이드(50 g, 8.8 mmol)을 테트라히드로퓨란에 녹이고, LiAlH4(1.34 g, 35.2 mmol)를 서서히 가하고 반응혼합물을 24시간 가열 환류하였다. 0 ℃로 냉각한 후 메탄올을 서서히 가한다음, 소량의 소금물을 가하였다. 에테르를 가하고 실온에서 30분 동안 교반한 뒤 형성된 고체물질을 여과하고 디클로로메탄으로 세척하였다. 여액과 세척액을 합한 다음 감압 농축하고 칼럼 크로마토그래피법(Hexane, EtOAc=1:3)으로 정제하여 폴리부타디엔-[(1,1,3,3-테트라메틸-디실록시)-운데실]-디메틸-아민(수율 93%)을 제조하였다. Polybutadiene-[(1,1,3,3-tetramethyl-disiloxy) -undecyl] -dimethyl-amide (50 g, 8.8 mmol) was dissolved in tetrahydrofuran and LiAlH 4 (1.34 g, 35.2 mmol ) Was added slowly and the reaction mixture was heated to reflux for 24 hours. After cooling to 0 ° C., methanol was slowly added, followed by addition of a small amount of brine. Ether was added and stirred at room temperature for 30 minutes, after which the solid formed was filtered and washed with dichloromethane. The filtrate and the washings were combined, concentrated under reduced pressure and purified by column chromatography (Hexane, EtOAc = 1: 3) to give polybutadiene-[(1,1,3,3-tetramethyl-disiloxy) -undecyl]- Dimethyl-amine (yield 93%) was prepared.

3) 폴리부타디엔-[(1,1,3,3-테트라메틸-디실록시)-운데실]-디메틸-아민 염산염 합성3) Polybutadiene-[(1,1,3,3-tetramethyl-disiloxy) -undecyl] -dimethyl-amine hydrochloride synthesis

폴리부타디엔-[(1,1,3,3-테트라메틸-디실록시)-운데실]-디메틸-아민(8.8 mmol)을 디옥산에 녹이고 4N-HCl/디옥산 용액(1 mL)을 가하고 실온에서 30분 동안 교반한 다음 감압 농축하여 폴리부타디엔-[(1,1,3,3-테트라메틸-디실록시)-운데실]-디메틸-아민 염산염(수율 99%)을 제조하였다.Polybutadiene-[(1,1,3,3-tetramethyl-disiloxy) -undecyl] -dimethyl-amine (8.8 mmol) was dissolved in dioxane and 4N-HCl / dioxane solution (1 mL) was added. The mixture was stirred at room temperature for 30 minutes and then concentrated under reduced pressure to prepare polybutadiene-[(1,1,3,3-tetramethyl-disiloxy) -undecyl] -dimethyl-amine hydrochloride (yield 99%).

상기 합성예와 같은 방법으로, 다음 표 1의 조건으로 반응시켜 상기 화학식 1로 표시되는 개질된 디엔 공중합체를 합성하였다.In the same manner as in Synthesis Example, a modified diene copolymer represented by Chemical Formula 1 was synthesized by the reaction of the following Table 1.

개질 디엔 공중합체Modified diene copolymer 폴리부타디엔 Polybutadiene 개질제(화학식 1)Modifier (Formula 1) 용매menstruum 촉매catalyst 반응시간 (시간)Response time (hours) 반응온도 (℃)Reaction temperature (℃) 분자량Molecular Weight mole 실록시알킬 암모늄Siloxyalkyl ammonium mole 개질공중합체 1 (화학식 8a)Modified copolymer 1 (Formula 8a) 50005000 0.920.92 실록시벤질 디메틸 옥틸 암모늄 Siloxybenzyl dimethyl octyl ammonium 0.0920.092 톨루엔toluene PTDVTPTDVT 1212 8080 개질공중합체 2 (화학식 8a)Modified copolymer 2 (Formula 8a) 50005000 0.920.92 0.0460.046 톨루엔toluene PTDVTPTDVT 1212 8080 개질공중합체 3 (화학식 8a)Modified copolymer 3 (Formula 8a) 15301530 0.920.92 0.0920.092 톨루엔toluene 크로로프라틴산Chroropratinic acid 1212 8080 개질공중합체 4 (화학식 8b)Modified copolymer 4 (Formula 8b) 50005000 0.920.92 실록시벤질 디메틸 도데실 암모늄Siloxybenzyl dimethyl dodecyl ammonium 0.0920.092 톨루엔toluene PTDVTPTDVT 1212 8080 개질공중합체 5 (화학식 8b)Modified copolymer 5 (Formula 8b) 50005000 0.920.92 0.0460.046 톨루엔toluene PTDVTPTDVT 1212 8080 개질공중합체 6 (화학식 8b)Modified copolymer 6 (Formula 8b) 15301530 0.920.92 0.0920.092 톨루엔toluene PTDVTPTDVT 1212 8080 개질공중합체 7 (화학식 8c)Modified copolymer 7 (Formula 8c) 50005000 0.920.92 실록시벤질 디메틸 옥타데실 암모늄 Siloxybenzyl dimethyl octadecyl ammonium 0.0920.092 톨루엔toluene 크로로프라틴산Chroropratinic acid 1212 8080 개질공중합체 8 (화학식 8c)Modified copolymer 8 (Formula 8c) 50005000 0.920.92 0.0460.046 톨루엔toluene PTDVTPTDVT 1212 8080 개질공중합체 9 (화학식 8c)Modified copolymer 9 (Formula 8c) 15301530 0.920.92 0.0920.092 톨루엔toluene PTDVTPTDVT 1212 8080 개질공중합체 10 (화학식 8d)Modified copolymer 10 (Formula 8d) 50005000 092092 실록시 디메틸 운데에닐 암모늄Siloxy dimethyl undeenyl ammonium 0.0920.092 톨루엔toluene PTDVTPTDVT 66 6060

실시예Example 1 :  One : 개질된Modified 디엔Dien 공중합체와  Copolymer and 유기화된Organic 몬모릴로나이트를 사용한 마스터 배치의 제조 Preparation of Master Batch Using Montmorillonite

친유기화 몬모릴로나이트(OMMT; 서던클레이사 제품, 모델 6A, 2.5 g을 테트라하이드로퓨란 20 mL에 첨가, 교반하여 현탁액을 만든 후 폴리부타디엔-[(1,1,3,3-테트라메틸-디실록시)-에틸-벤질]-디메틸-옥틸-암모늄 5 g이 용해되어 있는 테트라하이드로퓨란 용액 20 mL 첨가하여 실온에서 2시간 교반한 후 울트라소닉케이터에서 2시간 반응하였다. 다시 실온에서 2시간 교반 후 유리판 위에 바코팅하여 필름을 제조한 후 실온에서 건조하고 진공오븐에서 건조하여 개질된 폴리부텐-유기화 몬모릴로나이트 마스터 배치를 얻었다.Lipophilic montmorillonite (OMMT; Southern Clay Company, Model 6A, 2.5 g) was added to 20 mL of tetrahydrofuran and stirred to form a suspension, followed by polybutadiene-[(1,1,3,3-tetramethyl-disiloxy 20 mL of tetrahydrofuran solution containing 5 g of) -ethyl-benzyl] -dimethyl-octyl-ammonium was added thereto, stirred at room temperature for 2 hours, and then reacted with an ultrasonicator for 2 hours. The film was prepared by bar coating on a glass plate and then dried at room temperature and dried in a vacuum oven to obtain a modified polybutene-organized montmorillonite master batch.

상기 실시예 1과 동일한 방법으로 다음 표 2와 같이 개질된 폴리부텐과 몬모릴로나이트를 사용하여 마스터 배치를 제조하였다.In the same manner as in Example 1, a master batch was prepared using polybutene and montmorillonite modified as shown in Table 2 below.

디엔-무기층상화합물 마스터배치Diene-Inorganic Layered Compound Masterbatch 개질된 폴리부텐 (중량)Modified Polybutene (Weight) 무기층상화합물 (중량)Inorganic Layered Compound (Weight) 마스터배치 1Masterbatch 1 개질공중합체 1 (5 g)Modified Copolymer 1 (5 g) Na-MMTa) (2.5 g)Na-MMT a) (2.5 g) 마스터배치 2Masterbatch 2 개질공중합체 2 (10 g)Modified Copolymer 2 (10 g) Na-MMT (5 g)Na-MMT (5 g) 마스터배치 3Masterbatch 3 개질공중합체 1 (10 g)Modified Copolymer 1 (10 g) VBDOA-MMTb) (5 g)VBDOA-MMT b) (5 g) 마스터배치 4Masterbatch 4 개질공중합체 1 (10 g)Modified Copolymer 1 (10 g) VBDDA-MMTc) (5 g)VBDDA-MMT c) (5 g) 마스터배치 5Masterbatch 5 개질공중합체 1 (10 g)Modified Copolymer 1 (10 g) VBDODA-MMTd0 (5 g)VBDODA-MMT d0 (5 g) 마스터배치 6Masterbatch 6 개질공중합체 2 (10 g)Modified Copolymer 2 (10 g) VBDOA-MMT (5 g)VBDOA-MMT (5 g) 마스터배치 7Masterbatch 7 개질공중합체 2 (10 g)Modified Copolymer 2 (10 g) VBDDA-MMT (5 g)VBDDA-MMT (5 g) 마스터배치 8Masterbatch 8 개질공중합체 2 (10 g)Modified Copolymer 2 (10 g) VBDODA-MMT (5 g)VBDODA-MMT (5 g) 마스터배치 9Masterbatch 9 개질공중합체 4 (10 g)Modified Copolymer 4 (10 g) VBDOA-MMT (5 g)VBDOA-MMT (5 g) 마스터배치 10Masterbatch 10 개질공중합체 4 (10 g)Modified Copolymer 4 (10 g) VBDDA-MMT (5 g)VBDDA-MMT (5 g) 마스터배치 11 Masterbatch 11 개질공중합체 4 (10 g)Modified Copolymer 4 (10 g) VBDODA-MMT (5 g)VBDODA-MMT (5 g) 마스터배치 12Masterbatch 12 개질공중합체 5 (10 g)Modified Copolymer 5 (10 g) VBDOA-MMT (5 g)VBDOA-MMT (5 g) 마스터배치 13 Masterbatch 13 개질공중합체 5 (10 g)Modified Copolymer 5 (10 g) VBDDA-MMT (5 g)VBDDA-MMT (5 g) 마스터배치 14 Masterbatch 14 개질공중합체 5 (10 g)Modified Copolymer 5 (10 g) VBDODA-MMT (5 g)VBDODA-MMT (5 g) 마스터배치 15 Masterbatch 15 개질공중합체 7 (5 g)Modified Copolymer 7 (5 g) VBDOA-MMT (2.5 g)VBDOA-MMT (2.5 g) 마스터배치 16 Masterbatch 16 개질공중합체 7 (5 g)Modified Copolymer 7 (5 g) VBDDA-MMT (2.5 g)VBDDA-MMT (2.5 g) 마스터배치 17 Masterbatch 17 개질공중합체 7 (5 g)Modified Copolymer 7 (5 g) VBDODA-MMT (2.5 g)VBDODA-MMT (2.5 g) 마스터배치 18Masterbatch 18 개질공중합체 8 (5 g)Modified Copolymer 8 (5 g) VBDOA-MMT (2.5 g)VBDOA-MMT (2.5 g) 마스터배치 19 Masterbatch 19 개질공중합체 8 (5 g)Modified Copolymer 8 (5 g) VBDDA-MMT (2.5 g)VBDDA-MMT (2.5 g) 마스터배치 20 Masterbatch 20 개질공중합체 8 (5 g)Modified Copolymer 8 (5 g) VBDODA-MMT (2.5 g)VBDODA-MMT (2.5 g) 마스터배치 21 Masterbatch 21 개질공중합체 3 (10 g)Modified Copolymer 3 (10 g) VBDOA-MMT (5 g)VBDOA-MMT (5 g) 마스터배치 22 Masterbatch 22 개질공중합체 3 (10 g)Modified Copolymer 3 (10 g) VBDDA-MMT (5 g)VBDDA-MMT (5 g) 마스터배치 23 Masterbatch 23 개질공중합체 3 (10 g)Modified Copolymer 3 (10 g) VBDOA-MMT (5 g)VBDOA-MMT (5 g) 마스터배치 23Masterbatch 23 개질공중합체 10 (10 g)Modified Copolymer 10 (10 g) VBDOA-MMT (5 g)VBDOA-MMT (5 g) 마스터배치 24Masterbatch 24 개질공중합체 10 (10 g)Modified Copolymer 10 (10 g) VBDOA-MMT (2.5 g)VBDOA-MMT (2.5 g) 마스터배치 25Masterbatch 25 개질공중합체 10 (10 g)Modified Copolymer 10 (10 g) VBDDA-MMT (5 g)VBDDA-MMT (5 g) a) Na-MMT : 소듐몬모릴로나이트 층상화합물 b) VBDOA-MMT : 비닐벤질디메틸옥틸아민으로 유기화된 몬모릴로나이트. c) VBDDA-MMT : 비닐벤질디메틸도데실아민으로 유기화된 몬모릴로나이트. d) VBDODA-MMT : 비닐벤질디메틸옥타데실아민으로 유기화된 몬모릴로나이트. a) Na-MMT: sodium montmorillonite layered compound b) VBDOA-MMT: montmorillonite organicated with vinylbenzyldimethyloctylamine. c) VBDDA-MMT: Montmorillonite organicated with vinylbenzyldimethyldodecylamine. d) VBDODA-MMT: Montmorillonite organicated with vinylbenzyldimethyloctadecylamine.

실시예 2 : 디엔계 나노복합재의 제조Example 2 Preparation of Diene Nanocomposites

상기 실시예 1에서 제조한 개질된 폴리부타디엔-유기화 몬모릴로나이트 마스터 배치와 디엔 고무 및 기타첨가제를 예열된 브라벤더 믹서(Brabender mixer)에 넣고 용융 혼련하였다. 상기 용융 혼련물의 전체 조성 100 중량부에 대하여 스테아린산 1.5 중량부와 산화아연 3 중량부를 첨가한 후 10분 더 혼련하였다. 마지막으로 황 1.5 중량부를 첨가하여 5 분간 혼련하였다. 얻어진 샘플을 두께가 2 mm인 몰드에 넣은 다음, 150 ℃로 예열된 프레스를 이용하여 30 분간 압축성형하고 이어 5분간 냉각하여 나노복합재 시트를 얻었다.The modified polybutadiene-organized montmorillonite master batch and diene rubber and other additives prepared in Example 1 were placed in a preheated Brabender mixer and melt kneaded. 1.5 parts by weight of stearic acid and 3 parts by weight of zinc oxide were added to 100 parts by weight of the total composition of the melt kneaded product, followed by further kneading for 10 minutes. Finally, 1.5 parts by weight of sulfur was added and kneaded for 5 minutes. The obtained sample was placed in a mold having a thickness of 2 mm, compression molded for 30 minutes using a press preheated to 150 ° C., and then cooled for 5 minutes to obtain a nanocomposite sheet.

상기 실시예 2의 방법으로 다음 표 3과 같은 조건으로 디엔계 나노복합재 시트를 얻었다.By the method of Example 2, a diene-based nanocomposite sheet was obtained under the conditions shown in Table 3 below.

나노복합재Nanocomposite 마스터배치 (중량%)Masterbatch (% by weight) 부타디엔고무 (중량%) Butadiene rubber (% by weight) 기타첨가제 (중량부) ㅁ) Other additives (parts by weight) ㅁ) 용융온도 (℃)Melting temperature (℃) 용융시간 (분)Melt time (min) 나노복합재 1Nanocomposites 1 마스터배치 1 (10) Masterbatch 1 (10) SSBR b) (90)SSBR b) (90) -- 120120 66 나노복합재 2Nanocomposites 2 마스터배치 1 (5)Masterbatch 1 (5) SSBR (95)SSBR (95) -- 120120 1010 나노복합재 3Nanocomposites 3 마스터배치 2 (10) Masterbatch 2 (10) SSBR (90)SSBR (90) Irganox e) (0.5)Irganox e) (0.5) 100100 66 나노복합재 4Nanocomposites 4 마스터배치 2 (15)Masterbatch 2 (15) SSBR (85)SSBR (85) Irganox (0.5)Irganox (0.5) 120120 66 나노복합재 5Nanocomposites 5 마스터배치 3 (10)Masterbatch 3 (10) SSBR (90)SSBR (90) Silica (10)Silica (10) 100100 66 나노복합재 6Nanocomposites 6 마스터배치 3 (5)Masterbatch 3 (5) SBR c) (95)SBR c) (95) -- 120120 1515 나노복합재 7Nanocomposites 7 마스터배치 4 (3)Masterbatch 4 (3) SSBR (97)SSBR (97) -- 120120 55 나노복합재 8Nanocomposites 8 마스터배치 4 (15)Masterbatch 4 (15) NBR d) (85)NBR d) (85) -- 6060 66 나노복합재 9Nanocomposites 9 마스터배치 5 (10)Masterbatch 5 (10) SSBR (90)SSBR (90) -- 100100 88 나노복합재 10Nanocomposites 10 마스터배치 5 (20)Masterbatch 5 (20) SSBR (80)SSBR (80) Irganox (0.25)Irganox (0.25) 120120 66 나노복합재 11Nanocomposites 11 마스터배치 6 (5)Masterbatch 6 (5) SBR (95)SBR (95) -- 120120 2020 나노복합재 12Nanocomposites 12 마스터배치 6 (7)Masterbatch 6 (7) NBR (93)NBR (93) -- 8080 66 나노복합재 13Nanocomposites 13 마스터배치 7 (12)Masterbatch 7 (12) SSBR (88)SSBR (88) Silica (20)Silica (20) 120120 66 나노복합재 14Nanocomposites 14 마스터배치 7 (10)Masterbatch 7 (10) SSBR (90)SSBR (90) -- 100100 1515 나노복합재 15Nanocomposites 15 마스터배치 8 (3)Masterbatch 8 (3) SSBR (97)SSBR (97) Irganox (0.25)Irganox (0.25) 120120 55 나노복합재 16Nanocomposites 16 마스터배치 8 (5)Masterbatch 8 (5) SSBR (95)SSBR (95) -- 120120 66 나노복합재 17Nanocomposites 17 마스터배치 23 (5)Masterbatch 23 (5) SSBR (97)SSBR (97) Irganox (0.25)Irganox (0.25) 100100 55 나노복합재 18Nanocomposites 18 마스터배치 24 (5)Masterbatch 24 (5) SSBR (97)SSBR (97) -- 110110 1010 나노복합재 19Nanocomposites 19 마스터배치 25 (5)Masterbatch 25 (5) NBR (93)NBR (93) -- 9090 1515 a) 중량부: 부타디엔 고무 중량 기준으로 첨가된 첨가제의 사용량 b) SSBR: 용액중합으로 합성한 스티렌-부타디엔 고무 c) SBR: 스티렌-부타디엔-블록공중합체 d) NBR: 아크릴로니트릴-부타디엔 고무 f) Irganox: 산화방지제 (Ciba Specialty Chemcials)a) parts by weight: amount of additive added based on the weight of butadiene rubber b) SSBR: styrene-butadiene rubber synthesized by solution polymerization c) SBR: styrene-butadiene-block copolymer d) NBR: acrylonitrile-butadiene rubber f Irganox: Antioxidants (Ciba Specialty Chemcials)

비교예 : 개질되지 않은 부타디엔계 고무의 복합재 제조Comparative Example: Preparation of Composite of Unmodified Butadiene Rubber

본 발명이 개질된 디엔 공중합체와 무기층상화합물을 혼합하여 마스터 배치를 제조한 후에, 디엔 고무와 마스터 배치를 혼합하여 나노복합재를 제조하는데 반하여, 본 비교예에서는 몬모릴로나이트와 부타디엔계 고무를 상기 실시예 2의 방법으로 용융 혼합 및 압축 가공하여 복합재 시트를 제조하였다. 본 비교예에서 제조된 비교복합재는 다음 표 4에 나타내었다.In the present invention, montmorillonite and butadiene-based rubbers are prepared by mixing the diene copolymer and the inorganic layered compound to prepare a master batch, and then mixing the diene rubber and the master batch to prepare a nanocomposite. The composite sheet was prepared by melt mixing and compression processing in the method of 2. Comparative composites prepared in this Comparative Example are shown in Table 4 below.

복합재Composite 부타디엔계 고무Butadiene Rubber 무기충진재(중량%)Inorganic fillers (wt%) 비교복합재 1Comparative Composite 1 SBRSBR -- 비교복합재 2Comparative Composite 2 SBRSBR 15Aa)(5)15A a) (5) 비교복합재 3Comparative Composite 3 NBRNBR -- 비교복합재 4Comparative Composite 4 NBRNBR 15A(5)15A (5) a)써던클레이사로부터 생산되는 디메틸수소화탈로우클로라이드염으로 치환된 몬모릴로나이트. a) Montmorillonite substituted with dimethylhydrochloride tallow chloride salt produced from Southern Clay.

시험예Test Example

상기 실시예 2 및 비교예에서 재조된 복합재를 다음의 방법으로 물성을 측정하였다.Physical properties of the composite prepared in Example 2 and Comparative Example were measured by the following method.

(1) 화학적 구조: 합성된 물질의 화학 구조는 1H NMR 스펙트로스코피에 의해 확인함.(1) Chemical structure: The chemical structure of the synthesized material was confirmed by 1 H NMR spectroscopy.

(2) 층간거리: XRD(X-ray diffraction)를 이용하여 무기층상화합물의 층간 거리를 측정함.(2) Interlayer distance: The interlayer distance of the inorganic layered compound is measured by using XRD (X-ray diffraction).

(3) 기계적 특성 : 나노복합재의 인장특성(인장강도, 인장탄성율, 신장율 등)을 ASTM D412에 의하여 측정함.(3) Mechanical Properties: Tensile properties (tensile strength, tensile modulus, elongation, etc.) of nanocomposites are measured by ASTM D412.

(4) 나노복합재의 모폴로지 : 제조된 나노복합재를 cryo-ultramicrotoming하여 70 ~ 100 nm의 두께로 자른 다음 TEM(transmission electron microscopy)를 이용하여 측정함. (4) Morphology of nanocomposites: The prepared nanocomposites were cryo-ultramicrotomed and cut to a thickness of 70-100 nm and measured using transmission electron microscopy (TEM).

구분division 인장강도 (kgf/cm2)Tensile Strength (kgf / cm 2 ) 인장탄성율 (kgf/cm2)Tensile Modulus (kgf / cm 2 ) 신장율 (%)Elongation (%) 층간실리케이트 층간거리 (nm)Interlayer Silicate Interlayer Distance (nm) 나노복합재 1Nanocomposites 1 135135 120120 865865 3.23.2 나노복합재 2Nanocomposites 2 129129 115115 788788 3.33.3 나노복합재 3Nanocomposites 3 142142 125125 654654 3.53.5 나노복합재 4Nanocomposites 4 138138 119119 677677 2.92.9 나노복합재 5Nanocomposites 5 250250 180180 695695 2.72.7 나노복합재 6Nanocomposites 6 180180 175175 658658 4.54.5 나노복합재 7Nanocomposites 7 183183 169169 676676 4.24.2 나노복합재 8Nanocomposites 8 202202 178178 616616 4.84.8 나노복합재 9Nanocomposites 9 196196 154154 786786 4.34.3 나노복합재 10Nanocomposites 10 188188 142142 670670 3.93.9 나노복합재 11Nanocomposites 11 190190 146146 649649 2.82.8 나노복합재 12Nanocomposites 12 210210 178178 696696 3.13.1 나노복합재 13Nanocomposites 13 245245 185185 651651 2.52.5 나노복합재 14Nanocomposites 14 192192 153153 682682 4.94.9 나노복합재 15Nanocomposites 15 220220 176176 704704 2.22.2 나노복합재 16Nanocomposites 16 232232 162162 632632 2.92.9 나노복합재 17Nanocomposites 17 172172 138138 788788 3.53.5 나노복합재 18Nanocomposites 18 189189 146146 756756 3.23.2 나노복합재 19Nanocomposites 19 159159 130130 689689 3.03.0 비교복합재 1Comparative Composite 1 6565 100100 780780 1.11.1 비교복합재 2Comparative Composite 2 7878 120120 690690 1.31.3 비교복합재 3Comparative Composite 3 6868 6868 834834 1.11.1 비교복합재 4Comparative Composite 4 8080 116116 684684 1.81.8

도 1은 본 발명의 나노복합재(a) 및 종래의 나노복합재(b)의 층간거리를 나타내는 XRD로서, 종래의 나노복합재의 2θ에 비해서 본 발명의 나노복합재의 2θ가 낮은 값을 나타내므로 층간거리가 훨씬 크게 증가한 것을 확인할 수 있었다. Figure 1 is an XRD showing the interlayer distance between the nanocomposite (a) and the conventional nanocomposite (b) of the present invention, 2θ of the nanocomposite of the present invention exhibits a lower value than the 2θ of the conventional nanocomposite, the interlayer distance Was found to have increased significantly.

이상에서 상술한 바와 같이, 본 발명은 디엔 공중합체를 극성 실록시알킬암모늄으로 개질시켜 무기층상화합물과의 상용성이 향상된 신규 개질된 디엔 공중합체를 제조하였고, 상기한 신규 개질된 디엔 공중합체에 무기층상화합물을 일정 함량비로 혼합하여 제조된 마스터배치는 기계적 특성 및 열안정성이 우수하고 용기용매에 대한 용해성이 우수하여 다양한 개질제, 점·접착제, 분산제 등에 사용될 수 있다. 또한, 본 발명의 마스터배치를 용융가공 방법으로 나노복합재로 제조할 수 있으며, 나노복합재는 개질된 디엔 공중합체가 무기 층상화합물과의 친화력이 향상된 관계로 열안정성, 기계적 특성 등이 향상되는 효과를 얻을 수 있다.As described above, the present invention prepared a new modified diene copolymer having improved compatibility with the inorganic layered compound by modifying the diene copolymer with a polar siloxyalkylammonium, to the novel modified diene copolymer The masterbatch prepared by mixing the inorganic layered compound in a certain content ratio has excellent mechanical properties and thermal stability and is excellent in solubility in a container solvent, and thus can be used in various modifiers, adhesives, dispersants, and the like. In addition, the masterbatch of the present invention can be produced as a nanocomposite by the melt processing method, the nanocomposite has the effect of improving the thermal stability, mechanical properties and the like due to the improved affinity of the modified diene copolymer with the inorganic layered compound. You can get it.

Claims (10)

디엔 공중합체에, 다음 화학식 1로 표시되는 극성 실록시알킬암모늄이 결합되어 있는 것임을 특징으로 하는 개질된 디엔 공중합체 :Modified diene copolymer, characterized in that the diene copolymer, the polar siloxyalkylammonium represented by the following formula (1) is bonded: [화학식 1][Formula 1]
Figure 112005036641111-pat00009
Figure 112005036641111-pat00009
상기 화학식 1에서, R1, R2, R3, R4, R5, R6, 및 R7은 각각 수소원자 또는 탄소수 1 내지 20의 알킬기를 나타내고; X는 탄소수 1 내지 10의 알킬렌기 또는 페닐기를 나타내고; p는 2 내지 6의 정수를 나타내고; q는 0 또는 1 내지 6의 정수를 나타낸다.In Formula 1, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , and R 7 each represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms; X represents an alkylene group or a phenyl group having 1 to 10 carbon atoms; p represents an integer from 2 to 6; q represents 0 or the integer of 1-6.
제 1 항에 있어서, 상기 R1, R2, R3, 및 R4는 각각 수소원자 또는 메틸기를 나타내고; R5, R6, 및 R7은 각각 수소원자 또는 탄소수 5 내지 20의 알킬기를 나타내고; X는 탄소수 1 내지 3의 알킬렌기 또는 페닐기를 나타내고; p는 2 내지 6의 정수를 나타내고; q는 0 또는 1 내지 6의 정수를 나타낸 것임을 특징으로 하는 개질된 디엔 공중합체.The compound of claim 1, wherein R 1 , R 2 , R 3 , and R 4 each represent a hydrogen atom or a methyl group; R 5 , R 6 , and R 7 each represent a hydrogen atom or an alkyl group having 5 to 20 carbon atoms; X represents an alkylene group or a phenyl group having 1 to 3 carbon atoms; p represents an integer from 2 to 6; q is a modified diene copolymer, characterized in that 0 or an integer from 1 to 6. 제 1 항에 있어서, 상기 디엔 공중합체는 스티렌-부타디엔 공중합체, 아크릴로니트릴-부타디엔 공중합체, 아크릴레이트-부타디엔 고무, 아크릴로니트릴-부타디엔-스티렌 공중합체, 에틸렌-프로필렌-디엔계 중합체, 또는 상기한 공중합체가 부분적으로 수소화, 에폭시화 또는 브롬화된 중합체 중에서 선택된 것임을 특징으로 하는 개질된 디엔 공중합체.2. The diene copolymer according to claim 1, wherein the diene copolymer is a styrene-butadiene copolymer, an acrylonitrile-butadiene copolymer, an acrylate-butadiene rubber, an acrylonitrile-butadiene-styrene copolymer, an ethylene-propylene-diene-based polymer, or A modified diene copolymer, characterized in that the copolymer is selected from among partially hydrogenated, epoxidized or brominated polymers. 상기 청구항 1의 개질된 디엔 공중합체 40 ~ 99.9 중량%와, 무기층상화합물 0.1 ~ 60 중량%가 함유되어 있는 것임을 특징으로 디엔-무기층상화합물 마스터 배치.40 to 99.9% by weight of the modified diene copolymer of claim 1, and 0.1 to 60% by weight of the inorganic layered compound diene-organic layered compound master batch. 제 4 항에 있어서, 상기 무기층상화합물이 천연 또는 합성 점토 광물이거나, 또는 친유기화된 천연 또는 합성 점토 광물인 것임을 특징으로 하는 디엔-무기층상화합물 마스터 배치.The master batch of the inorganic layered compound according to claim 4, wherein the inorganic layered compound is a natural or synthetic clay mineral or an lipophilic natural or synthetic clay mineral. 상기 청구항 4의 디엔-무기층상화합물 마스터 배치 1 ~ 30 중량%와 디엔 고무 70 ~ 99 중량%를 사용하여 제조된 것임을 특징으로 하는 나노복합재.Nanocomposite, characterized in that prepared using 1 to 30% by weight of the diene-inorganic layered compound master batch of claim 4 and 70 to 99% by weight of diene rubber. 제 6 항에 있어서, 상기 디엔-무기층상화합물 마스터 배치와 디엔 고무를 혼합하여 20 ℃ 내지 150 ℃의 온도로 용융가공한 후에, 황을 첨가하여 50 ℃ 내지 250 ℃의 온도에서 압축 성형하여 제조된 것임을 특징으로 하는 나노복합재.The method of claim 6, wherein the diene-inorganic layered masterbatch and the diene rubber are mixed and melt processed at a temperature of 20 ° C to 150 ° C, followed by compression molding at a temperature of 50 ° C to 250 ° C by adding sulfur. Nanocomposite, characterized in that. 제 6 항에 있어서, 상기 디엔 고무가 스티렌-부타디엔 공중합체, 아크릴로니트릴-부타디엔 공중합체, 아크릴레이트-부타디엔 고무, 아크릴로니트릴-부타디엔-스티렌 공중합체, 에틸렌-프로필렌-디엔계 중합체, 또는 상기한 공중합체가 부분적으로 수소화, 에폭시화 또는 브롬화된 중합체 중에서 선택된 것임을 특징으로 하는 나노복합재.7. The diene rubber according to claim 6, wherein the diene rubber is a styrene-butadiene copolymer, an acrylonitrile-butadiene copolymer, an acrylate-butadiene rubber, an acrylonitrile-butadiene-styrene copolymer, an ethylene-propylene-diene-based polymer, or A nanocomposite characterized in that one copolymer is selected from partially hydrogenated, epoxidized or brominated polymers. 제 6 항에 있어서, 상기 나노복합재에는 산화제, 커플링제, 자외선 안정제, 가교제 및 난연제 중에서 선택된 통상의 복합재 제조용 첨가제 및 유기용매가 추가로 포함된 것임을 특징으로 하는 나노복합재.The nanocomposite according to claim 6, wherein the nanocomposite further comprises an additive for preparing a conventional composite and an organic solvent selected from an oxidizing agent, a coupling agent, a UV stabilizer, a crosslinking agent, and a flame retardant. 다음 화학식 2로 표시되는 디실록산 화합물과 다음 화학식 3으로 표시되는 알케닐 할라이드 화합물을 백금촉매 하에서 반응시켜, 다음 화학식 4로 표시되는 디실록산알킬 할라이드 화합물을 제조하는 과정;Preparing a disiloxane alkyl halide compound represented by Formula 4 by reacting a disiloxane compound represented by Formula 2 with an alkenyl halide compound represented by Formula 3 under a platinum catalyst;
Figure 112005036641111-pat00010
Figure 112005036641111-pat00010
상기에서, R1, R2, R3, R4, X, p, 및 q는 각각 상기 화학식 1에서 정의한 바와 같고, Y는 할로겐원자를 나타낸다,In the above, R 1 , R 2 , R 3 , R 4 , X, p, and q are as defined in Formula 1, respectively, Y represents a halogen atom, 다음 화학식 5로 표시되는 디엔 공중합체와 상기 화학식 4로 표시되는 디실록산알킬 할라이드 화합물을 백금촉매 하에서 반응시켜, 다음 화학식 6으로 표시되는 디실록시기로 치환된 디엔 공중합체를 제조하는 과정,A process of preparing a diene copolymer substituted with a disiloxy group represented by Formula 6 by reacting a diene copolymer represented by Formula 5 with a disiloxane alkyl halide compound represented by Formula 4 under a platinum catalyst;
Figure 112005036641111-pat00011
Figure 112005036641111-pat00011
상기에서, R1, R2, R3, R4, R5, R6, R7, X, p, 및 q는 각각 상기 화학식 1에서 정의한 바와 같고, ℓ과 n은 각각 28 ~ 78이고, m과 o는 각각 0.1 ~ 30이며, ℓ+m+n+o= 100을 나타내며, Y는 할로겐원자를 나타낸다.In the above, R 1 , R 2 , R 3 , R 4 , R 5 , R 6, R 7, X, p, and q are as defined in Formula 1, respectively, l and n are 28 to 78, respectively, m and o are 0.1-30, respectively, and represent l + m + n + o = 100, and Y represents a halogen atom. 상기 화학식 6으로 표시되는 디실록산기로 치환된 디엔 공중합체를 다음 화 학식 7로 표시되는 아민 화합물과 반응시켜, 극성 실록시알킬암모늄이 결합되어 있는 다음 화학식 8로 표시되는 개질된 디엔 공중합체를 제조하는 과정이 포함되어 이루어지는 것을 특징으로 하는 제조방법 :A diene copolymer substituted with a disiloxane group represented by Chemical Formula 6 is reacted with an amine compound represented by Chemical Formula 7 to prepare a modified diene copolymer represented by Chemical Formula 8, in which a polar siloxyalkylammonium is bonded. Manufacturing method characterized in that it comprises a process to:
Figure 112005036641111-pat00012
Figure 112005036641111-pat00012
상기에서, R1, R2, R3, R4, R5, R6 , R7 , X, p, 및 q는 각각 상기 화학식 1에서 정의한 바와 같고, ℓ과 n은 각각 28 ~ 78이고, m과 o는 각각 0.1 ~ 30이며, ℓ+m+n+o= 100을 나타내며, Y는 할로겐원자를 나타낸다.In the above, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , X, p, and q are as defined in Formula 1, respectively, l and n are 28 to 78, respectively, m and o are 0.1-30, respectively, and represent l + m + n + o = 100, and Y represents a halogen atom.
KR1020050060899A 2005-07-06 2005-07-06 Diene copolymer modified polar siloxyalkyl ammonium, and dien rubber nanocomposites using them KR100605516B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050060899A KR100605516B1 (en) 2005-07-06 2005-07-06 Diene copolymer modified polar siloxyalkyl ammonium, and dien rubber nanocomposites using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050060899A KR100605516B1 (en) 2005-07-06 2005-07-06 Diene copolymer modified polar siloxyalkyl ammonium, and dien rubber nanocomposites using them

Publications (1)

Publication Number Publication Date
KR100605516B1 true KR100605516B1 (en) 2006-07-31

Family

ID=37184615

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050060899A KR100605516B1 (en) 2005-07-06 2005-07-06 Diene copolymer modified polar siloxyalkyl ammonium, and dien rubber nanocomposites using them

Country Status (1)

Country Link
KR (1) KR100605516B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622308A (en) 1979-08-02 1981-03-02 Nippon Ii P Rubber Kk Production of olefin copolymer rubber
US20020002247A1 (en) 1999-05-20 2002-01-03 Allcock Harry R. Phosphinimine modification of organic polymers and silicones
KR20030024336A (en) * 2001-09-18 2003-03-26 한국화학연구원 Diene copolymers substituted with polar siloxane groups and nanocomposites their from
KR20030041922A (en) * 2003-04-30 2003-05-27 금호석유화학 주식회사 A tire tread rubber composition including an end-modified diene copolymer
KR20040070047A (en) * 2003-01-31 2004-08-06 스미또모 가가꾸 고오교오 가부시끼가이샤 Process for producing modified diene polymer rubber
KR20050091988A (en) * 2004-03-11 2005-09-16 스미또모 가가꾸 가부시키가이샤 Process for producing modified diene polymer rubber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622308A (en) 1979-08-02 1981-03-02 Nippon Ii P Rubber Kk Production of olefin copolymer rubber
US20020002247A1 (en) 1999-05-20 2002-01-03 Allcock Harry R. Phosphinimine modification of organic polymers and silicones
KR20030024336A (en) * 2001-09-18 2003-03-26 한국화학연구원 Diene copolymers substituted with polar siloxane groups and nanocomposites their from
KR20040070047A (en) * 2003-01-31 2004-08-06 스미또모 가가꾸 고오교오 가부시끼가이샤 Process for producing modified diene polymer rubber
KR20030041922A (en) * 2003-04-30 2003-05-27 금호석유화학 주식회사 A tire tread rubber composition including an end-modified diene copolymer
KR20050091988A (en) * 2004-03-11 2005-09-16 스미또모 가가꾸 가부시키가이샤 Process for producing modified diene polymer rubber

Similar Documents

Publication Publication Date Title
KR101310868B1 (en) End-modified diene polymer with alkoxysillane derivatives
JP5033289B2 (en) Rubber composition for tire comprising reinforcing inorganic filler and coupling system (inorganic filler / elastomer)
JP2006089754A (en) Tire casing
CN101061180A (en) Method of making a flame retardant poly (arylene ether)/polyamide composition and the composition thereof
KR20030024336A (en) Diene copolymers substituted with polar siloxane groups and nanocomposites their from
JPH09118785A (en) Elastomeric composition useful as tire tread
CN102177185A (en) Modified conjugated diene polymer, method for producing the same, modified conjugated diene polymer composition, and tire
JP2001509530A (en) Diene rubber composition reinforced with white filler, containing polyfunctionalized polyorganosiloxane (white filler / elastomer) as coupling agent
JP2010514907A (en) Tire compositions and parts containing silylated core polysulfides
JP5860463B2 (en) Resin composition and method for producing the same
KR101365902B1 (en) Terminal modifier for conjugated diene polymers
CN101878261A (en) Filled rubber compositions
KR101880370B1 (en) Polymer compound, preparation method of modified conjugated diene polymer using the polymer compound and modified conjugated diene polymer
JP6605122B2 (en) Modifier, Modified Conjugated Diene Polymer, and Method for Producing These
KR100882763B1 (en) Use of a combination of two types of different coupling agents as coupling system white filler-elastomer in rubber compositions comprising an inorganic filler
KR20170076597A (en) Modified diene polymer, preparation method thereof and modifying agent
KR20180028769A (en) Modified polymerization initiator, method for preparing the same and modified conjugated diene polymer comprising the same
KR20170076575A (en) Polymer compound, preparation method of modified conjugated diene polymer using the polymer compound and modified conjugated diene polymer
WO2015114845A1 (en) Rubber composition, modified polymer and tire
US6017985A (en) Hydrosilated crystalline high trans polybutadine with silica filler, tires having a base of said composition and method of preparing same
KR100605516B1 (en) Diene copolymer modified polar siloxyalkyl ammonium, and dien rubber nanocomposites using them
JP2024529394A (en) Compounds, rubber blends containing said compounds, vehicle tires containing said rubber blends as at least one component, processes for the manufacture of said compounds, and the use of said compounds as ageing stabilizers and/or antiozonants and/or dyes
JP2022511923A (en) A modifier, a modified conjugated diene polymer containing the modifier, and a method for producing the polymer.
KR102123080B1 (en) Amino silane-based compound, method for preparing the same and modified conjugated diene polymer comprising the same
KR100534045B1 (en) Layered-silicates modified with new surfactants containing nitroxide and their elastomer nanocomposites of diene copolymers and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130625

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140701

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150710

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160607

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170717

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee