KR100591293B1 - The method of inverse combined welding using electro gas welding and gas metal arc welding and copper shoe used therefor - Google Patents

The method of inverse combined welding using electro gas welding and gas metal arc welding and copper shoe used therefor Download PDF

Info

Publication number
KR100591293B1
KR100591293B1 KR1020050004000A KR20050004000A KR100591293B1 KR 100591293 B1 KR100591293 B1 KR 100591293B1 KR 1020050004000 A KR1020050004000 A KR 1020050004000A KR 20050004000 A KR20050004000 A KR 20050004000A KR 100591293 B1 KR100591293 B1 KR 100591293B1
Authority
KR
South Korea
Prior art keywords
egw
welding
thickness
strength
welding method
Prior art date
Application number
KR1020050004000A
Other languages
Korean (ko)
Inventor
최길영
신병섭
유영수
정준식
손영락
Original Assignee
주식회사 한진중공업
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한진중공업 filed Critical 주식회사 한진중공업
Priority to KR1020050004000A priority Critical patent/KR100591293B1/en
Application granted granted Critical
Publication of KR100591293B1 publication Critical patent/KR100591293B1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/24Safety or protective measures preventing damage to building parts or finishing work during construction
    • E04G21/26Strutting means for wall parts; Supports or the like, e.g. for holding in position prefabricated walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G25/00Shores or struts; Chocks
    • E04G25/02Shores or struts; Chocks non-telescopic
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G25/00Shores or struts; Chocks
    • E04G2025/003Supports therefor, e.g. tripods

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

본 발명은 후판 수직용접에 사용될 수 있는 역컴바인드용접법에 관한 것으로, 이 용접법은 EGW를 적용해도 입열량 증가로 인해서 용접강도가 요구되는 강도보다 저하되지 않는 최대두께를 결정하는 단계와; 상기 결정된 최대두께 범위 내의 두께(t1)까지 EGW를 적용하는 단계; 및 상기 EGW가 적용된 두께(t1)로부터 나머지 두께(t2)에 GMAW를 적용하는 단계; 를 포함하여 이루어져 있다. 또한, 모재의 두께방향으로 일정 부분까지만 EGW를 적용하기 위해서 개선(開先) 형상에 맞는 요철을 가진 습동판이 이용된다. The present invention relates to a reverse bind welding method that can be used for vertical welding of a thick plate, the welding method comprising the steps of determining the maximum thickness of the welding strength does not lower than the required strength due to the increase in heat input even if EGW is applied; Applying EGW to a thickness t1 within the determined maximum thickness range; And applying the GMAW to the remaining thickness t2 from the thickness t1 to which the EGW is applied; Consists of including. In addition, in order to apply EGW only to a certain portion in the thickness direction of the base material, a sliding plate having irregularities matching the improved shape is used.

이러한 용접법은 1패스로 용접단면 전체의 용접이 가능하다는 EGW의 장점을 유지하면서 입열량 증가로 인한 강도저하를 막을 수 있으며, 개선폭과 개선각을 줄일 수 있고, 이에 의해 개선 면적이 감소하므로 용착량이 감소하여 종래의 컴바인드용접법보다 입열량을 더 줄일 수 있으며, 용접법의 적용가능두께가 제한을 받지 않고, 특히 특별한 추가적인 장치없이 좁은 개선에 자동 수직용접을 적용할 수 있다. This welding method can prevent the strength deterioration due to the increase of heat input, reduce the width of improvement and the angle of improvement, thereby reducing the area of improvement while maintaining the advantages of EGW, which allows welding of the entire welding section in one pass. It is possible to reduce the heat input more than the conventional combine welding method, and the applicable thickness of the welding method is not limited, and in particular, it is possible to apply automatic vertical welding to a narrow improvement without special additional device.

Description

일렉트로가스용접법과 가스메탈아크용접법을 함께 사용하는 역컴바인드용접법과 이에 사용되는 습동판{The method of inverse combined welding using electro gas welding and gas metal arc welding and copper shoe used therefor}The method of inverse combined welding using electro gas welding and gas metal arc welding and copper shoe used therefor}

도1은 본 발명에 따른 역컴바인드용접법을 순서대로 나타내는 개략도이고,1 is a schematic diagram sequentially showing a reverse bind welding method according to the present invention;

도2는 본 발명에 따른 습동판을 사용하여 용접부에 EGW를 실시하는 것을 나타내는 평면도 및 측단면도,Figure 2 is a plan view and a side cross-sectional view showing the implementation of the EGW in the welding portion using the sliding plate according to the present invention;

도3은 본 발명에 따른 습동판의 전면 사시도와 후면 사시도,3 is a front perspective view and a rear perspective view of the sliding plate according to the present invention;

도4는 일반적인 GMAW용접법의 개략적인 평면도,4 is a schematic plan view of a general GMAW welding method;

도5는 일반적인 EGW용접법의 개략적인 평면도 및 측단면도, 5 is a schematic plan and side cross-sectional view of a general EGW welding method;

도6은 종래의 컴바인드용접법을 실시한 모재의 단면도,Figure 6 is a cross-sectional view of the base material subjected to the conventional bind welding method,

도7은 본 발명에 따른 역컴바인드용접법을 실시한 모재의 단면도이다. 7 is a cross-sectional view of the base material subjected to the reverse bind welding method according to the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of Symbols for Main Parts of Drawings>

10,100 ---- 모재, 20,200 ---- 용접토치,10,100 ---- substrate, 20,200 ---- welding torch,

21,210 ---- 용접와이어, 22,220 ---- 보호가스,21,210 ---- welding wire, 22,220 ---- protective gas,

30,300 ---- 이면부, 40,400 ----- 전면부,30,300 ---- back side, 40,400 ----- front side,

50,500 ----- 습동판, 51,510 ----- 보호가스배출부, 50,500 ----- sliding plate, 51,510 ----- protective gas discharge,

52,520 ----- 냉각부, 53,530 ----- 보호가스공급관,52,520 ----- cooling part, 53,530 ----- protective gas supply pipe,

54,540 ----- 냉각유체유동관, 550 -------- 지지용홈,54,540 ----- Cooling fluid flow pipe, 550 -------- Supporting groove,

60,600 ----- 백킹재, 70,700 ----- 용융풀, 60,600 ----- backing material, 70,700 ----- molten pool,

800 -------- EGW용접부, 900 -------- GMAW용접부. 800 -------- EGW weld, 900 -------- GMAW weld.

본 발명은 후판(厚板) 수직용접에 사용될 수 있는 용접법에 관한 것으로, 더 특별하게는 일렉트로가스용접법을 먼저 실시하여 용접부의 일부를 용접한 후에 나머지 부분은 가스메탈아크용접법을 이용하여 용접하는 역컴바인드용접법에 관한 것이다. The present invention relates to a welding method that can be used for vertical welding of a thick plate, and more particularly, to perform a portion of the weld by welding the first part of the welding by performing the electrogas welding method and then the other part is welded by using a gas metal arc welding method It is about the combined welding method.

일반적으로, 후판을 용접하는 경우에는 가스메탈아크용접법(Gas Meteal Arc Welding;이하 GMAW)과 일렉트로가스용접법(Electro Gas Welding;이하 EGW)을 사용한다. In general, in the case of welding a thick plate, Gas Meteal Arc Welding (hereinafter referred to as GMAW) and Electro Gas Welding (hereinafter referred to as EGW) are used.

GMAW는 도4에 개략적으로 도시된 바와 같이 소모성 전극인 용접와이어(21)를 일정한 속도로 용융지(熔融池)에 송급하면서 전류를 통하여 상기 용접와이어(21)와 모재(10)사이에서 아크가 발생되도록 하고 이 아크를 이용하여 용접을 실시하는 용접법이다. 이때 아크는 용접와이어(21)의 둘레로 환형으로 형성된 가스노즐을 통해 공급되는 보호가스(22;shielding gas)에 의해서 주위 대기로부터 보호된다. 이러한 GMAW는 연속적으로 공급되는 용접와이어(21)에 의해 일반 피복아크용접(Shielded Metal Arc Welding)법에 비하여 능률적이며, 용착속도가 높아 조선(造船) 공정의 대부분에 적용된다. As shown in FIG. 4, the GMAW supplies the welding wire 21, which is a consumable electrode, to the molten pool at a constant speed, while an arc is formed between the welding wire 21 and the base material 10 through a current. It is a welding method to generate | occur | produce and to weld using this arc. At this time, the arc is protected from the surrounding atmosphere by a shielding gas 22 supplied through a gas nozzle formed in an annular shape around the welding wire 21. This GMAW is more efficient than the general shielded metal arc welding method by the continuously supplied welding wire 21, and the welding speed is high and is applied to most of the shipbuilding process.

GMAW에서는 모재(10)의 두께가 두꺼워질수록 용접부를 채우기 위해서 용접 패스(pass)수가 증가하게 되는데, 예컨대 55mm두께의 모재(10)의 용접에는 50패스 전후의 용접회수가 필요하게 된다. 그리고, 용접토치(20)가 가스노즐과 결합된 형태이어서 용접토치(20)의 직경이 다른 용접법보다 크게 되기 때문에, 용접토치(20)가 접근하여 아크를 보호가스(22)로 적절히 보호하기 위해서는 개선각(開先角 ;groove angle, α)을 크게 하여 용접토치(20)의 접근을 용이하게 해야 한다. 따라서, 실제 사용하는 개선각(α)은 최소 30도 이상을 적용하고 있다. In the GMAW, as the thickness of the base material 10 becomes thicker, the number of welding passes increases to fill the weld. For example, welding of the 55 mm thickness base material 10 requires about 50 passes of welding. In addition, since the welding torch 20 is combined with the gas nozzle, the diameter of the welding torch 20 becomes larger than that of other welding methods, so that the welding torch 20 approaches and properly protects the arc with the protective gas 22. It is necessary to facilitate the access of the welding torch 20 by increasing the groove angle α. Therefore, the improvement angle (alpha) which is actually used applies the minimum 30 degree or more.

도5는 EGW용접법을 나타내는 것으로, 도5a는 이의 평면도이고 도5b는 도5a의 B-B선에 따른 측단면도이다. 도시된 EGW용접법은 GMAW의 특수한 형태로서, 소모성 전극인 용접와이어(21)와 보호가스(22)의 사용, 아크력을 이용한 용접 등 GMAW의 기본 특징을 가지는 용접법으로, 그 특징으로는 1패스로 모재(10)의 용접단면 전체를 용접할 수 있다는 것인데, 도시된 바와 같이 용접와이어(21)가 연속적으로 용융되어 형성된 용융풀(70;molten pool)을, 모재(10)의 이면부(30;root gap)는 세라믹형태의 백킹재(60;backing material)로 막고 전면부(40)는 습동판(50)으로 막아서 용접한다. 5 shows an EGW welding method, in which FIG. 5A is a plan view thereof, and FIG. 5B is a side cross-sectional view along the line B-B in FIG. 5A. The illustrated EGW welding method is a special type of GMAW, which is a welding method having the basic characteristics of GMAW, such as the use of consumable electrodes, the welding wire 21 and the protective gas 22, and welding using arc force. It is possible to weld the entire welded end surface of the base material 10, as shown in the molten pool 70 formed by continuously melting the welding wire 21, the rear surface portion 30 of the base material 10; Root gap) is blocked with a backing material (60) of a ceramic form and the front part 40 is welded by blocking with a sliding plate (50).

아래에서 더 상세하게 설명될 습동판(50)은 그 상부에는 보호가스공급관(53)과 연결된 보호가스배출부(51)가 형성되어 있어서 보호가스(22)를 용접부로 배출시 켜 아크를 주위대기로부터 보호하고 하부에는 냉각유체유동관(54)과 연결된 냉각부(52)가 형성되어 있어서 용접부를 냉각시켜주도록 되어 있다. 그러므로, 습동판(50)은 용접부의 전면부를 막는 기능과 주위대기로부터 아크를 보호하기 위한 보호가스의 배출 및 용접부를 냉각하는 기능을 갖는다. The sliding plate 50, which will be described in more detail below, has a protective gas discharge part 51 connected to the protective gas supply pipe 53 at an upper portion thereof, so that the protective gas 22 is discharged to the welding part so that the arc is ambient. The cooling part 52 is formed in the lower part and connected to the cooling fluid flow tube 54 to cool the welding part. Therefore, the sliding plate 50 has a function of blocking the front part of the welded part, and a function of cooling the discharged part of the protective gas to protect the arc from the ambient atmosphere.

이러한 EGW는 일반 GMAW에 비해서 용접시수 절감 및 능률면에서 탁월한 효과를 가진다. 또한, 일반 GMAW와 비교하여 용접토치(20)에서 가스노즐이 분리되어 습동판(50)의 보호가스배출부(51)를 통해 보호가스(22)가 공급되기 때문에, 용접토치(20)가 작아 용접부 단면내로의 접근이 용이하다. 따라서, 개선각(α)을 일반 GMAW에 비하여 작게 예컨대, 20도 전후로 하여 사용하는 것이 가능하다. This EGW has an excellent effect on the reduction of welding time and efficiency compared to the general GMAW. In addition, since the gas nozzle is separated from the welding torch 20 compared to the general GMAW, and the protective gas 22 is supplied through the protective gas discharge part 51 of the sliding plate 50, the welding torch 20 is small. Easy access to the weld cross section. Therefore, it is possible to use the improvement angle alpha smaller than 20 degrees, for example compared with general GMAW.

이러한 EGW는 후판 수직용접법에서 생산성이 매우 높은 용접법이나, 일정 두께 이상으로 판 두께가 증가하면 용접에 의한 입열량 증가로 인해서 용접강도가 저하되어 생산에 사용할 수 없다는 단점이 있다. Such EGW has a disadvantage in that it is a very high productivity welding method in the vertical plate welding method, but when the plate thickness is increased to a predetermined thickness or more, the welding strength decreases due to an increase in the amount of heat input by welding.

현재 조선소에서 건조중인 컨테이너선은 점차 대형화되어 가고 있으며, 선체 중 두꺼운 부분(시어 스트레이크;sheer strake, 상갑판;upper deck, 해치코밍;hatch coaming)은 그 두께가 65mm 내지 75mm에 이르며, 향후 100mm에 이르게 될 예정이다. 따라서, 국내외 각 조선소에서는 용접시수를 줄이기 위해서 EGW의 적용을 검토 테스트하고 있으나, 전술된 바와 같이 넓은 용접단면을 1패스로 용접하여 발생하는 열에 의한 용접강도의 저하로 인해서 모재 열영향부 및 용착금속부에서 선급에서 요구하는 물성치를 확보하는 데에 어려움을 겪고 있다. Container ships currently being built at shipyards are becoming larger and larger, and the thicker parts of the hull (sheer strake, upper deck; upper deck, hatch coaming) have a thickness of 65 mm to 75 mm. It is going to come. Therefore, domestic and overseas shipyards are examining and testing the application of EGW in order to reduce the welding time, but as described above, due to the reduction of the welding strength due to heat generated by welding a wide welding cross section in one pass, the base material heat affected zone and welding The metal department is having difficulty securing the properties required by the Society.

따라서, EGW의 입열량을 줄이기 위해서 GMAW를 EGW와 같이 사용하는, 모재 및 재료에 적합한 정도의 용접법의 적용이 불가피한데, 종래에는 도6에서의 용접단면도에서와 같이 먼저 GMAW를 용접부에 실시하여 GMAW용접부(900)를 형성한 후, 나머지 부분은 EGW를 실시하여 EGW용접부(800)를 형성하는 용접법(이하 컴바인드용접법;combined welding)을 사용하였다. 그러나, 이러한 컴바인드용접법은 GMAW를 먼저 적용하기 때문에 개선각이 최소 30도 이상을 유지하여야 하므로 전체적인 용착 면적이 증가하게 되며, 60mm두께 이상의 강재에 대해서는 EGW적용시 표면갭이 넓어져 모재와의 완전한 용입을 확보하기 힘들어진다는 단점이 있고 이로 인해서 적용할 수 있는 두께에 제약을 받는다는 단점이 있었다. Therefore, in order to reduce the heat input of EGW, it is inevitable to apply a welding method suitable for a base material and a material using GMAW as EGW. After the welding portion 900 was formed, the remaining portion was subjected to the EGW welding method (hereinafter referred to as "combined welding") to form the EGW welding portion 800. However, this combined welding method requires GMAW to be applied first, so that the improvement angle must be maintained at least 30 degrees. Therefore, the overall welding area is increased, and the surface gap is widened when EGW is applied to steel materials over 60mm thickness. There is a disadvantage in that it is difficult to secure the penetration, and this has a disadvantage in that the thickness is applicable.

본 발명은 상기한 단점을 극복하고자 창출된 것으로, 본 발명의 목적은 GMAW와 EGW를 역컴바인드 방법으로 실시하여, 즉 EGW를 용접부의 일부 두께에 먼저 실시한 후에 나머지 두께 부분은 GMAW를 실시하는 방법으로 1패스로 용접부를 용접할 수 있다는 EGW의 장점을 회손하지 않으면서 용접부의 강도를 확보하고 생산성을 높이는 역컴바인드용접법을 제공하는 것이다. The present invention was created to overcome the above disadvantages, and an object of the present invention is to perform the GMAW and EGW in a reverse bind method, that is, a method of performing the GMAW on the remaining thickness part after the EGW is first performed on the partial thickness of the welded part. It is to provide a reverse bind welding method to secure the weld strength and increase the productivity without changing the advantages of EGW, which can weld a weld in one pass.

본 발명의 다른 목적은 상기 역컴바인드용접법에 알맞은 습동판을 제공하는 것이다. Another object of the present invention is to provide a sliding plate suitable for the reverse bind welding method.

상기한 목적을 위해서 본 발명의 역컴바인드용접법은 EGW를 적용해도 입열량 증가로 인해서 용접강도가 요구되는 강도보다 저하되지 않는 최대두께를 결정하는 단계와, 상기 결정된 최대두께 범위 내의 두께까지 EGW를 적용하는 단계 및, 상기 EGW가 적용된 두께로부터 나머지 두께에 GMAW를 적용하는 단계를 포함하여 이루어졌다. In the reverse bind welding method of the present invention for the above purpose is to determine the maximum thickness of the welding strength does not lower than the required strength due to the increase in heat input even if EGW is applied, and the EGW to a thickness within the determined maximum thickness range And applying GMAW to the remaining thickness from the thickness to which the EGW was applied.

또한, 상기 EGW를 적용해도 용접강도가 요구되는 강도보다 저하되지 않는 최대두께를 결정하는 단계는 시편의 임의의 두께까지 EGW를 적용하는 단계와, EGW가 적용된 시편의 강도를 측정하는 단계, 측정된 강도를 허용강도와 비교하여 허용강도보다 작으면 EGW적용두께를 감소시키고 허용강도보다 높으면 EGW적용두께를 증가시켜 새로운 시편에 다시 EGW를 적용하는 단계 및, 상기 단계들의 반복적인 시행결과에 따라 EGW적용을 위한 최대두께를 결정하는 단계를 포함하여 이루어졌다. In addition, determining the maximum thickness that the welding strength does not lower than the required strength even if the EGW is applied, the step of applying the EGW to any thickness of the specimen, measuring the strength of the specimen to which the EGW is applied, measured When the strength is smaller than the allowable strength compared to the allowable strength, the EGW application thickness is decreased, and when the strength is higher than the allowable strength, the EGW application thickness is increased so that the EGW is applied to the new specimen again and the EGW is applied according to the repeated results of the above steps. Determining the maximum thickness for the process.

또한, 상부에는 보호가스공급관이 연결된 보호가스배출부가 형성되어 있고 하부에는 각각이 입구와 출구가 되는 2개의 냉각유체유동관이 연결된 냉각부가 형성되어 있어서 EGW적용시 용접부의 전면부를 막고 보호가스를 배출하여 아크를 주위대기로부터 보호하며 용접부를 냉각하는 기능을 하는 습동판에 있어서, In addition, the upper part is provided with a protective gas discharge part connected to the protective gas supply pipe, and the lower part has a cooling part connected with two cooling fluid flow pipes, each of which is an inlet and an outlet, so that when the EGW is applied, it blocks the front part of the welding part and discharges the protective gas. In the sliding plate which protects the arc from the ambient atmosphere and functions to cool the weld,

모재의 두께방향으로 일정부분까지만 EGW가 적용되도록 상기 보호가스배출부와 냉각부가 용접부의 개선형상에 맞도록 돌출되어 있도록 하였다. The protective gas discharge part and the cooling part were protruded to fit the improved shape of the welded part so that EGW was applied only to a certain part in the thickness direction of the base material.

또한, 상기 보호가스배출부에는 허니컴(honey comb)이 설치되어 있어서 보호가스의 배출을 정류하도록 하였다. In addition, the honeycomb (honey comb) is provided in the protective gas discharge unit to rectify the discharge of the protective gas.

이하, 첨부도면을 참조로 하여 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도1은 본 발명에 따른 역컴바인드용접법을 순서대로 나타내는 개략도로서, 용접부가 잘 보이도록 하기 위하여 모재의 일부가 잘려져서 도시되어 있다. EGW를 적용하기 전에 먼저 이를 적용해도 입열량 증가로 인해서 용접강도가 저하되지 않 는 최대두께를 알아야 한다. 이를 위해서는 모재로 사용될 수 있는 재료를 시편으로 하여 임의의 두께까지 EGW를 실시한 후, 이 시편의 강도를 측정하여 요구되는 허용강도와 비교하고, 비교결과에 따라 허용강도에 미치지 못하면 EGW를 적용하는 두께를 줄이고 허용강도를 넘어서면 EGW를 적용하는 두께를 늘려서 다시 새로운 시편에 EGW를 실시하며, 상기 과정들을 반복적으로 실시하여 EGW를 적용하는 최대두께를 결정하는 방법을 사용한다. Figure 1 is a schematic diagram showing the reverse bind welding method according to the present invention in order, a portion of the base material is cut to show the welded portion. Before applying EGW, it is necessary to know the maximum thickness that the application does not reduce the weld strength due to the increase of heat input. To do this, perform EGW to a certain thickness using a material that can be used as a base material, measure the strength of the specimen, compare it with the required allowable strength, and apply the EGW if it does not meet the allowable strength. If the EGW is reduced and the allowable strength is exceeded, the EGW is applied to the new specimen again by increasing the thickness of applying the EGW, and the above steps are repeated to determine the maximum thickness of the EGW.

물론, 특정한 한 재료 뿐만 아니라 여러가지 재료에 대해서 실시를 하면 더 바람직하며, 이러한 최대두께는 아래에서 설명되는 바와 같이 습동판(500)의 제작에도 또한 활용될 수 있다. Of course, it is more preferable to implement not only one specific material but also various materials, and this maximum thickness can also be utilized in the manufacture of the sliding plate 500 as described below.

상기와 같이 EGW가 적용될 최대두께가 결정되면, 이 최대두께 내 범위의 두께 즉, 도1a에서 t1까지 EGW를 실시하게 된다. As described above, when the maximum thickness to which the EGW is to be applied is determined, the thickness of the maximum thickness within the range, that is, the EGW is performed up to t1 in FIG. 1A.

이 때에는 도3에 도시된 바와 같이 종래의 습동판(50)과는 다른 습동판(500)이 사용되는데, 습동판(500)의 전체적인 구조는 종래의 습동판(50)과 유사하게 상부에는 보호가스배출부(510)가 형성되어 있어서 EGW적용시 이를 통해 보호가스가 배출되어 용접와이어와 모재사이에서 발생하는 아크를 주위대기로부터 보호하고, 하부에는 냉각부(520)가 형성되어 있어서 도2b에서와 같이 이와 접하는 용접부의 용융풀(700)을 냉각할 수 있도록 되어 있다. 이를 위해서 도3에 도시된 바와 같이 보호가스배출부(510)에는 보호가스공급관(530)이 연결되어 있어서 이를 통해 보호가스가 보호가스배출부(510)로 공급된다. 또한, 냉각부(520)에는 각각이 냉각유체의 냉각부로의 입구와 출구가 되는 2개의 냉각유체유동관(540)이 연결되어 있어서 이를 통해 냉각유체가 냉각부(520)를 순환하여 전술된 바와 같이 용융풀(700)을 냉각시키도록 되어 있다. 그러나, 본 발명에 따른 습동판(500)은 도시된 바와 같이 종래의 습동판(50)과는 달리 보호가스배출부(510)와 냉각부(520)가 용접부의 개선형상에 알맞도록 돌출되어 있는 것이 특징이어서, 이 때문에 모재의 두께방향으로 일정부분까지 즉, 상기 두께(t1)까지 용접부의 전면부(400)로부터 이면부(300)방향으로 습동판(500)을 용접부 내로 삽입할 수 있게 된다. 이는 도2에 잘 나타나 있는 바, 도2a는 본 발명에 따른 습동판(500)을 사용하여 EGW를 실시하는 것을 도시하는 평면도이고 도2b는 도2a의 A-A선에 따른 측단면도이다. 따라서, 도시된 바와 같이 본 발명에 따른 습동판(500)을 사용하면 용접부의 일부 두께(t1)까지만 EGW를 적용할 수 있게 된다. 여기에서 참조번호 550은 지지용홈으로 EGW적용시 습동판을 EGW용접기에 지지하는 데에 사용된다. In this case, as shown in FIG. 3, a sliding plate 500 different from the conventional sliding plate 50 is used, and the overall structure of the sliding plate 500 is similarly protected to that of the conventional sliding plate 50. When the gas discharge part 510 is formed, the protective gas is discharged through the EGW to protect the arc generated between the welding wire and the base metal from the surrounding atmosphere, and the cooling part 520 is formed at the lower part of FIG. As described above, the molten pool 700 of the welded portion which is in contact with this can be cooled. To this end, as shown in FIG. 3, the protection gas discharge unit 510 is connected to the protection gas supply pipe 530 so that the protection gas is supplied to the protection gas discharge unit 510. In addition, the cooling unit 520 is connected to two cooling fluid flow pipes 540, each of which is an inlet and an outlet of the cooling fluid to the cooling unit, through which the cooling fluid circulates the cooling unit 520, as described above. The molten pool 700 is cooled. However, the sliding plate 500 according to the present invention, unlike the conventional sliding plate 50, as shown, the protective gas discharge portion 510 and the cooling unit 520 is projected to fit the improved shape of the weld Therefore, the sliding plate 500 can be inserted into the welded portion from the front portion 400 of the welded portion to the rear portion 300d direction up to a predetermined portion in the thickness direction of the base material, that is, the thickness t1. . This is well shown in Figure 2, Figure 2a is a plan view showing the implementation of the EGW using the sliding plate 500 according to the present invention and Figure 2b is a side cross-sectional view along the line A-A of Figure 2a. Therefore, as shown, using the sliding plate 500 according to the present invention, it is possible to apply EGW only to a part of the thickness t1 of the welded portion. Here, reference numeral 550 is used as a support groove to support the sliding plate to the EGW welder when applying EGW.

전술된 바와 같이, EGW 적용가능 최대두께는 습동판(500)의 보호가스배출부(510)와 냉각부(520)의 돌출정도를 결정하는 데에 도움을 줄 수 있다. 또한, 상기 습동판(500)의 보호가스배출부(510)에 하니컴(honey comb)을 설치하여 보호가스의 배출을 정류하면 보호가스가 안정되고 일정하게 배출되게 되므로 볼텍스 쉐딩(Vortex Shedding) 및 난류에 의해 대기가 보호가스 내부로 혼입되는 것을 막을 수 있으므로 바람직하다. As described above, the maximum applicable thickness of the EGW may help determine the degree of protrusion of the protective gas discharge part 510 and the cooling part 520 of the sliding plate 500. In addition, by installing a honey comb on the protective gas discharge part 510 of the sliding plate 500 to rectify the discharge of the protective gas, the protective gas is stably and uniformly discharged, thereby causing vortex shedding and turbulence. This is preferable because it can prevent the atmosphere from entering the protective gas.

도1과 도2에 도시된 바와 같이 용접부내로 습동판(500)을 삽입 설치하여 용접부의 전면부(400)를 막고 그 이면부(300)는 종래의 방법과 같이 백킹재(600)를 설치하여 막은 후, 종래의 EGW와 같이 보호가스(220)를 배출하면서 용융풀(700)을 냉각시키는 습동판(500)을 상승시키면서 EGW를 용접부에 실시하면 도1c에 도시된 바와 같이 용접부의 수직길이방향으로 두께(t1)까지만 EGW방법으로 용접이 이루어져 EGW용접부(800)를 형성한다. As shown in Fig. 1 and 2, the sliding plate 500 is inserted into the welding part to block the front part 400 of the welding part, and the back part 300 is provided with a backing material 600 as in the conventional method. After the film is closed, the EGW is subjected to the welding while raising the sliding plate 500 for cooling the molten pool 700 while discharging the protective gas 220 as in the conventional EGW, as shown in FIG. 1C. As a result, welding is performed by the EGW method only up to the thickness t1 to form the EGW welding part 800.

두께(t1)까지의 EGW를 완료한 후에는 도1c에 도시된 바와 같이 이를 위해서 설치한 습동판(500)과 백킹재(600)를 제거한다. EGW가 적용된 다음의 두께(t2)는 도1d에 도시된 바와 같이 개선의 폭이 넓어지게 되어 GMAW용 용접토치(200)를 좌우로 위빙(weaving)하여 GMAW를 실시할 수 있는 충분한 공간이 생기게 된다. After the EGW up to the thickness t1 is completed, the sliding plate 500 and the backing material 600 installed for this purpose are removed as shown in FIG. 1C. The thickness t2 after the EGW is applied becomes wider as shown in FIG. 1D, thereby providing sufficient space for weaving the GMAW welding torch 200 to the left and right. .

그러므로, 나머지 두께(t2)를 GMAW용 용접토치(200)를 사용하여 여러 번의 패스로 용접하면, 도1e에 볼 수 있는 바와 같이 모재(100)의 두께(t1)까지는 EGW가 적용된 용접단면을 얻을 수 있고 그 이외의 두께(t2)는 GMAW가 적용된 용접단면을 얻을 수 있다. 이는 도면에서 EGW용접부(800)와 GMAW용접부(900)로 표시되어 있고, 도7에 단면도로 더 상세하게 도시되어 있다. Therefore, if the remaining thickness t2 is welded in several passes using the welding torch 200 for GMAW, as shown in FIG. 1E, a welding section to which the EGW is applied can be obtained up to the thickness t1 of the base material 100. The thickness t2 other than this can obtain a welded cross section to which GMAW is applied. This is indicated in the figure by the EGW weld 800 and the GMAW weld 900, and is shown in more detail in cross section in FIG.

전술된 바와 같이 도6은 종래의 컴바인드용접법 즉, GMAW를 먼저 실시하고 이후 EGW를 실시한 용접법의 단면도이고, 도7은 본 발명에 따른 역컴바인드용접법을 실시한 단면도를 나타낸 도면으로, 양 도면의 비교에 의해서 한 눈에 알아볼 수 있듯이 종래의 컴바인드용접법의 경우에는 GMAW를 먼저 실시하게 되므로 개선각이 넓어지게 되어 컴바인드용접법의 적용가능 두께가 이에 의해서 많은 제약을 받으나, 본 발명의 역컴바인드용접법의 경우에는 개선각에 크게 영향받지 않은 EGW를 먼저 실시하게 되므로 좁은 개선각 예컨대, 약 20도 전후의 개선각으로도 충분히 용접가능하다. As described above, FIG. 6 is a cross-sectional view of a conventional combine welding method, that is, a welding method in which GMAW is performed first and then EGW is performed. FIG. 7 is a cross-sectional view showing a reverse bind welding method according to the present invention. As can be seen from the comparison, the conventional combined welding method is performed with GMAW first, so that the angle of improvement becomes wider, and thus the applicable thickness of the combined welding method is restricted by this, but the reverse combine of the present invention In the case of the de-welding method, since the EGW which is not greatly influenced by the improvement angle is performed first, even a narrow improvement angle, for example, an improvement angle of about 20 degrees, can be sufficiently welded.

또한, EGW 실시 이후에 GMAW적용시 용접토치의 운동반경을 충분히 확보할 수 있기 때문에, EGW 적용가능 두께만 충분히 확보된다면 컴바인드용접법에서와 같이 적용두께가 제한받지 않는다는 장점이 있다. In addition, since the motion radius of the welding torch is sufficiently secured when the GMAW is applied after the EGW, if the EGW applicable thickness is sufficiently secured, the application thickness is not limited as in the combined welding method.

그리고, 용접부의 좁은 면적에서 EGW가 우선 적용 되기 때문에 종래의 컴바인드용접법에 비해 입열량이 전체적으로 더욱 적어지고, 표면용입불량을 걱정할 필요가 없어진다. 따라서, 1패스 EGW용접법을 적용할 수 없는 현재까지의 조선 강재들에 기준치를 만족하는 정도까지의 입열을 가하는 EGW를 선적용하고, 나머지 부분을 일반 GMAW를 적용하여 최대 100mm두께 이상의 강재의 용접에 적용할 수 있다. In addition, since EGW is preferentially applied in a small area of the welded part, the amount of heat input is further reduced as compared with the conventional combined welding method, and there is no need to worry about surface welding defects. Therefore, EGW is applied to shipbuilding steels to the extent that satisfies the standard value for shipbuilding steels to which the 1-pass EGW welding method cannot be applied, and the rest is applied to welding steels of 100mm thickness or more by applying general GMAW. Applicable

이러한 역컴바인드용접법은 일반 GMAW와 비교해 획기적으로 용접능률이 확보되며, 종래의 컴바인드용접법의 입열문제 및 60mm두께 이상 강재에 대한 적용의 어려움을 동시에 해결한다. This reverse bind welding method is significantly improved welding efficiency compared to the general GMAW, and solves the heat input problem of the conventional bind welding method and the difficulty of applying to steel over 60mm thickness at the same time.

상기와 같이 본 발명에 의하면, 개선각에 크게 영향받지 않은 EGW를 먼저 적용한 후 입열량이 EGW보다 비교적 많지 않은 GMAW를 나중에 적용하도록 역컴바인드용접법을 구성하여, 입열량 증가로 인해서 용접부의 강도가 허용강도보다 낮아지는 것을 방지할 수 있어서 안정적인 용접부의 강도를 확보하면서 더 두꺼운 두께도 용접이 가능하며, 좁은 개선각으로도 용접이 가능하고 용접가능두께에 제한을 받지 않기 때문에 추가적인 생산성향상의 효과가 있다. 또한, 특별한 추가장치없이 좁은 개선에 자동 수직용접을 적용할 수 있는 효과가 있다. As described above, according to the present invention, by applying the EGW that is not significantly affected by the improvement angle first, and then, the reverse bind welding method is configured to apply the GMAW which does not have a relatively large amount of heat input than the EGW, so that the strength of the weld is increased due to the increased heat input amount. It is possible to prevent lower than the allowable strength, so that it is possible to weld a thicker thickness while securing a stable welded part strength, and it is possible to weld with a narrow angle of improvement, and the additional productivity improvement effect is not limited because the welding thickness is not limited. have. In addition, there is an effect that can be applied to the automatic vertical welding in a narrow improvement without a special additional device.

Claims (4)

EGW를 적용해도 입열량 증가로 인해서 용접강도가 요구되는 강도보다 저하되지 않는 최대두께를 결정하는 단계와;Determining a maximum thickness at which welding strength is not lowered than a required strength due to an increase in heat input even when EGW is applied; 상기 결정된 최대두께 범위 내의 두께(t1)까지 EGW를 적용하는 단계; 및Applying EGW to a thickness t1 within the determined maximum thickness range; And 상기 EGW가 적용된 두께(t1)로부터 나머지 두께(t2)에 GMAW를 적용하는 단계; 를 포함하여 이루어진 역컴바인드용접법. Applying GMAW from the thickness t1 to which the EGW is applied to the remaining thickness t2; Reverse bind welding method comprising a. 제1항에 있어서, 상기 EGW를 적용해도 용접강도가 요구되는 강도보다 저하되지 않는 최대두께를 결정하는 단계는 The method of claim 1, wherein the determining of the maximum thickness of applying the EGW does not lower the required weld strength. 시편의 임의의 두께까지 EGW를 적용하는 단계와;Applying EGW to any thickness of the specimen; EGW가 적용된 시편의 강도를 측정하는 단계;Measuring the strength of the specimen to which the EGW is applied; 측정된 강도를 허용강도와 비교하여 허용강도보다 작으면 EGW적용두께를 감소시키고 허용강도보다 높으면 EGW적용두께를 증가시켜 새로운 시편에 다시 EGW를 적용하는 단계; 및 Applying the EGW to the new specimen by reducing the EGW application thickness when the measured strength is smaller than the allowable strength and increasing the EGW application thickness when the strength is higher than the allowable strength; And 상기 단계들의 반복적인 시행결과에 따라 EGW적용을 위한 최대두께를 결정하는 단계; 를 포함하여 이루어진 역컴바인드용접법.Determining a maximum thickness for EGW application according to the repeated execution result of the steps; Reverse bind welding method comprising a. 상부에는 보호가스공급관(530)이 연결된 보호가스배출부(510)가 형성되어 있고 하부에는 각각이 입구와 출구가 되는 2개의 냉각유체유동관(540)이 연결된 냉각 부(520)가 형성되어 있어서 EGW적용시 용접부의 전면부를 막고 보호가스를 배출하여 아크를 주위대기로부터 보호하며 용접부를 냉각하는 기능을 하는 습동판(500)에 있어서, The upper part is provided with a protective gas discharge part 510 to which the protective gas supply pipe 530 is connected, and the cooling part 520 to which two cooling fluid flow pipes 540 are respectively formed as an inlet and an outlet is formed in the lower part of the EGW. In the sliding plate 500, which functions to block the front part of the welded part and discharge the protective gas to protect the arc from the surrounding atmosphere and to cool the welded part, 모재(100)의 두께방향으로 일정부분까지만 EGW가 적용되도록 상기 보호가스배출부(510)와 냉각부(520)가 용접부의 개선형상에 맞도록 돌출되어 있는 역컴바인드용접법에 사용되는 습동판.The sliding plate used in the reverse bind welding method in which the protective gas discharge part 510 and the cooling part 520 protrude to meet the improved shape of the welded part so that only EGW is applied to a predetermined portion in the thickness direction of the base material 100. 제3항에 있어서, 상기 보호가스배출부(510)에는 허니컴(honey comb)이 설치되어 있어서 보호가스의 배출을 정류하도록 한 역컴바인드용접법에 사용되는 습동판.4. The sliding plate according to claim 3, wherein a honey comb is provided in the protective gas discharge part 510 to rectify the discharge of the protective gas.
KR1020050004000A 2005-01-15 2005-01-15 The method of inverse combined welding using electro gas welding and gas metal arc welding and copper shoe used therefor KR100591293B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050004000A KR100591293B1 (en) 2005-01-15 2005-01-15 The method of inverse combined welding using electro gas welding and gas metal arc welding and copper shoe used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050004000A KR100591293B1 (en) 2005-01-15 2005-01-15 The method of inverse combined welding using electro gas welding and gas metal arc welding and copper shoe used therefor

Publications (1)

Publication Number Publication Date
KR100591293B1 true KR100591293B1 (en) 2006-06-19

Family

ID=37182947

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050004000A KR100591293B1 (en) 2005-01-15 2005-01-15 The method of inverse combined welding using electro gas welding and gas metal arc welding and copper shoe used therefor

Country Status (1)

Country Link
KR (1) KR100591293B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103157911A (en) * 2011-12-16 2013-06-19 贵州永红航空机械有限责任公司 Welding method of stainless steel plate-fin radiator
KR101370100B1 (en) 2008-11-10 2014-03-25 현대중공업 주식회사 Copper shoe for Electro Gas Welding
KR101453354B1 (en) * 2012-12-04 2014-10-23 대우조선해양 주식회사 Conbined Welding Method of Electro Gas Welding and Flux Cored Arc Welding
KR20160147151A (en) * 2015-06-12 2016-12-22 동국제강주식회사 Estimation for welding joint of ultra high input welding
KR20170001918A (en) * 2015-06-27 2017-01-05 동국제강주식회사 Estimation testing welding method for welding joint of ultra high input welding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60206582A (en) 1984-03-31 1985-10-18 Hitachi Zosen Corp One-side multi-layer build-up electrogas arc welding method
JPS61159274A (en) 1984-12-28 1986-07-18 Ishikawajima Harima Heavy Ind Co Ltd Welding method
JP2001001169A (en) 1999-06-16 2001-01-09 Japan Steel & Tube Constr Co Ltd Electro gas welding method
KR200320108Y1 (en) 2003-04-18 2003-07-22 주식회사 한진중공업 Copper shoe for electro gas welding thick plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60206582A (en) 1984-03-31 1985-10-18 Hitachi Zosen Corp One-side multi-layer build-up electrogas arc welding method
JPS61159274A (en) 1984-12-28 1986-07-18 Ishikawajima Harima Heavy Ind Co Ltd Welding method
JP2001001169A (en) 1999-06-16 2001-01-09 Japan Steel & Tube Constr Co Ltd Electro gas welding method
KR200320108Y1 (en) 2003-04-18 2003-07-22 주식회사 한진중공업 Copper shoe for electro gas welding thick plate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101370100B1 (en) 2008-11-10 2014-03-25 현대중공업 주식회사 Copper shoe for Electro Gas Welding
CN103157911A (en) * 2011-12-16 2013-06-19 贵州永红航空机械有限责任公司 Welding method of stainless steel plate-fin radiator
KR101453354B1 (en) * 2012-12-04 2014-10-23 대우조선해양 주식회사 Conbined Welding Method of Electro Gas Welding and Flux Cored Arc Welding
KR20160147151A (en) * 2015-06-12 2016-12-22 동국제강주식회사 Estimation for welding joint of ultra high input welding
KR101719136B1 (en) 2015-06-12 2017-03-24 동국제강주식회사 Estimation for welding joint of ultra high input welding
KR20170001918A (en) * 2015-06-27 2017-01-05 동국제강주식회사 Estimation testing welding method for welding joint of ultra high input welding
KR101693589B1 (en) 2015-06-27 2017-01-09 동국제강주식회사 Estimation testing welding method for welding joint of ultra high input welding

Similar Documents

Publication Publication Date Title
KR100591293B1 (en) The method of inverse combined welding using electro gas welding and gas metal arc welding and copper shoe used therefor
Shenghai et al. The technology and welding joint properties of hybrid laser-tig welding on thick plate
Liu et al. Hybrid laser-arc welding of advanced high-strength steel
KR101729428B1 (en) Method for narrow-groove gas-shielded arc welding
US10662785B2 (en) Method of welding erosion resistance metallic material and turbine blade
Çolak et al. Weld morphology and mechanical performance of marine structural steel welded underwater in a real marine environment
PT2480367E (en) Welding contact tips for pulse applications
JP5402824B2 (en) Multi-electrode submerged arc welding method with excellent weldability
JP4327153B2 (en) Arc constriction shield nozzle
JP2012166204A (en) Water-cooled sliding copper strap for electrogas arc welding
Kah et al. Process possibility of welding thin aluminium alloys
JPH07204854A (en) High speed gas shield arc welding equipment and method therefor
KR101780178B1 (en) Shielding gas welding torch, which provides high weld by enhancing safety function
KR19990073878A (en) Gas shield for welding titanium or zirconium
KR20180078098A (en) Welding method of pre-swirl stator for stern of ship
MV et al. Role of FCA welding process parameters on bead profile, angular and bowing distortion of ferritic stainless steel sheets
JP6380672B2 (en) Welded joint and its manufacturing method
KR20180041339A (en) Front copper shoe for using horizontal butt welding
JP2010234409A (en) Narrow gloove welding torch, and tandem arc welding apparatus having the same
Singh et al. A Review: Parametric effect on mechanical properties and weld bead geometry of Aluminium alloy in GTAW
KR101406486B1 (en) Flux supply apparatus for multiple welding electrode
Shaw Jr Effect of orifice geometry in plasma-arc welding of Ti–6Al–4V
KR20110084607A (en) Ceramic backing material structure of easy slag dischaging for electro gas welding
Ribeiro et al. Feasibility of cold wire gas metal arc welding AA5052 H-32
JPH09314334A (en) High speed gas shield arc welding equipment and method therefor

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130612

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140612

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150612

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160613

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170612

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180612

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190612

Year of fee payment: 14