KR100574928B1 - Method for forming insulating layer of semiconductor device - Google Patents

Method for forming insulating layer of semiconductor device Download PDF

Info

Publication number
KR100574928B1
KR100574928B1 KR1019990055579A KR19990055579A KR100574928B1 KR 100574928 B1 KR100574928 B1 KR 100574928B1 KR 1019990055579 A KR1019990055579 A KR 1019990055579A KR 19990055579 A KR19990055579 A KR 19990055579A KR 100574928 B1 KR100574928 B1 KR 100574928B1
Authority
KR
South Korea
Prior art keywords
interlayer insulating
insulating film
carbon
forming
semiconductor device
Prior art date
Application number
KR1019990055579A
Other languages
Korean (ko)
Other versions
KR20010054676A (en
Inventor
박희숙
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1019990055579A priority Critical patent/KR100574928B1/en
Publication of KR20010054676A publication Critical patent/KR20010054676A/en
Application granted granted Critical
Publication of KR100574928B1 publication Critical patent/KR100574928B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • H01L21/0229Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating liquid atomic layer deposition

Abstract

본 발명의 반도체 소자의 층간 절연막 형성 방법은 하지층 상에 도전 패턴을 형성하는 단계와, 상기 도전 패턴이 형성된 하지층의 전면에 탄소가 함유된 제1 층간 절연막을 형성하는 단계와, 상기 탄소가 함유된 제1 층간 절연막에 산화 소스를 공급하여 표면의 탄소를 제거하는 단계와, 상기 표면의 탄소가 제거된 제1 층간 절연막 상에 제2 층간 절연막을 형성하는 단계를 포함하여 이루어진다. 상기 산화 소스를 공급하는 단계 후에 상기 표면에 탄소가 제거된 제1 층간 절연막 상에 원자층 증착 장비로 알루미늄 소스를 공급하여 알루미늄 산화막을 형성하는 단계를 더 포함할 수 있다. 이상의 본 발명은 층간 절연막의 벌크안의 탄소 변화를 최소로 하고 표면의 탄소만을 제거하여 층간 절연막이 저유전율을 유지하면서도 접착성을 향상시킬 수 있다. The method for forming an interlayer insulating film of a semiconductor device of the present invention includes forming a conductive pattern on a base layer, forming a first interlayer insulating film containing carbon on the entire surface of the underlayer on which the conductive pattern is formed, and Supplying an oxidizing source to the contained first interlayer insulating film to remove carbon from the surface, and forming a second interlayer insulating film on the first interlayer insulating film from which the carbon on the surface is removed. The method may further include forming an aluminum oxide layer by supplying an aluminum source to an atomic layer deposition apparatus on the first interlayer insulating layer from which carbon is removed from the surface after the supply of the oxide source. The present invention can minimize the carbon change in the bulk of the interlayer insulating film and remove only the carbon on the surface to improve the adhesion while the interlayer insulating film maintains a low dielectric constant.

Description

반도체 소자의 층간 절연막 형성방법{Method for forming insulating layer of semiconductor device}Method for forming insulating layer of semiconductor device

도 1은 본 발명의 반도체 소자의 층간 절연막 형성 방법에 이용된 원자층 증착 장비를 설명하기 위하여 도시한 개략도이다.1 is a schematic diagram illustrating an atomic layer deposition apparatus used in the method for forming an interlayer insulating film of a semiconductor device of the present invention.

도 2 내지 도 5는 본 발명의 반도체 소자의 층간 절연막 형성 방법을 설명하기 위하여 도시한 단면도들이다.2 to 5 are cross-sectional views illustrating a method of forming an interlayer insulating film of a semiconductor device of the present invention.

본 발명은 반도체 소자의 제조 방법에 관한 것으로, 보다 상세하게는 원자층 증착(Atomic Layer Deposition: 이하, "ALD"라 함) 방식을 이용한 반도체 소자의 층간 절연막 형성 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for forming an interlayer insulating film of a semiconductor device using atomic layer deposition (hereinafter, referred to as “ALD”).

반도체 소자가 고집적화되면서 금속 패턴 사이의 거리가 좁아지고, 금속 패턴 사이의 층간 절연막에서 발생하는 기생 커패시턴스 값도 증가하게 된다. 따라서, 고집적화된 반도체 소자는 높은 전력 소모, 크로스 토크 현상, 지연 시간 증가 등의 문제점이 발생된다. 이러한 이유로 저유전율의 층간 절연막의 필요성이 크게 대두되고 있고, 더욱이 빠른 스피드를 요하는 다중-금속층을 갖는 고집적 반도체 소자는 성능 향상을 위하여 저유전율의 층간 절연막을 채용하는 것이 필수적 요소가 되었다.As semiconductor devices become highly integrated, the distance between metal patterns is narrowed, and parasitic capacitance values generated in the interlayer insulating film between the metal patterns also increase. Therefore, the highly integrated semiconductor device has problems such as high power consumption, cross talk phenomenon, and increased delay time. For this reason, the need for a low dielectric constant interlayer insulating film is increasing, and it is essential to adopt a low dielectric constant interlayer insulating film for the performance improvement of a highly integrated semiconductor device having a multi-metal layer requiring a high speed.

이에 따라, 제로젤(Xerogel)과 같은 공공과 탄소를 함유하거나 HOSP(Hydride Organie Siloxane Polymer)와 같은 탄소를 함유한 저유전율의 박막을 층간 절연막으로 채용하는 것이 제안되었다. 그러나, 이러한 층간 절연막은 탄소의 표면으로까지 노출되어 있기 때문에 상부층과의 결합을 위한 결합 사이트(site)가 부족하여 상부 절연막과의 접착성이 취약한 문제점이 있다. 더욱이, 상기 층간 절연막을 화학기계적연마하거나 스트레스의 차이가 큰 또 다른 층간 절연막을 상부에 형성하면 접착성이 취약하여 층간 절연막들끼리 갈라지는 현상(delamination)이 발생한다. 그렇다고 상기 접착성의 취약 문제를 해결하기 위하여 층간 절연막 안의 탄소를 제거할 수 도 없다. 왜냐하면 상기 탄소가 저유전율을 나타내는 요소이기 때문에 탄소를 줄이면 저유전율이 상실되기 때문이다. Accordingly, it has been proposed to employ a thin film of low dielectric constant containing pores and carbon such as Xerogel or carbon such as Hydrogen Organie Siloxane Polymer (HOSP) as an interlayer insulating film. However, since the interlayer insulating film is exposed to the surface of the carbon, there is a problem in that the adhesion site to the upper insulating film is weak due to a lack of a bonding site for bonding with the upper layer. In addition, when the interlayer insulating film is chemically mechanically polished or another layer of the insulating film having a large stress difference is formed on the top, adhesiveness is poor and delamination occurs between the interlayer insulating films. However, it is not possible to remove the carbon in the interlayer insulating film to solve the problem of weakness of adhesion. Because the carbon is a factor showing a low dielectric constant, if the carbon is reduced, the low dielectric constant is lost.

따라서, 본 발명이 이루고자 하는 기술적 과제는 상술한 층간 절연막들 간의 접착성 문제도 해결하면서도 저유전율을 갖는 반도체 소자의 층간 절연막의 형성 방법을 제공하는 데 있다.Accordingly, an object of the present invention is to provide a method of forming an interlayer insulating film of a semiconductor device having a low dielectric constant while solving the above-described adhesion problem between the interlayer insulating films.

상기 기술적 과제를 달성하기 위하여, 본 발명의 반도체 소자의 층간 절연막 형성 방법은 하지층 상에 도전 패턴을 형성하는 단계와, 상기 도전 패턴이 형성된 하지층의 전면에 탄소가 함유된 제1 층간 절연막을 형성하는 단계와, 상기 탄소가 함유된 제1 층간 절연막에 산화 소스를 공급하여 표면의 탄소를 제거하는 단계와, 상기 표면의 탄소가 제거된 제1 층간 절연막 상에 제2 층간 절연막을 형성하는 단계를 포함하여 이루어진다.In order to achieve the above technical problem, the method for forming an interlayer insulating film of the semiconductor device of the present invention comprises the steps of forming a conductive pattern on the underlayer, and the first interlayer insulating film containing carbon on the entire surface of the underlayer on which the conductive pattern is formed Forming a carbon dioxide layer; supplying an oxide source to the carbon-containing first interlayer insulating film to remove carbon from the surface; and forming a second interlayer insulating film on the first interlayer insulating film from which the carbon is removed. It is made, including.

상기 산화 소스는 원자층 증착 방식으로 공급한 수증기(H2O)를 이용할 수 있다. 상기 산화 소스를 공급하는 단계 후에 상기 표면에 탄소가 제거된 제1 층간 절연막 상에 원자층 증착 방식으로 알루미늄 소스를 공급하여 알루미늄 산화막을 형성하는 단계를 더 포함할 수 있다.The oxidation source may use water vapor (H 2 O) supplied by atomic layer deposition. The method may further include forming an aluminum oxide layer by supplying an aluminum source by atomic layer deposition on the first interlayer insulating layer from which carbon is removed from the surface after the supply of the oxide source.

이상과 같이 본 발명은 층간 절연막의 벌크안의 탄소 변화를 최소로 하고 표면의 탄소만을 제거하여 층간 절연막이 저유전율을 유지하면서도 접착성을 향상시킬 수 있다. As described above, the present invention minimizes the carbon change in the bulk of the interlayer insulating film and removes only the carbon on the surface, thereby improving the adhesiveness while maintaining the low dielectric constant of the interlayer insulating film.

이하, 첨부 도면을 참조하여 본 발명의 실시예를 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 반도체 소자의 층간 절연막 형성 방법에 이용된 원자층 증착 장비를 설명하기 위하여 도시한 개략도이다.1 is a schematic diagram illustrating an atomic layer deposition apparatus used in the method for forming an interlayer insulating film of a semiconductor device of the present invention.

구체적으로, 외부의 히터(도시 안함)에 의하여 가열될 수 있는 반응 챔버(11)와, 기판(15), 예컨대 실리콘 기판이 놓이도록 상기 반응 챔버(11)의 바닥에 설치된 서셉터(susceptor; 13)와, 반응 가스들이 상기 반응 챔버(11) 내부로 주입되도록 상기 서셉터(13) 상부에 설치된 샤워 헤드(shower head; 17)와, 상기 반응 챔버(11) 내부의 압력을 조절하기 위하여 상기 반응 챔버(11)와 연결된 진공펌프(19)를 구비한다. 여기서, 상기 샤워 헤드(17)는 서로 분리된 제1 가스 주입관(A, gas inlet) 및 제2 가스주입관(gas inlet; B)을 구비한다. 그리고, 제1 반응물, 예컨대 금속 소스인 트리메틸알루미늄(trimethyl aluminum: TMA) 및 불활성 가스(inert gas)는 상기 제1 가스 주입관(A)을 통하여 반응 챔버(11) 내부로 주입되고, 제2 반응물, 예컨대 산화 소스인 수증기(H2O)은 상기 제2 가스주입관(B)을 통하여 반응 챔버(11) 내부로 주입된다. 상기 제1 반응물과 제2 반응물의 가스 주입관을 다르게 한 것은 하나의 가스 주입관(A 또는 B) 내에서 제1 반응물 및 제2 반응물이 서로 반응하는 것을 억제시키기 위함이다. 상기 제1 반응물 및 상기 불활성 가스는 각각 제1 밸브(V1) 및 제2 밸브(V2)에 의하여 반응 챔버(11) 내부로의 주입이 제어되고, 상기 제2 반응물은 제3 밸브(V3)에 의하여 상기 반응 챔버(11) 내부로의 주입이 제어된다. Specifically, a susceptor 13 installed at the bottom of the reaction chamber 11 to place a reaction chamber 11 that can be heated by an external heater (not shown) and a substrate 15, for example, a silicon substrate. ), A shower head 17 installed above the susceptor 13 so that the reaction gases are injected into the reaction chamber 11, and the reaction to adjust the pressure inside the reaction chamber 11. And a vacuum pump 19 connected to the chamber 11. Here, the shower head 17 is provided with a first gas inlet (A, gas inlet) and a second gas inlet (B) inlet separated from each other. In addition, a first reactant such as trimethyl aluminum (TMA) and an inert gas, which are metal sources, is injected into the reaction chamber 11 through the first gas inlet tube A, and a second reactant For example, water vapor (H 2 O) serving as an oxidation source is injected into the reaction chamber 11 through the second gas injection pipe B. The gas injection tubes of the first reactant and the second reactant are different from each other in order to suppress the reaction between the first reactant and the second reactant in one gas injection tube (A or B). Injection of the first reactant and the inert gas into the reaction chamber 11 is controlled by the first valve V1 and the second valve V2, respectively, and the second reactant is injected into the third valve V3. The injection into the reaction chamber 11 is controlled by this.

도 2 내지 도 5는 본 발명의 반도체 소자의 층간 절연막 형성 방법을 설명하기 위하여 도시한 단면도들이다.2 to 5 are cross-sectional views illustrating a method of forming an interlayer insulating film of a semiconductor device of the present invention.

도 2를 참조하면, 하지층(21), 예컨대 반도체 기판이나 하부 절연막 상에 사진식각공정을 이용하여 도전 패턴(23)을 형성한다. 상기 도전 패턴(23)은 알루미늄 등의 금속 패턴을 이용한다. 이어서, 상기 도전 패턴(23)이 형성된 하지층(21)의 전면에 화학기상증착법(CVD법)을 이용하여 제1 절연막(25)을 형성한다. 상기 제1 절연막(25)은 필요에 따라 형성하지 않을 수도 있다. Referring to FIG. 2, a conductive pattern 23 is formed on a base layer 21, for example, a semiconductor substrate or a lower insulating layer by using a photolithography process. The conductive pattern 23 uses a metal pattern such as aluminum. Subsequently, the first insulating film 25 is formed on the entire surface of the base layer 21 on which the conductive pattern 23 is formed by chemical vapor deposition (CVD). The first insulating layer 25 may not be formed if necessary.

도 3을 참조하면, 상기 제1 절연막(25)이 형성된 하지층(21)의 전면에 탄소가 함유된 저유전율을 갖는 제1 층간 절연막(27)을 형성한다. 상기 제1 층간 절연막(27)은 탄소가 함유된 SOG(spin on glass), 탄소가 함유된 MSQ(methyl silsesquioxane), 탄소가 함유된 제조젤 등을 이용하여 형성한다. 상기 제1 층간 절연막(27)을 탄소가 함유된 SOG로 형성할 경우, 상기 제1 층간 절연막(27)을 형성한 다음 300∼400℃에서 진공 베이크를 진행한다. 필요에 따라서는 상기 진공 베이크된 제1 층간 절연막(27) 상에 제2 절연막(도시 안함), 예컨대 SiO2 나 SiOF막을 형성할 수 도 있다. Referring to FIG. 3, a first interlayer insulating layer 27 having a low dielectric constant containing carbon is formed on an entire surface of the base layer 21 on which the first insulating layer 25 is formed. The first interlayer insulating layer 27 is formed using a spin on glass (SOG) containing carbon, methyl silsesquioxane (MSQ) containing carbon, a manufacturing gel containing carbon, or the like. When the first interlayer insulating layer 27 is formed of SOG containing carbon, the first interlayer insulating layer 27 is formed and then vacuum baked at 300 to 400 ° C. If necessary, a second insulating film (not shown), for example, SiO 2 or SiOF film, may be formed on the vacuum baked first interlayer insulating film 27.

도 4를 참조하면, 상기 탄소가 함유된 제1 층간 절연막(27)에 산화 소스를 공급하여 제1 층간 절연막의 표면만을 산화시켜 표면의 탄소를 제거한다. 다시 말하면, 상기 탄소가 함유된 제1 층간 절연막(27) 상에 도 1에 도시한 바와 같은 원자층 증착 장비를 이용하여 산화 소스, 예컨대 수증기(H2O)를 공급한 후 진공펌프를 이용하여 퍼지하면 표면에서 10Å 이내의 탄소가 제거된다. Referring to FIG. 4, an oxide source is supplied to the first interlayer insulating layer 27 containing carbon to oxidize only the surface of the first interlayer insulating layer to remove carbon from the surface. In other words, an oxide source such as water vapor (H 2 O) is supplied to the carbon-containing first interlayer insulating layer 27 using an atomic layer deposition apparatus as shown in FIG. 1, and then a vacuum pump is used. Purge removes less than 10 carbons from the surface.

여기서, 상기 제1 층간 절연막(27) 표면 근방의 탄소 제거에 대하여 상세히 설명한다. 상기 원자층 증착 장비를 이용한 원자층 증착법은 원자층의 치환반응을 이용한다. 즉, 표면에 한 분자층이 쌓인 다음, 다음 분자층이 쌓이는 층간 치환 반응으로 박막이 형성된다. 따라서, 원자층 증착 방식을 이용하여 제1 층간 절연막(27)의 표면에 산화 소스를 공급한 후 퍼지하면 표면에서 10Å 이내의 탄소를 제거할 수 있다. 예컨대, 상기 제1 층간 절연막(27)을 SOG로 형성할 경우 표면에 산화 소스를 공급하면 SOG의 CH3가 치환되어 실리콘 댕글링 본드나 실리콘-산소 본드를 형성한다. 이렇게 형성된 실리콘 댕글링 본드나 실리콘-산소 본드는 후속하여 형성되는 제2 층간 절연막과의 반응을 용이하게 하거나 탄소에 의한 접착성의 저항을 방지하는 기능을 한다. 결과적으로, 본 발명은 제1 층간 절연막(27)의 표면 근방의 탄소만을 제거하므로 제1 층간 절연막(27)의 벌크안의 탄소 변화가 최소로 되어 저유전율을 유지하면서도 후에 형성되는 제2 층간 절연막과의 접착성도 향상시킬 수 있다. Here, carbon removal in the vicinity of the surface of the first interlayer insulating film 27 will be described in detail. The atomic layer deposition method using the atomic layer deposition apparatus uses a substitution reaction of an atomic layer. That is, a thin film is formed by the interlayer substitution reaction in which one molecular layer is stacked on the surface, and the next molecular layer is stacked. Therefore, if an oxide source is supplied to the surface of the first interlayer insulating layer 27 using an atomic layer deposition method and purged, carbon within 10 μs may be removed from the surface. For example, when the first interlayer insulating layer 27 is formed of SOG, when an oxide source is supplied to the surface, CH 3 of SOG is substituted to form a silicon dangling bond or a silicon-oxygen bond. The silicon dangling bond or silicon-oxygen bond thus formed serves to facilitate the reaction with the subsequently formed second interlayer insulating film or to prevent adhesion resistance by carbon. As a result, the present invention removes only carbon in the vicinity of the surface of the first interlayer insulating film 27, so that the carbon change in the bulk of the first interlayer insulating film 27 is minimized to maintain a low dielectric constant and to be formed later. Can also improve the adhesion.

다음에, 상기 표면의 탄소가 제거된 제1 층간 절연막(27) 상에 원자층 증착 장비로 알루미늄 소스인 트리메틸 알루미늄을 공급한 후 진공 펌프로 퍼지하여 제2 절연막(29)인 알루미늄 산화막을 얇게 형성한다. Next, trimethyl aluminum, which is an aluminum source, is supplied to the first interlayer insulating film 27 from which carbon on the surface is removed, and then purged with a vacuum pump to form a thin aluminum oxide film, which is the second insulating film 29. do.

도 5를 참조하면, 상기 제2 절연막(29) 상에 플라즈마 인핸스트 화학기상증착법(PECVD)이나 고밀도 플라즈마 화학기증착법(HDP CVD)을 이용하여 제2 층간 절연막(31)을 형성한다. 이때, 상기 제1 층간 절연막(27)의 표면에는 탄소가 제거되었기 때문에 종래의 결합 사이트 부족문제가 해결되어 접착성 좋게 제2 층간 절연막(31)을 형성할 수 있다. Referring to FIG. 5, a second interlayer insulating layer 31 is formed on the second insulating layer 29 by using plasma enhanced chemical vapor deposition (PECVD) or high density plasma chemical vapor deposition (HDP CVD). In this case, since carbon is removed from the surface of the first interlayer insulating layer 27, the problem of shortage of the bonding site in the related art may be solved, and the second interlayer insulating layer 31 may be formed with good adhesion.

이상, 실시예를 통하여 본 발명을 구체적으로 설명하였지만, 본 발명은 이에 한정되는 것이 아니고, 본 발명의 기술적 사상 내에서 당 분야에서 통상의 지식으로 그 변형이나 개량이 가능하다. As mentioned above, although this invention was demonstrated concretely through the Example, this invention is not limited to this, A deformation | transformation and improvement are possible with the conventional knowledge in the art within the technical idea of this invention.

상술한 바와 같이 본 발명은 원자층 증착방식을 이용하여 제1 층간 절연막의 표면 근방에 노출된 탄소만를 제거하여 벌크안의 탄소 변화를 최소로 함으로써 저유전율을 유지하면서도 후에 형성되는 제2 층간 절연막과의 접착성도 향상시킬 수 있다. As described above, the present invention is to remove the carbon only exposed to the surface of the first interlayer insulating film using atomic layer deposition, thereby minimizing the carbon change in the bulk to maintain a low dielectric constant, Adhesiveness can also be improved.

Claims (3)

하지층 상에 도전 패턴을 형성하는 단계;Forming a conductive pattern on the underlayer; 상기 도전 패턴이 형성된 하지층의 전면에 탄소가 함유된 제1 층간 절연막을 형성하는 단계;Forming a first interlayer insulating film containing carbon on the entire surface of the underlayer on which the conductive pattern is formed; 상기 탄소가 함유된 제1 층간 절연막에 산화 소스를 공급하여 표면의 탄소를 제거하는 단계; 및 Supplying an oxide source to the first interlayer insulating film containing carbon to remove carbon from a surface; And 상기 표면의 탄소가 제거된 제1 층간 절연막 상에 제2 층간 절연막을 형성하는 단계를 포함하여 이루어지는 것을 특징으로 하는 반도체 소자의 층간 절연막 형성방법.And forming a second interlayer insulating film on the first interlayer insulating film from which carbon of the surface is removed. 제1항에 있어서, 상기 산화 소스는 원자층 증착 방식으로 공급한 수증기(H2O)인 것을 특징으로 하는 반도체 소자의 층간 절연막 형성 방법.The method of claim 1, wherein the oxidation source is water vapor (H 2 O) supplied by an atomic layer deposition method. 제1항에 있어서, 상기 산화 소스를 공급하는 단계 후에 상기 표면에 탄소가 제거된 제1 층간 절연막 상에 원자층 증착 방식으로 알루미늄 소스를 공급하여 알루미늄 산화막을 형성하는 단계를 더 포함하는 것을 특징으로 하는 반도체 소자의 층간 절연막 형성 방법.The method of claim 1, further comprising: supplying an aluminum source by atomic layer deposition on the first interlayer insulating film from which carbon is removed from the surface after the supply of the oxide source to form an aluminum oxide film. An interlayer insulating film forming method of a semiconductor device.
KR1019990055579A 1999-12-07 1999-12-07 Method for forming insulating layer of semiconductor device KR100574928B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990055579A KR100574928B1 (en) 1999-12-07 1999-12-07 Method for forming insulating layer of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990055579A KR100574928B1 (en) 1999-12-07 1999-12-07 Method for forming insulating layer of semiconductor device

Publications (2)

Publication Number Publication Date
KR20010054676A KR20010054676A (en) 2001-07-02
KR100574928B1 true KR100574928B1 (en) 2006-04-28

Family

ID=19624082

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990055579A KR100574928B1 (en) 1999-12-07 1999-12-07 Method for forming insulating layer of semiconductor device

Country Status (1)

Country Link
KR (1) KR100574928B1 (en)

Also Published As

Publication number Publication date
KR20010054676A (en) 2001-07-02

Similar Documents

Publication Publication Date Title
KR102657085B1 (en) Gas supply nozzle, substrate processing device, method of manufacturing semiconductor device and program
US20210265158A1 (en) Method of forming low-k material layer, structure including the layer, and system for forming same
KR100903484B1 (en) Cvd method and device for forming silicon-containing insulation film
TWI579916B (en) Novel gap fill integration with flowable oxide and cap oxide
US6440876B1 (en) Low-K dielectric constant CVD precursors formed of cyclic siloxanes having in-ring SI—O—C, and uses thereof
KR100971825B1 (en) Interface engineering to improve adhesion between low k stacks
US6448186B1 (en) Method and apparatus for use of hydrogen and silanes in plasma
US20020076944A1 (en) Organosilane CVD precursors and their use for making organosilane polymer low-k dielectric film
US20060068599A1 (en) Methods of forming a thin layer for a semiconductor device and apparatus for performing the same
KR100476128B1 (en) Semiconductor device and method of manufacturing the same
KR20010104285A (en) Method of forming a carbon silicon oxide
JPH11251308A (en) Low dielectric constant fluorinated amorphous carbon dielectric and formation method therefor
JPH10335322A (en) Method of forming insulation film
KR100390322B1 (en) Method for manufacturing semiconductor device and semiconductor device
KR20090011765A (en) Method of depositing silicon oxide layer with increased gap-fill ability
US20010041458A1 (en) Film forming method, semiconductor device manufacturing method, and semiconductor device
US20030104689A1 (en) Manufacturing method of semiconductor device
US20100087062A1 (en) High temperature bd development for memory applications
KR100574928B1 (en) Method for forming insulating layer of semiconductor device
KR101739496B1 (en) Method of gap filling
KR100937945B1 (en) Method of manufacturing a semiconductor device
TW202236508A (en) Underlayer film for semiconductor device formation
JPH06163523A (en) Fabrication of semiconductor device
KR20000076869A (en) Method and apparatus for forming an interlayer insulating film and semiconductor device
KR100888186B1 (en) Method of forming an insulating film

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100413

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee