KR100604607B1 - Various efficiency modifiers of the reduction-carbonization process of tungsten oxide for the production of tungsten carbide for nanoparticles. - Google Patents

Various efficiency modifiers of the reduction-carbonization process of tungsten oxide for the production of tungsten carbide for nanoparticles. Download PDF

Info

Publication number
KR100604607B1
KR100604607B1 KR1020030012204A KR20030012204A KR100604607B1 KR 100604607 B1 KR100604607 B1 KR 100604607B1 KR 1020030012204 A KR1020030012204 A KR 1020030012204A KR 20030012204 A KR20030012204 A KR 20030012204A KR 100604607 B1 KR100604607 B1 KR 100604607B1
Authority
KR
South Korea
Prior art keywords
zeolite
efficiency
reduction
tungsten oxide
tungsten carbide
Prior art date
Application number
KR1020030012204A
Other languages
Korean (ko)
Other versions
KR20040076911A (en
Inventor
이태진
이종대
Original Assignee
이태진
이종대
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이태진, 이종대 filed Critical 이태진
Priority to KR1020030012204A priority Critical patent/KR100604607B1/en
Publication of KR20040076911A publication Critical patent/KR20040076911A/en
Application granted granted Critical
Publication of KR100604607B1 publication Critical patent/KR100604607B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/949Tungsten or molybdenum carbides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Abstract

본 발명은 일산화탄소를 이용하여 산화 텅스텐의 환원-탄화 공정에 효율을 개선하는 효율개선제에 관한 것이다. 산화 텅스텐의 환원-탄화 공정에 일산화탄소를 이용하여 초미립 탄화 텅스텐을 제조하는 공정에 있어서, 상기공정에 여러 가지 X 및 Y type의 Zeolite들을 효율개선제로 혼합하여 반응온도 300 내지 750 도 섭씨에서 수행하여 각각의 효율개선제의 사용시 효율을 단독의 산화 텅스텐 환원-탄화 공정의 효율과 상호 비교하였으며 이러한 효율 개선을 통하여 단위 탄화 텅스텐 제조에 필요한 일산화 탄소 이용을 감소시키고 열소비 및 조업시간을 단축시켜 50%이상의 원가 절감 효과를 기대할 수 있고 저온에서의 탄화 텅스텐 제조를 가능케하여 100㎚ 이하의 고품위의 나노입자 탄화 텅스텐 생산을 통한 최종 생산물의 부가가치를 극대화한다.The present invention relates to an efficiency improving agent for improving the efficiency in the reduction-carbonization process of tungsten oxide using carbon monoxide. In the process of producing ultrafine tungsten carbide using carbon monoxide in the reduction-carbonization process of tungsten oxide, various X and Y types of zeolites are mixed as an efficiency improving agent and carried out at a reaction temperature of 300 to 750 degrees Celsius. The efficiency of each efficiency improver was compared with the efficiency of a single tungsten oxide reduction-carbonization process. This improvement improves the use of carbon monoxide for the production of unit tungsten carbide, reduces heat consumption and operating time, resulting in a reduction of more than 50%. Cost-saving effects can be expected, enabling the production of tungsten carbide at low temperatures, maximizing the added value of the final product through the production of high quality nanoparticle tungsten carbide below 100nm.

산화 텅스텐, 나노 입자, 탄화텅스텐, 환원 공정, 탄화 공정 Tungsten Oxide, Nanoparticles, Tungsten Carbide, Reduction Process, Carbonization Process                                                      

Description

나노 입자의 탄화 텅스텐 생산을 위한 산화 텅스텐의 환원-탄화 공정의 여러 가지 효율개선제. { The various promoters for the reduction-carburization of WO3 by using carbon monoxide to manufacture the nano-particle WC } Various efficiency modifiers of the reduction-carbonization process of tungsten oxide for the production of tungsten carbide for nanoparticles. {The various promoters for the reduction-carburization of WO3 by using carbon monoxide to manufacture the nano-particle WC}

도1은 본 발명의 산화텅스텐의 환원-탄화 공정에 효율개선제의 효율개선 효과를 각 온도에서측정하고 zeolite NaX에서의 효과를 100으로 하여 계산된 온도별 상대 효율값을 나타내는 표이다.Figure 1 is a table showing the relative efficiency value for each temperature calculated by measuring the efficiency improvement effect of the efficiency improving agent at each temperature in the reduction-carbonization process of tungsten oxide of the present invention and the effect on zeolite NaX as 100.

도2는 본 발명의 산화텅스텐의 환원-탄화 공정의 효율개선제사용에 대한 여러 온도에서 제조된 탄화텅스텐의 입자크기 표이다.2 is a particle size table of tungsten carbide prepared at various temperatures for the use of an efficiency improving agent in the reduction-carbonization process of tungsten oxide of the present invention.

도3은 본 발명의 산화텅스텐의 환원-탄화 공정의 효율개선제 중 효율이 우수했던 대표적인 Zeolite HX, NaX 및 KX 첨가에서의 반응 효율과 산화 텅스텐 단독 실험에서의 반응 효율을 mass-spectroscopy를 이용하여 생성된 이산화탄소양을 확인하여 도시한 그래프이다.Figure 3 is produced by mass-spectroscopy of the reaction efficiency of the representative zeolite HX, NaX and KX addition and the reaction efficiency in the tungsten oxide alone experiment that was excellent in the efficiency-improving agent of the tungsten oxide reduction-carbonization process of the present invention It is a graph showing the amount of carbon dioxide produced.

본 발명은 산화텅스텐의 환원-탄화 공정의 효율개선방법에 관한 것으로서, 더욱 상세히는 산화텅스텐을 일산화탄소를 이용하여 환원-탄화하여 탄화 텅스텐을 생산하는 공정에서 효율개선제를 이용함으로써 제조 효율을 극대화하고 최종 탄화 텅스텐 생산물의 입자크기를 나노 입자로 하여 부가가치를 극대화 하고자 하는 것이다.The present invention relates to a method for improving efficiency of a reduction-carbonization process of tungsten oxide, and more particularly, to maximize production efficiency by using an efficiency improving agent in a process of producing tungsten carbide by reducing-carbonization of tungsten oxide with carbon monoxide. The particle size of the tungsten carbide product is intended to maximize added value by using nanoparticles.

고밀도, 고경도의 탄화텅스텐은 다양한 산업분야에 활용되고 있다. 초경합금의 공구나, 내마모성 기계부품, 소결체 기제 등의 원료로 널리 사용되고 그 수요량이 급증하고 있는 추세이며, 특히 나노 입자의 탄화 텅스텐은 반도체 산업의 연마 및 광택 공정등의 다양한 공정에 그 쓰임이 크다.High density, high hardness tungsten carbide is used in various industrial fields. It is widely used as a raw material for cemented carbide tools, wear-resistant mechanical parts, and sintered base materials, and the demand is rapidly increasing. In particular, tungsten carbide of nanoparticles is used in various processes such as polishing and polishing processes in the semiconductor industry.

이러한 탄화 텅스텐은 종래로부터 일산화탄소를 이용하여 산화텅스텐을 one-step으로 환원-탄화하여 탄화 텅스텐을 생산하여 왔다.Such tungsten carbide has conventionally produced tungsten carbide by reducing-carbonizing tungsten oxide in one-step using carbon monoxide.

본 발명은 이러한 종래로 부터의 산화텅스텐을 환원-탄화함으로서 탄화텅스텐을 생산하는 공정에서 일산화탄소를 이용한 one-step 공정과 수소를 이용하여 환원 후 고체 carbon첨가를 통해 고온에서의 탄화를 통해 탄화 텅스텐을 생산하는 two-step 공정으로 크게 구분할 수 있다. 일산화탄소를 이용한 one-step 공정은 저온에서 탄화가 가능하여 미립의 탄화텅스텐의 생산에는 유리하지만 two-step 공정에 비해 효율이 낮고 일산화탄소가 고가인 점으로 인하여 경제성이 낮다는 단점을 내포하고 있다.According to the present invention, tungsten carbide is obtained through carbonization at a high temperature through a one-step process using carbon monoxide and hydrogenation using hydrogen in the process of producing tungsten carbide by reducing-carbonizing the conventional tungsten oxide. It can be divided into two-step process. The one-step process using carbon monoxide can be carbonized at low temperatures, which is advantageous for the production of fine tungsten carbide, but has a disadvantage of low economical efficiency due to lower efficiency and higher carbon monoxide than the two-step process.

따라서, 본 발명은 일산화탄소를 이용한 산화 텅스텐의 환원-탄화공정에 여러 가지 효율개선제를 제시하여 종래의 단점을 보완하며, 현재까지 제시된 효율개선제와 비교를 통하여 현재까지의 효율개선제 보다 더욱 성능이 우수한 효율개선제를 제시한다.Therefore, the present invention compensates the disadvantages of the present by presenting a variety of efficiency improving agent in the reduction-carbonization process of tungsten oxide using carbon monoxide, and compared with the efficiency improving agent proposed to date, the efficiency is better than the current efficiency improving agent Present the improver.

상기 목적을 달성하기 위하여 본 발명의 산화텅스텐의 일산화탄소를 이용한 환원-탄화 공정의 효율개선을 위해 첨가된 효율개선제는 zeolite NaX와 이를 이온교환하여 제조한 zeolite HX, zeolite LiX, zeolite KX, zeolite CsX, zeolite MgX , zeolite CaX 그리고 zeolite NaY 및 이를 이온교환하여 제조한 zeolite HY, zeolite LiY, zeolite KY, zeolite CsY, zeolite MgY, zeolite CaY 등의 합성제올라이트를 사용하였다.In order to achieve the above object, the efficiency improving agent added for improving the efficiency of the reduction-carbonization process using carbon monoxide of tungsten oxide of the present invention is zeolite NaX and zeolite HX, zeolite LiX, zeolite KX, zeolite CsX, Zeolite MgX, zeolite CaX and zeolite NaY and zeolite HY, zeolite LiY, zeolite KY, zeolite CsY, zeolite MgY, zeolite CaY and the like prepared by ion exchange were used.

상기에서 효율개선제의 사용에 의하여 650℃의 반응온도에서 제조되는 탄화텅스텐은 그 입자가 100 nm 이하인 것은 주요한 본 발명의 또 하나의 특징이다.The tungsten carbide produced at the reaction temperature of 650 ℃ by the use of the efficiency improving agent in the above it is another feature of the present invention that the particles are 100 nm or less.

상기의 효율개선제는 산화텅스텐에 국한되는 것이 아니라 Ta, Ti, Si, Mo, V, Nb 및 Zr 산화물을 탄화 혹은 금속으로 환원하는 공정에 이용될 수 있다는 것이 본 발명의 다양한 특징 중 하나이다.The efficiency improving agent is not limited to tungsten oxide, but may be used in a process of reducing Ta, Ti, Si, Mo, V, Nb, and Zr oxides to carbonization or metal.

아래에 부수된 도면과 함께 본 발명의 산화텅스텐의 환원-탄화공정의 효율 개선제에 대한 실험방법 및 효율개선 효과에 관하여 더욱 상세하게 설명한다.With reference to the accompanying drawings, the experimental method and the efficiency improvement effect of the efficiency improving agent of the tungsten oxide reduction-carbonization process of the present invention will be described in more detail.

도 1 은 본 발명의 산화텅스텐의 환원-탄화 공정에 효율개선제의 효율개선 효과를 zeolite NaX에서의 효과를 100으로 기준하여 계산된 온도별 효율을 나타내는 표이고 도 2 는 본 발명의 산화텅스텐의 환원-탄화 공정의 효율개선제들에 대한 여로 온도에서 제조된 탄화텅스텐의 입자크기 표이다. 그리고 도 3 은 본 발명의 산화텅스텐의 환원-탄화 공정의 효율개선제 중 효율이 우수했던 대표적인 Zeolite HX, NaX 및 KX 첨가에서의 반응 효율과 산화 텅스텐 단독 실험에서의 반응 효율을 비교하기위하여 전기로로 가열되는 U자형 반응기에서 반응을 진행시키면서 On-line 으로 연결된 mass-spectroscopy 분석 장치를 이용하여 분석한 이산화탄소 생성량을 비교 도시한 그래프이다.1 is a table showing the temperature-specific efficiency calculated on the basis of the effect on the zeolite NaX efficiency of the efficiency improving agent in the reduction-carbonization process of the tungsten oxide of the present invention based on 100 and Figure 2 is a reduction of the tungsten oxide of the present invention The particle size table of tungsten carbide prepared at the filter temperature for the efficiency improving agents of the carbonization process. 3 is an electric furnace for comparing the reaction efficiency of the representative zeolite HX, NaX and KX addition in the efficiency-improving agent of the tungsten oxide reduction-carbonization process of the present invention and the reaction efficiency in the tungsten oxide alone experiment The graph shows a comparison of the amount of carbon dioxide produced using a mass-spectroscopy analysis device connected on-line while the reaction proceeds in a U-shaped reactor.

본 발명의 산화텅스텐의 환원-탄화공정의 효율개선제는 공정의 효율을 증가시키고 환원-탄화반응이 시작되는 light-off 온도를 낮추어 nano-particle의 탄화 텅스텐 제조를 가능하게 하는 것이 목적으로 하고 이하에서 구체적인 실험에 따른 실시예와 함께 설명한다.The efficiency improving agent of the reduction-carbonization process of the tungsten oxide of the present invention aims at increasing the efficiency of the process and lowering the light-off temperature at which the reduction-carbonization reaction is initiated to enable the production of tungsten carbide of nano-particles. It demonstrates with the Example according to a specific experiment.

[실험예1]Experimental Example 1

산화텅스텐 25g에 이하의 실시예의 각각의 효율개선제를 산화텅스텐의 무게와 동일한 무게로 첨가하였으며 1 inch 알루미나 반응기에 장착하고, 일산화탄소 75ml/min, 그리고 가스크로마토그래피의 정확한 분석을 위한 레퍼런스로서 헬륨 25 ml/min을 반응기로 유입시킨다.To 25 g of tungsten oxide, each of the efficiency improving agents of the following examples was added at the same weight as the weight of tungsten oxide, mounted in a 1 inch alumina reactor, 75 ml of carbon monoxide, and 25 ml of helium as a reference for accurate analysis of gas chromatography. / min is introduced into the reactor.

이 때의 반응온도는 300에서 750 도 섭씨까지이며 승온속도는 2 도 섭씨/min 이었다. 그리고 온도변화에 따른 탄화텅스텐의 입자크기 변화에 관한 실험을 실시하였으며 이때의 반응 가스 조건은 위의 조건과 동일하나 반응온도를 650, 700, 750 도 섭씨로서 변화시켜 5시간 동안 실험을 실시하였다.The reaction temperature at this time was from 300 to 750 degrees Celsius and the temperature increase rate was 2 degrees Celsius / min. And the experiment on the particle size change of tungsten carbide according to the temperature change was carried out, the reaction gas conditions are the same as the above conditions, but the experiment was carried out for 5 hours by changing the reaction temperature as 650, 700, 750 degrees Celsius.

생성물이 분말인 관계로 생성물과 효율개선제의 분리를 용이하게하기 위하여 모든 효율개선제는 직경이 1mm 이상의 입자크기를 가지는 것을 이용하였다.Since the product is a powder, in order to facilitate the separation of the product and the efficiency improving agent, all efficiency improving agents were used having a particle size of 1 mm or more in diameter.

반응 후의 기체 성분들은 가스크로마토그래피(시마즈사 제품, GC-14B TCD 사용)를 통해 On-line으로 분석하고 계산하였으며 실험 후의 모든 생성 탄화 텅스텐을 주사현미경을 이용하여 입도를 측정하였다.The gas components after the reaction were analyzed and calculated on-line by gas chromatography (manufactured by Shimadzu Corporation, using GC-14B TCD), and the particle size was measured using a scanning microscope for all the produced tungsten carbides.

[실험예2]Experimental Example 2

상기 실험예1에서 우수한 반응 효율을 보인 효율개선제의 효율 증가정도를 더욱 상세히 파악하기 위해 mass-spectroscopy 분석을 통한 실험을 수행하였다. 본 실험은 텅스텐 100mg에 상기 효율개선제 100mg을 혼합하여 U자형 석영반응기에 장착하고 온도 조절이 가능한 전기로를 이용하여 300 도 섭씨에서 분당 1 도 섭씨로 승온하면서 725 도 섭씨까지 실험을 수행하였다.In order to determine in more detail the efficiency increase of the efficiency improving agent showed an excellent reaction efficiency in Experimental Example 1 was carried out through mass-spectroscopy analysis. The experiment was carried out to 725 degrees Celsius while heating the temperature from 300 degrees Celsius to 1 degree Celsius by using a temperature control electric furnace equipped with a U-shaped quartz reactor by mixing 100mg of the efficiency improver 100mg tungsten.

특히 출구부분의 생성 이산화탄소 기체는 On-line으로 연결된 mass- spectroscopy에 의해 자동 분석되었다.In particular, the generated carbon dioxide gas at the outlet was automatically analyzed by on-line mass spectroscopy.

이때 사용된 반응기체는 일산화탄소 50ml/min만을 이용하였고 사용된 효율개선제는 혼합을 용이하게하기 위해 분말형태의 물질을 사용하였다.In this case, only 50 ml / min of carbon monoxide was used, and the efficiency improving agent used was a powdery material to facilitate mixing.

[실시예1]Example 1

효율개선제 없이 산화텅스텐 단독으로 상기 실험예1의 조건으로 실험을 수행하였다.Tungsten oxide alone without the efficiency improving agent was carried out under the conditions of Experimental Example 1.

[실시예2]Example 2

Zeolite HX를 효율개선제로 사용하여 상기 실험예1의 조건으로 실험을 수행하였다.The experiment was performed under the conditions of Experimental Example 1 using Zeolite HX as an efficiency improving agent.

[실시예3]Example 3

Zeolite LiX를 효율개선제로 사용하여 상기 실험예1의 조건으로 실험을 수행하였다.The experiment was performed under the conditions of Experimental Example 1 using Zeolite LiX as an efficiency improving agent.

[실시예4]Example 4

Zeolite NaX를 효율개선제로 사용하여 상기 실험예1의 조건으로 실험을 수행하였다.The experiment was performed under the conditions of Experimental Example 1 using Zeolite NaX as an efficiency improving agent.

[실시예5]Example 5

Zeolite KX를 효율개선제로 사용하여 상기 실험예1의 조건으로 실험을 수행하였다.The experiment was performed under the conditions of Experimental Example 1 using Zeolite KX as an efficiency improving agent.

[실시예6]Example 6

Zeolite CsX를 효율개선제로 사용하여 상기 실험예1의 조건으로 실험을 수행하였다.The experiment was performed under the conditions of Experimental Example 1 using Zeolite CsX as an efficiency improving agent.

[실시예7]Example 7

Zeolite MgX를 효율개선제로 사용하여 상기 실험예1의 조건으로 실험을 수행하였다.The experiment was performed under the conditions of Experimental Example 1 using Zeolite MgX as an efficiency improving agent.

[실시예8]Example 8

Zeolite CaX를 효율개선제로 사용하여 상기 실험예1의 조건으로 실험을 수행하였다.The experiment was performed under the conditions of Experimental Example 1 using Zeolite CaX as an efficiency improving agent.

[실시예9]Example 9

Zeolite HY를 효율개선제로 사용하여 상기 실험예1의 조건으로 실험을 수행하였다.The experiment was performed under the conditions of Experimental Example 1 using Zeolite HY as an efficiency improving agent.

[실시예10]Example 10

Zeolite LiY를 효율개선제로 사용하여 상기 실험예1의 조건으로 실험을 수행하였다.The experiment was performed under the conditions of Experimental Example 1 using Zeolite LiY as an efficiency improving agent.

[실시예11]Example 11

Zeolite NaY를 효율개선제로 사용하여 상기 실험예1의 조건으로 실험을 수행하였다.The experiment was performed under the conditions of Experimental Example 1 using Zeolite NaY as an efficiency improving agent.

[실시예12]Example 12

Zeolite KY를 효율개선제로 사용하여 상기 실험예1의 조건으로 실험을 수행하였다.The experiment was performed under the conditions of Experimental Example 1 using Zeolite KY as an efficiency improving agent.

[실시예13]Example 13

Zeolite CsY를 효율개선제로 사용하여 상기 실험예1의 조건으로 실험을 수행하였다.The experiment was performed under the conditions of Experimental Example 1 using Zeolite CsY as an efficiency improving agent.

[실시예14]Example 14

Zeolite MgY를 효율개선제로 사용하여 상기 실험예1의 조건으로 실험을 수행하였다.The experiment was performed under the conditions of Experimental Example 1 using Zeolite MgY as an efficiency improving agent.

[실시예15]Example 15

Zeolite CaY를 효율개선제로 사용하여 상기 실험예1의 조건으로 실험을 수행하였다.The experiment was performed under the conditions of Experimental Example 1 using Zeolite CaY as an efficiency improving agent.

[실시예16]Example 16

효율개선제 없이 산화텅스텐 단독으로 상기 실험예2의 조건으로 실험을 수행하였다.Tungsten oxide alone was performed under the conditions of Experimental Example 2 without an efficiency improving agent.

[실시예17]Example 17

Zeolite HX를 효율개선제로 사용하여 상기 실험예2의 조건으로 실험을 수행하였다.The experiment was performed under the conditions of Experimental Example 2 using Zeolite HX as an efficiency improving agent.

[실시예18]Example 18

Zeolite NaX를 효율개선제로 사용하여 상기 실험예2의 조건으로 실험을 수행하였다.The experiment was performed under the conditions of Experimental Example 2 using Zeolite NaX as an efficiency improving agent.

[실시예19]Example 19

Zeolite KX를 효율개선제로 사용하여 상기 실험예2의 조건으로 실험을 수행하였다.The experiment was performed under the conditions of Experimental Example 2 using Zeolite KX as an efficiency improving agent.

이상의 실시예에서,In the above embodiment,

도 1 은 변형된 zeolite X 및 Y를 효율개선제를 사용한 경우 산화텅스텐 단독보다 모두 우수한 효율을 나타내었으며 특히 zeolite HX를 비롯한 X-type의 zeolite에서 효율개선 효과가 우수하였다.FIG. 1 shows that the modified zeolites X and Y show better efficiencies than tungsten oxide alone, especially in the zeolites of X-type including zeolite HX.

또한, 도 2 는 실험예1의 조건으로 실험한 각각의 효율개선제첨가 실험 후의 생성 탄화 텅스텐의 입자크기를 주사현미경분석을 통하여 조사된 표로써, 동일온도에서 효율개선제의 종류에 관계없이 모두 단독의 산화텅스텐에서의 생성 탄화텅스텐 입자크기보다 상당히 작아짐을 알 수 있다.In addition, FIG. 2 is a table in which the particle size of the produced tungsten carbide after each efficiency improvement additive experiment experimented under the conditions of Experimental Example 1 was examined by scanning microscope analysis, regardless of the type of efficiency improvement agent at the same temperature. It can be seen that the production of tungsten oxide is significantly smaller than the tungsten carbide particle size.

도 3 은 도 1에서 우수한 반응특성을 보인 zeolite X-type 들 중 HX, NaX, KX와 산화텅스텐 단독에 대한 실험예2의 조건으로 실험을 수행하고 mass-spectroscopy를 통해 분석된 생성된 이산화탄소양의 경향을 나타내는 그래프로 이들의 효율개선제를 사용할 경우 300 도 섭씨에서 반응이 시작되고 각각의 온도지점에서 반응효율이 산화텅스텐 단독의 경우에 비해 우수함을 확인할 수 있다.FIG. 3 is a graph showing the amount of carbon dioxide generated in the zeolite X-types showing excellent reaction characteristics in FIG. 1 under the conditions of Experimental Example 2 for HX, NaX, KX and tungsten oxide alone and analyzed by mass-spectroscopy. As a graph showing the trend, when the efficiency improving agent is used, the reaction starts at 300 degrees Celsius and the reaction efficiency at each temperature point is superior to that of the tungsten oxide alone.

이상에서는 산화텅스텐과 일산화탄소를 사용한 탄화텅스텐 제조에 대하여 예시적으로 설명을 하였지만, 동일한 이유로서,In the above, the production of tungsten carbide using tungsten oxide and carbon monoxide has been exemplarily described, but for the same reason,

상기하는 산화텅스텐 대신 유사물성재인 Ta, Ti, Si, Mo, V, Nb 및 Zr 산화물을 탄화 혹은 환원반응을 통해 각각의 탄화물 혹은 금속 분말을 생산할 수 있음은 자명한 것이며 이러한 유사물에 대한 본 발명의 특징은 그대로 적용됨은 물론이다.It is apparent that the carbide or metal powder can be produced by carbonizing or reducing the oxides of Ta, Ti, Si, Mo, V, Nb and Zr, which are analogous materials, instead of the above-mentioned tungsten oxide. Of course, the features are applied as it is.

이상과 같은 본 발명의 산화텅스텐의 환원-탄화공정은 저렴한 가격의 zeolite NaX와 이를 이온교환하여 제조한 zeolite HX, zeolite LiX, zeolite KX, zeolite CsX, zeolite MgX , zeolite CaX 그리고 zeolite NaY 및 이를 이온교환하여 제조한 zeolite HY, zeolite LiY, zeolite KY, zeolite CsY, zeolite MgY, zeolite CaY 등의 합성제올라이트를 이용하여 반응 효율을 증대하고 입자크기를 감소시켜 물성을 대폭 향상시킴으로써 저렴한 비용으로 고 품위의 탄화텅스텐을 제조할 수 있게 하는 유용한 발명이며 효율개선제는 반복 사용이 가능하여 공정비용 절감에 더욱 효과적이다.




Reduction-carbonization process of the tungsten oxide of the present invention as described above is zeolite HX, zeolite LiX, zeolite KX, zeolite CsX, zeolite MgX, zeolite CaX and zeolite NaY and ion exchange produced by low-cost zeolite NaX and ion exchange it By using synthetic zeolites such as zeolite HY, zeolite LiY, zeolite KY, zeolite CsY, zeolite MgY, zeolite CaY, etc., the reaction efficiency is increased and the particle size is greatly reduced to improve the physical properties. It is a useful invention that can be manufactured and the efficiency improving agent can be used repeatedly is more effective in reducing the process cost.




Claims (3)

일산화탄소를 이용하여 산화텅스텐을 환원-탄화공정을 통해 탄화텅스텐을 제조하는 공정에 있어서,In the process of producing tungsten carbide through the reduction-carbonization process of tungsten oxide using carbon monoxide, 상기 공정은 zeolite NaX와 이를 이온교환하여 제조한 zeolite HX, zeolite LiX, zeolite KX, zeolite CsX, zeolite MgX , zeolite CaX 그리고 zeolite NaY 및 이를 이온교환하여 제조한 zeolite HY, zeolite LiY, zeolite KY, zeolite CsY, zeolite MgY, zeolite CaY의 합성제올라이트 중에서 하나 이상을 산화텅스텐과 혼합하여 반응온도 300 내지 800 도 섭씨에서 수행하는 것을 포함하는 것을 특징으로 하는 산화텅스텐의 환원-탄화공정.The process is zeolite NaX and zeolite HX, zeolite LiX, zeolite KX, zeolite CsX, zeolite MgX, zeolite CaX and zeolite NaY prepared by ion exchange and zeolite HY, zeolite LiY, zeolite KY, zeolite CsY Reducing-carbonization process of tungsten oxide, comprising mixing at least one of the zeolite MgY, zeolite CaY synthetic zeolite with a reaction temperature of 300 to 800 degrees Celsius. 제 1 항에 있어서, 상기 효율개선제의 사용에 의한 공정에 의하여 제조되는 탄화텅스텐의 그 입자분포가 30내지 500nm 인 것을 특징으로 하는 산화텅스텐의 환원-탄화공정.The tungsten oxide reduction-carbonization process according to claim 1, wherein the particle distribution of tungsten carbide produced by the process using the efficiency improving agent is 30 to 500 nm. 일산화탄소를 사용한 환원-탄화공정을 통하여 Ta, Ti, Si, Mo, V 산화물 각각의 금속탄화물로 제조하는 공정에 있어서, 상기공정은 zeolite HX, zeolite LiX, zeolite KX, zeolite CsX, zeolite MgX , zeolite CaX 그리고 zeolite NaY 및 이를 이온교환하여 제조한 zeolite HY, zeolite LiY, zeolite KY, zeolite CsY, zeolite MgY, zeolite CaY의 합성제올라이트 중 하나이상을 상기 금속산화물과 혼합하여 반응효율을 개선하는 환원-탄화공정.In the process of preparing metal carbides of Ta, Ti, Si, Mo, and V oxides through a reduction-carbonization process using carbon monoxide, the process is zeolite HX, zeolite LiX, zeolite KX, zeolite CsX, zeolite MgX, zeolite CaX And a reduction-carbonation process for improving reaction efficiency by mixing at least one of zeolite NaY and zeolite HY, zeolite LiY, zeolite KY, zeolite CsY, zeolite MgY, and zeolite CaY prepared by ion exchange with the metal oxide.
KR1020030012204A 2003-02-27 2003-02-27 Various efficiency modifiers of the reduction-carbonization process of tungsten oxide for the production of tungsten carbide for nanoparticles. KR100604607B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030012204A KR100604607B1 (en) 2003-02-27 2003-02-27 Various efficiency modifiers of the reduction-carbonization process of tungsten oxide for the production of tungsten carbide for nanoparticles.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030012204A KR100604607B1 (en) 2003-02-27 2003-02-27 Various efficiency modifiers of the reduction-carbonization process of tungsten oxide for the production of tungsten carbide for nanoparticles.

Publications (2)

Publication Number Publication Date
KR20040076911A KR20040076911A (en) 2004-09-04
KR100604607B1 true KR100604607B1 (en) 2006-07-26

Family

ID=37362898

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030012204A KR100604607B1 (en) 2003-02-27 2003-02-27 Various efficiency modifiers of the reduction-carbonization process of tungsten oxide for the production of tungsten carbide for nanoparticles.

Country Status (1)

Country Link
KR (1) KR100604607B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100737355B1 (en) * 2005-09-28 2007-07-09 (주)티피에스 Surface polishing agent comprising nano sized tungsten carbide powders and polishing methods using the same

Also Published As

Publication number Publication date
KR20040076911A (en) 2004-09-04

Similar Documents

Publication Publication Date Title
Koc et al. Tungsten carbide (WC) synthesis from novel precursors
Ermakova et al. Effective catalysts for direct cracking of methane to produce hydrogen and filamentous carbon: Part I. Nickel catalysts
JP4033833B2 (en) Method for selectively producing ordered carbon nanotubes in a fluidized bed
KR100336276B1 (en) Manufacturing method of metal and ceramic sintered body and coating
CN1226881A (en) Metallic carbide-group VIII metal powder and its preparation
KR20070050983A (en) Metal carbides and process for producing same
CN110227826A (en) A method of preparing high-purity nm molybdenum powder
Dang et al. Preparation of tungsten carbides by reducing and carbonizing WO2 with CO
JPH02504386A (en) Method and composition for producing boron carbide/titanium diboride composite ceramic powder using boron carbide matrix
KR101691410B1 (en) Method for Preparing Titanium Carbonitride Powder
CN109336612A (en) A kind of preparation method of super fine titanium carbonitride powder
JP3061699B2 (en) Submicron carbonitride, method for its production and its use
Barreto et al. Preparation and characterization of sintered polycrystalline diamond (PCD) with 15 wt% Nb binder
Lin et al. The effects of transition metals on carbothermal synthesis of β-SiC powder
CN108855100B (en) Preparation method of multifunctional metal catalyst
KR100604607B1 (en) Various efficiency modifiers of the reduction-carbonization process of tungsten oxide for the production of tungsten carbide for nanoparticles.
Yin et al. Mechanism and experimental study on preparation of high-quality vanadium nitride by one-step vacuum carbothermal reduction nitridation method
JP2001510435A (en) Carbonitride powder, its production and use
EP3632556A1 (en) Catalyst, and method for direct conversion of syngas to prepare liquid fuel and to produce light olefins
JPS6159391B2 (en)
Chen et al. Synthesis and Characterization of Ti N‐coated Cubic Boron Nitride Powders
JPH0510282B2 (en)
Leconte et al. Elaboration of SiC, TiC, and ZrC nanopowders by laser pyrolysis: from nanoparticles to ceramic nanomaterials
EP1532301B1 (en) Method for the production of catalysts
CN1582257A (en) Graphite material for synthesizing semiconductor diamond and semiconductor diamond produced by using same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120625

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130621

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee