KR100569649B1 - System of Treating wastewater containing Hardly degradable fluorine - Google Patents

System of Treating wastewater containing Hardly degradable fluorine Download PDF

Info

Publication number
KR100569649B1
KR100569649B1 KR1020050133209A KR20050133209A KR100569649B1 KR 100569649 B1 KR100569649 B1 KR 100569649B1 KR 1020050133209 A KR1020050133209 A KR 1020050133209A KR 20050133209 A KR20050133209 A KR 20050133209A KR 100569649 B1 KR100569649 B1 KR 100569649B1
Authority
KR
South Korea
Prior art keywords
fluorine
wastewater
high pressure
high temperature
pressure reactor
Prior art date
Application number
KR1020050133209A
Other languages
Korean (ko)
Other versions
KR20060004639A (en
Inventor
김석현
류근호
Original Assignee
세이브기술 (주)
김석현
류근호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 세이브기술 (주), 김석현, 류근호 filed Critical 세이브기술 (주)
Priority to KR1020050133209A priority Critical patent/KR100569649B1/en
Publication of KR20060004639A publication Critical patent/KR20060004639A/en
Application granted granted Critical
Publication of KR100569649B1 publication Critical patent/KR100569649B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/025Thermal hydrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/583Treatment of water, waste water, or sewage by removing specified dissolved compounds by removing fluoride or fluorine compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

본 발명은 불소가 함유된 폐수를 처리하는 시스템에 관한 것으로서, 보다 상세하게는 생산 공정에서 발생하는 일반적인 불소를 포함한 폐수뿐만 아니라 분해가 잘 되지 않는 난분해성 불소 화합물도 함께 처리할 수 있는 불소함유 페수 처리 시스템에 관한 것이다. The present invention relates to a system for treating fluorine-containing wastewater, and more particularly, fluorine-containing wastewater capable of treating not only wastewater including fluorine generated in a production process but also hardly decomposable fluorine-containing compounds. To a processing system.

본 발명에 따른 난분해성 불소함유 폐수 처리 시스템은, 집수조, 반응조와 침강조로 구성되어 불화칼슘의 형태로 불소를 제거하는 제1 공정과, 난분해성 불소화합물을 가수분해하여 분해가 용이한 불소로 분리한 후 불화칼슘의 형태로 불소를 제거하는 제2 공정으로 이루어지는데, 이때 상기 난분해성 불소 화합물의 가수분해를 수행하는 고온고압 반응기는 반응에 최적의 온도, 압력, pH를 가지도록 폐수를 이송하는 폐수이송관과, 고압의 공기를 주입하는 공기주입관과, 뜨거운 공기를 주입하는 스팀주입관과 연통되고, pH조절 및 난분해성 불소 물질의 분해효율을 높이기 위한 약품을 주입하는 약품주입관과, 내부에 교반장치와 검침계, 배출관을 포함하여 구성한다. The hardly decomposable fluorine-containing wastewater treatment system according to the present invention comprises a water collecting tank, a reaction tank and a sedimentation tank, the first step of removing fluorine in the form of calcium fluoride, and hydrolyzable fluorine compound to easily decompose fluorine into fluorine. After the separation, a second step of removing fluorine in the form of calcium fluoride, wherein the high temperature and high pressure reactor performing hydrolysis of the hardly decomposable fluorine compound transfers the wastewater to have the optimum temperature, pressure and pH for the reaction. A chemical injection pipe communicating with a wastewater transfer pipe, an air injection pipe for injecting high-pressure air, a steam injection pipe for injecting hot air, and a chemical injection pipe for injecting a chemical for improving pH decomposition and decomposition efficiency of hardly decomposable fluorine substances; It is configured to include a stirring device, meter and discharge pipe inside.

이와 같이 구성한 본 발명은, 난분해성 불소 화합물을 처리가 용이하도록 가수분해하기 때문에 불소함유 폐수로부터 불소제거효율을 극대화한다. The present invention thus constructed maximizes the efficiency of fluorine removal from the fluorine-containing waste water because the hydrolyzable fluorine compound is hydrolyzed to facilitate treatment.

또한, 고농도 불소함유 폐수처리에 적용가능(원수 HF농도 5000~10000ppm)하여 원수 농도변화에 영향 받지 않고 안정적으로 처리 가능하고, 보통의 경우 1차공정의 1단처리만으로도 불소농도 10ppm 이하 처리가 가능하다. Also, it can be applied to high concentration fluorine-containing wastewater treatment (raw water HF concentration 5000 ~ 10000ppm), so it can be treated stably without changing raw water concentration, and in general, it is possible to treat fluorine concentration below 10ppm only by the first stage treatment of primary process. Do.

붕불화수소산, 난분해성 불소함유 폐수, 불소, 고온고압 반응기, 가수분해. Hydrofluoric acid, hardly decomposable fluorine-containing wastewater, fluorine, high temperature and high pressure reactors, hydrolysis.

Description

난분해성 불소함유 폐수 처리 시스템{System of Treating wastewater containing Hardly degradable fluorine} System of Treating wastewater containing Hardly degradable fluorine}

도 1은 종래 불소함유 폐수를 처리하는 시스템을 보여주는 개략도.1 is a schematic view showing a system for treating a conventional fluorine-containing wastewater.

도 2는 본 발명에 따른 난분해성 불소함유 폐수 처리 시스템을 보여주는 개략도. 2 is a schematic view showing a hardly decomposable fluorine-containing wastewater treatment system according to the present invention.

도 3은 본 발명에 따른 난분해성 불소함유 폐수 처리 시스템의 제2 공정을 보여주는 처리 흐름도. 3 is a process flow diagram showing a second process of the hardly decomposable fluorine-containing wastewater treatment system according to the present invention.

도 4는 본 발명의 제2 공정에서 난분해성 불소 화합물을 가수분해하는 고온고압 반응기를 포함한 장치를 보여주는 개략도. 4 is a schematic view showing a device including a high temperature and high pressure reactor for hydrolyzing a hardly decomposable fluorine compound in a second process of the present invention.

도 5는 도 4에서 난분해성 불소함유 폐수와 약품을 혼합하는 약품혼합부를 보여주는 단면도. FIG. 5 is a cross-sectional view illustrating a chemical mixing part mixing the hardly decomposable fluorine-containing wastewater and the chemical in FIG. 4; FIG.

*** 도면의 주요 부분에 대한 부호의 설명 *** *** Explanation of symbols for the main parts of the drawing ***

1 : 난분해성 불소함유 폐수 처리 시스템1: Hardly degradable fluorine-containing wastewater treatment system

100 : 제1 공정 200 : 제2 공정100: first step 200: second step

201 : 폐수이송관 202 : 스팀주입관201: wastewater transport pipe 202: steam injection pipe

203 : 공기주입관 204 : 약품주입관203: air injection pipe 204: chemical injection pipe

210 : 고온고압 반응기 220 : 열교환기210: high temperature and high pressure reactor 220: heat exchanger

230 : 스팀교환부 240 : 약품혼합부230: steam exchange unit 240: chemical mixing unit

본 발명은 불소가 함유된 폐수를 처리하는 시스템에 관한 것으로서, 보다 상세하게는 생산 공정에서 발생하는 일반적인 불소를 포함한 폐수 뿐만 아니라 분해가 잘 되지 않는 난분해성 불소 화합물도 함께 처리할 수 있는 난분해성 불소함유 페수 처리 시스템에 관한 것이다. The present invention relates to a system for treating fluorine-containing wastewater, and more particularly, to a hardly decomposable fluorine compound capable of treating not only wastewater including general fluorine generated in a production process but also hardly decomposable fluorine compound. It relates to a containing wastewater treatment system.

불소는 화학공업이나 반도체 제조 등 다양한 산업분야에서 대량으로 이용되고 있는 유용한 물질인 반면, 인체나 환경에 대하여는 유해 물질이기 때문에 각종 산업 배출수에 포함되는 불소는 엄격하게 규제되고 있다. Fluorine is a useful substance that is used in large quantities in various industrial fields such as chemical industry and semiconductor manufacturing, whereas fluorine contained in various industrial effluents is strictly regulated because it is a harmful substance to humans and the environment.

예를 들어, 우리나라에서는 폐수 내 불소 화합물에 대하여 배출 허용 기준을 청정지역의 경우 3ppm 이하로, 다른 폐수 배출지역에 대하여는 15ppm 이하로 규정하고 있다. 또한, 일본에서는 배출 허용 기준을 15ppm 이하의 농도로 규제하고 있으나 많은 일본의 자치단체는 10ppm이하 또는 5ppm 이하와 같은 보다 엄격한 기준을 적용하고 있다. For example, in Korea, emission standards for fluorine compounds in wastewater are set to 3 ppm or less in clean areas and 15 ppm or less in other waste water discharge areas. In addition, in Japan, emission limits are regulated at concentrations of 15 ppm or less, but many Japanese municipalities apply more stringent standards, such as 10 ppm or less or 5 ppm or less.

일반적으로 불소를 함유하는 페수를 배출하는 산업 중 주요한 배출원으로 불산 제조업, 옥탄연료 제조(촉매제), 알루미늄 제조업, 반도체, 철강업, 금속 가공업, 전기 도금업, 유리산업, 세라믹 산업, 스텐레스제조공장, 비료산업 등이 있으 며, 상기 산업 생산공정과정에서 불소를 함유한 폐수가 다량으로 발생되어 이를 처리하기 위한 불소 처리방법이 다양하게 개발되고 있다. In general, the main sources of fluorine-containing wastewater are hydrofluoric acid, octane fuel (catalyst), aluminum, semiconductor, steel, metal processing, electroplating, glass, ceramic, stainless, and fertilizer. In the industrial production process, a large amount of wastewater containing fluorine is generated, and various fluorine treatment methods for treating the fluorine are developed.

이러한 방법들 중 가장 널리 사용하고 있는 방법이 칼슘염을 이용한 방법으로 불소함유 폐수에 칼슘염과 알루미늄염 등의 1종 또는 그 이상의 약품을 가해 폐수 중의 불소이온을 식(1)과 같이 불화칼슘의 형태로 고형화시켜 고액분리하는 방법이다. The most widely used of these methods is the use of calcium salts. One or more chemicals, such as calcium salts and aluminum salts, are added to fluorine-containing wastewater, and the fluoride ions in the wastewater are converted into calcium fluoride as shown in Eq. (1). It is a method of solid-liquid separation by solidifying to form.

Ca2++ 2F- ⇔ CaF2(s) ↓ ----------- 식(1)Ca 2+ + 2F - ⇔ CaF 2 (s) ↓ ----------- Formula (1)

또한, Al2(SO4)3·18H2O와 같은 알럼을 주입해 알루미늄에 의해 불소를 제거하는데, 이때 고분자화된 Aln(OH)3n은 불소 이온과 강한 친화력을 가지기 때문에 여기에 불소가 흡착되어 제거된다. In addition, fluoride is removed by aluminum by injecting an alum such as Al 2 (SO 4 ) 3 .18H 2 O. At this time, the polymerized Al n (OH) 3n has a strong affinity with fluorine ions. Adsorbed and removed.

이러한 방법을 사용하는 시스템은 도 1에 도시한 바와 같이, 불소가 함유된 폐수를 집수하는 집수조(2)와, 상기 칼슘염과 알루미늄염 및 고분자 응집제를 첨가하여 불소와 반응시키는 다수개의 반응조(3, 5)와, 고형화된 불소화합불을 고액분리하는 침강조(4, 6)로 이루어진다. As a system using this method, as shown in Fig. 1, a collecting tank 2 for collecting wastewater containing fluorine, and a plurality of reaction tanks for reacting with fluorine by adding the calcium salt, aluminum salt and a polymer flocculant (3). , 5) and sedimentation tanks 4 and 6 for solid-liquid separation of the solidified fluorinated fluoride.

그러나, 이러한 방법은 불소의 처리효율이 낮아 많은 양의 칼슘염과 알루미늄염과 같은 처리제가 주입되어야 하므로 과다한 처리비용이 소요되고, 처리제의 증가로 인해 침전물인 슬러지의 양도 증가하기 때문에 경제성이 높지 못하다는 문제점이 있다. However, this method is not economical because the processing efficiency of fluorine is low and a large amount of calcium and aluminum salts are required to be injected, resulting in excessive treatment cost, and the amount of sludge, which is a precipitate, increases due to the increase of the treating agent. Has a problem.

그리고, 도 1과 같은 시스템을 최소 2∼3단으로 처리하여야 원하는 불소처리 효율을 얻을 수 있기 때문에 단수 증가로 폐수처리장 설치에 필요한 소요부지가 커지고 시스템이 복잡화되며 운전비와 관리비등이 증가하는 문제점이 생긴다. 또한, 알루미늄계 슬러지가 다량으로 발생해 재활용의 어려움이 있다. In addition, since the desired fluorine treatment efficiency can be obtained by treating the system as shown in FIG. 1 in at least two to three stages, the number of stages required for the installation of the wastewater treatment plant is increased, the system becomes complicated, and operation and management costs are increased. Occurs. In addition, a large amount of aluminum-based sludge is generated, there is a difficulty in recycling.

예를 들면, 불소 농도 210ppm의 폐수 10㎥을 20ppm까지 처리할 때에 발생하는 불화칼슘은 약 0.39㎏(약 5몰)인 데 대하여, 불소 농도 20ppm의 폐수 10㎥를 5ppm까지 처리하기 위해서는 수산화알루미늄은 Al(OH)3로서 적어도 2㎏(25.6몰) 정도 요한다. 실제로는 수산화알루미늄은 겔(gel) 상태로 탈수가 곤란하며, 함수율을 70%까지 좁혔다고 해도 그 함수 중량은 5㎏ 정도가 되어 이것은 슬러지로 처리된다. For example, calcium fluoride generated when treating 10 m 3 of fluorine concentration of 210 ppm to 20 ppm is about 0.39 kg (about 5 mol), whereas aluminum hydroxide is required to treat 10 m 3 of fluorine concentration of 20 ppm of waste water to 5 ppm. At least about 2 kg (25.6 mol) is required as Al (OH) 3 . In reality, aluminum hydroxide is difficult to dehydrate in a gel state, and even if the water content is reduced to 70%, the water weight is about 5 kg, which is treated with sludge.

더불어, 난분해성 불소 화합물은 처리가 되지 않고 그대로 폐수 중에 존재하게 되는데, LCD제조공정 GLASS 조성을 예로 들어 살펴보면 발생하는 B2O3는 식각공정에서 HF에 의해 용융되어 붕불화수소산(HBF4)이 되며 이 BF4는 매우 안정한 화합물로 일반적인 처리방법으로는 제거되지 않는 난분해성 불소 화합물이다. In addition, I-decomposable fluorine compound there is the present in the same waste water without being treated, LCD manufacturing process, B 2 O 3 generated look as an example GLASS composition is melted by a HF in the etching process and the boron hydrofluoric acid (HBF 4) This BF 4 is a very stable compound and is a hardly decomposable fluorine compound which cannot be removed by a general treatment method.

폐수 원수 내 BF4의 B가 30ppm 존재 시, 종래의 방식으로는 그 처리가 곤란하며, 다량의 희석수에 의한 희석개념의 처리만 가능할 뿐이다. 그리고, B의 농도가 30ppm 존재시 처리수의 F농도는 약 210ppm정도이다. If B of BF 4 in the wastewater is present in 30 ppm, the conventional method is difficult to process, and only the dilution concept can be treated with a large amount of dilution water. When the concentration of B is 30 ppm, the F concentration of the treated water is about 210 ppm.

따라서, 이러한 난분해성 불소 화합물을 포함하는 폐수를 처리하는 방법이 요구되고 있다. Therefore, there is a need for a method of treating wastewater containing such a hardly decomposable fluorine compound.

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 종래의 처리방법과 비교하여 불소함유 폐수 중의 불소를 저농도로 제거할 수 있고, 분해가 잘 되지 않는 난분해성 불소물질도 포함하여 처리할 수 있는 난분해성 불소함유 폐수 처리 시스템을 제공하는 것을 목적으로 한다. The present invention is to solve the above problems, it is possible to remove the fluorine in the fluorine-containing waste water in a low concentration, compared to the conventional treatment method, and difficult to be treated including hardly decomposable fluorine material that does not decompose well It is an object to provide a decomposable fluorine-containing wastewater treatment system.

또한, 주입하는 약품의 사용량을 적게 하면서 슬러지의 발생량을 최소화할 수 있는 난분해성 불소함유 폐수 처리 시스템을 제공하는 것을 목적으로 한다. In addition, an object of the present invention is to provide a hardly decomposable fluorine-containing wastewater treatment system capable of minimizing the amount of sludge while reducing the amount of chemicals to be injected.

이와 같은 목적을 달성하기 위해 본 발명에 따른 난분해성 불소함유 폐수 처리 시스템은, Ca(OH)2 및 불소처리제를 주입하여 폐수 중의 불소를 응집 처리하는 제1 공정과 고온고압 반응기를 이용해 난분해성 불소 화합물을 제거하는 제2 공정으로 이루어진다. In order to achieve the above object, the hardly decomposable fluorine-containing wastewater treatment system according to the present invention is a hardly decomposable fluorine using a first process and a high temperature and high pressure reactor in which Ca (OH) 2 and a fluorine treatment agent are injected to aggregate the fluorine in the wastewater. It consists of a 2nd process of removing a compound.

상기 제1 공정은 난분해성 불소를 포함한 불소함유 폐수를 집수하는 집수조와, 상기 집수조를 거친 폐수가 상기 불소처리제와 반응하여 불화칼슘으로 고형화되는 제1 반응조와, 상기 제1 반응조를 거친 폐수와 불화칼슘을 응집침전하여 분리하는 제1 침강조를 포함하여 구성한다. The first process includes a water collecting tank for collecting fluorine-containing wastewater including hardly decomposable fluorine, a first reaction tank in which the waste water passing through the collecting tank solidifies with calcium fluoride by reacting with the fluorine treatment agent, and a waste water and fluorination solution through the first reaction tank. It comprises a first sedimentation tank for coagulation sedimentation and separation of calcium.

그리고, 상기 제2 공정은 상기 제1 공정을 통과한 폐수 중의 난분해성 불소 화합물을 가수분해하는 고온고압 반응기와, 상기 고온고압 반응기를 거친 폐수와 함께 불소처리제를 첨가하여 고온고압 반응기에서 가수분해된 불소를 불화칼슘으로 고형화하는 제2 반응조와, 상기 제2 반응조를 거친 폐수와 불화칼슘을 응집침전하 여 고액분리하고 고액분리된 슬러지 일부를 반응조로 반송시키는 제2 침강조를 포함하여 구성한다. The second step is a high temperature and high pressure reactor for hydrolyzing the hardly decomposable fluorine compound in the wastewater that has passed through the first step, and the fluorine treatment agent is added together with the wastewater that has passed through the high temperature and high pressure reactor to be hydrolyzed in the high temperature and high pressure reactor. And a second reaction tank for solidifying fluorine with calcium fluoride, and a second settling tank for coagulating and sedimenting the wastewater and calcium fluoride which have passed through the second reaction tank and returning some of the solid-liquid separated sludge to the reactor.

이때, 상기 폐수에 투입되어 불소이온과 반응하는 불소처리제는 Ca(OH)2와 같은 칼슘염, Fe이온을 함유한 철염, pH조절 산성약품, Polymer(강음이온성 고분자 응집제)로 폐수 중의 불소는 상기 칼슘염과 반응하여 불화칼슘 형태로 고형화되고, 상기 철염에 의해 생성된 수산화 제2철과 상기 불화칼슘이 공침효과를 일으켜 폐수 중의 불소처리 제거효율을 증대시킨다. At this time, the fluorine treatment agent added to the wastewater and reacted with fluorine ions is calcium salts such as Ca (OH) 2 , iron salts containing Fe ions, pH-controlled acidic chemicals, and polymers (strong anionic polymer flocculants). It reacts with the calcium salt to solidify it in the form of calcium fluoride, and the ferric hydroxide produced by the iron salt and the calcium fluoride have a coprecipitation effect to increase the fluorine treatment removal efficiency in the wastewater.

그리고, 상기 난분해성 불소 화합물은 붕불화수소산(HBF4)으로 상기 BF4는 제2 공정의 고온고압 반응기에서 가수분해되어 붕소와 불소로 분리되고, 상기 분리된 불소는 칼슘염에 의해 불화칼슘의 형태로 고형화되어 응집침전 처리된다. The hardly decomposable fluorine compound is hydrofluoric acid (HBF 4 ), and the BF 4 is hydrolyzed in a high temperature and high pressure reactor of a second process to be separated into boron and fluorine, and the separated fluorine is formed of calcium fluoride by calcium salt. It solidifies in form and is subjected to flocculation sedimentation.

한편, 상기 난분해성 불소 화합물을 분해가 용이하도록 가수분해하는 상기 고온고압 반응기는 일측에 제1 공정을 거친 난분해성 불소함유 폐수를 이송하는 폐수이송관과, 고압의 공기를 주입하는 공기주입관과, 뜨거운 스팀을 주입하는 스팀주입관을 연결하여 포함하고, 필요에 따라 불소처리제를 혼합하기 위한 약품주입기를 연결하여 포함한다. On the other hand, the high temperature and high pressure reactor for hydrolyzing the hardly decomposable fluorine compound to easily decompose the wastewater transfer pipe for transporting the hardly decomposable fluorine-containing wastewater passed through the first step to one side, an air injection pipe for injecting high-pressure air, The steam injection pipe for injecting hot steam is included and connected, and if necessary, includes a chemical injector for mixing the fluorine treatment agent.

그리고, 상기 고온고압 반응기는 내부에 유입된 난분해성 불소함유 폐수를 혼합하는 교반장치와, 상기 반응기 내의 온도, pH, 압력이 가수분해에 용이한 최적의 상태를 유지하고 있는지 측정하는 검침계와, 가수분해된 폐수를 이송하기 위해 상기 고온고압 반응기의 일측에 공간을 형성하고 반응기 내부 수면과 동일수면을 가지는 높이의 월류벽과, 상기 월류벽을 월류한 처리수를 배출하기 위한 배출관을 포함해 구성한다. The high temperature and high pressure reactor includes a stirring device for mixing the hardly decomposable fluorine-containing wastewater introduced therein, a meter for measuring whether the temperature, pH, and pressure in the reactor maintain an optimum state for easy hydrolysis; Forming a space on one side of the high-temperature high-pressure reactor for transporting the hydrolyzed wastewater, and comprises a wall of the height having the same surface as the inner surface of the reactor, and a discharge pipe for discharging the treated water overflowing the overflow wall do.

또한, 상기 고온고압 반응기는 제1 공정을 거친 폐수를 이송하는 폐수이송관과 상기 고온고압 반응기의 배출관 사이에 열교환이 일어나는 열교환기와, 상기 열교환기를 통과한 폐수이송관과 상기 스팀주입관이 연통되어 폐수와 뜨거운 스팀이 혼합되는 벤츄리관 형상의 스팀혼합부와, 상기 스팀혼합부를 통과한 폐수이송관과 pH 조절 및 난분해성 불소 물질의 분해효율을 높이기 위한 약품을 주입하는 약품주입관이 연통되어 폐수와 약품이 혼합되는 약품 혼합부를 외부에 포함하여 구성한다. The high temperature and high pressure reactor may include a heat exchanger in which heat exchange occurs between a wastewater transfer pipe for transporting wastewater that has passed through a first process and a discharge tube of the high temperature high pressure reactor, and a wastewater transfer pipe passing through the heat exchanger and the steam injection tube communicate with the wastewater. The venturi tube-shaped steam mixing part in which hot steam is mixed, the waste water transfer pipe passing through the steam mixing part, and the chemical injection tube for injecting chemicals to increase the pH and control the decomposition efficiency of the hardly decomposable fluorine substance are connected to each other. The drug mixture to be mixed is configured to be included outside.

이때, 바람직하게 상기 고온고압 반응기의 pH는 3∼4 사이이고, 상기 고온고압 반응기의 압력은 1.5㎏/㎠∼3㎏/㎠ 이며, 상기 고온고압 반응기의 온도는 110∼130℃ 이다. At this time, preferably the pH of the high temperature and high pressure reactor is between 3 and 4, the pressure of the high temperature and high pressure reactor is 1.5kg / cm 2 ~ 3kg / cm 2, the temperature of the high temperature and high pressure reactor is 110 ~ 130 ℃.

또한, 상기 고온고압 반응기의 약품혼합부는 내주면에 나선형의 홈을 형성한 관으로 폐수가 상기 나선 라인을 따라 이동하면서 상기 약품주입관을 통해 주입된 약품과 혼합되어 폐수의 pH를 조절한다. In addition, the chemical mixing portion of the high-temperature high-pressure reactor is a tube with a spiral groove formed on the inner circumferential surface is mixed with the chemical injected through the chemical injection pipe while controlling the waste water moves along the spiral line to adjust the pH of the waste water.

그리고, 상기의 모든 공정상의 과정은 외부에 형성된 콘트롤 박스에 의해 자동제어 혹은 수동제어된다. And, all the above process steps are automatically controlled or manually controlled by an externally formed control box.

이와 같이 이루어지는 난분해성 불소함유 폐수 처리 시스템은 상기의 철염의 사용으로 소량의 처리제만을 이용하여 불소를 불화칼슘화하여 처리할 수 있다. 또한, 난분해성 불소 화합물은 상기 고온고압 반응기에서 가수분해되어 처리가 용이 한 불소로 분리되기 때문에 불소처리 효율을 극대화시킨다. The hardly decomposable fluorine-containing wastewater treatment system thus formed can be treated by calcium fluoride with fluorine using only a small amount of the treatment agent by use of the iron salt. In addition, since the hardly decomposable fluorine compound is hydrolyzed in the high temperature and high pressure reactor to be separated into fluorine which is easy to treat, the fluorine treatment efficiency is maximized.

이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명에 따른 난분해성 불소함유 폐수 처리 시스템을 보여주는 개략도이고, 도 3은 본 발명에 따른 난분해성 불소함유 폐수 처리 시스템의 제2 공정을 보여주는 처리 흐름도이며, 도 4는 본 발명의 제2 공정에서 난분해성 불소 화합물을 가수분해하는 고온고압 반응기를 포함한 장치를 보여주는 개략도이다. 2 is a schematic view showing a hardly decomposable fluorine-containing wastewater treatment system according to the present invention, FIG. 3 is a process flow chart showing a second process of the hardly decomposable fluorine-containing wastewater treatment system according to the present invention, and FIG. Schematic diagram showing a device including a high temperature and high pressure reactor to hydrolyze a hardly decomposable fluorine compound in two processes.

또한, 도 5는 도 4에서 난분해성 불소함유 폐수와 약품을 혼합하는 약품혼합부를 보여주는 단면도이다. In addition, Figure 5 is a cross-sectional view showing a chemical mixing portion for mixing the difficult-degradable fluorine-containing wastewater and the chemical in FIG.

도시한 바와 같이, 본 발명에 따른 난분해성 불소함유 처리 시스템(1)은 크게 폐수 중의 처리가 용이한 불소 화합물을 처리하는 제1 공정(100)과, 폐수 중의 난분해성 불소 화합물을 처리하는 제2 공정(200)으로 이루어진다. As shown, the hardly decomposable fluorine-containing treatment system 1 according to the present invention includes a first step 100 for treating a fluorine compound that is easily treated in wastewater, and a second step for treating a hardly decomposable fluorine compound in wastewater. Process 200 is made.

상기 제1 공정(100)은 페수 중의 불소를 불화칼슘의 형태로 고형화시켜 처리하는 공정으로 크게 난분해성 불소를 포함한 페수가 유입되는 집수조(10)와, Ca(OH)2등의 칼슘염, Fe 이온을 함유한 철염, pH조절 산성약품, Polymer(강이온성 고분자 응집제)등으로 이루어지는 불소처리제를 투입하는 1차 반응조(20)와, 상기 반응조를 통과한 폐수 중의 불소를 불화칼슘으로 고형화해 고액분리하고 일부 고액분리된 슬러지는 반송시키며 폐수를 다음 고정으로 이송하는 1차 침강조(30)로 구성한다. 이때, 상기 1차 반응조(20)는 투입하는 약품에 따라 불소 화합물의 반응을 효율적으로 하기 위해 약품에 따라 다수개의 반응조를 사용한다. The first step 100 is a process for solidifying and treating fluorine in waste water in the form of calcium fluoride, and a water collection tank 10 into which wastewater containing hardly decomposable fluorine flows, calcium salts such as Ca (OH) 2 , and Fe The primary reaction tank 20 into which the fluorine treatment agent which consists of iron salt containing ion, pH-controlled acidic chemicals, and a polymer (a strong ionic polymer flocculant), and the fluorine in the wastewater which passed the said reaction tank were solidified with calcium fluoride, and solidified. Separation and some solid-liquid separated sludge is conveyed and consists of a primary sedimentation tank (30) for transporting the waste water to the next fixed. At this time, the primary reaction tank 20 uses a plurality of reaction tanks depending on the chemical in order to efficiently react the fluorine compound depending on the chemicals to be injected.

그리고, 소정의 불소함유 폐수는 상기 집수조(10)를 거쳐 반응조(20)로 이송되고, 칼슘염을 첨가해 폐수의 pH를 7이상으로 하여 폐수 중의 불소이온을 불화칼슘의 형태로 고형화시켜 고액분리하는데, 바람직하게 이때 생성된 농축슬러지의 일부를 상기 반응조(20)로 반송시켜 반응조 내에 생성되는 불화칼슘의 농도를 농축시킴과 동시에 생성된 불화칼슘의 종결정효과에 의해 불소함유 폐수로부터 불소제거효율을 향상시키는 것이다. 이때, 상기 칼슘염은 Ca(OH)2를 사용한다. Then, a predetermined fluorine-containing wastewater is transferred to the reaction tank 20 through the sump tank 10, and calcium salt is added to make the pH of the wastewater at 7 or more to solidify the fluorine ions in the wastewater in the form of calcium fluoride to solid-liquid separation. Preferably, a portion of the produced sludge is returned to the reactor 20 to concentrate the concentration of calcium fluoride generated in the reactor and at the same time, the efficiency of removing fluorine from the fluorine-containing wastewater by the seed crystallization effect of the produced calcium fluoride. To improve. At this time, the calcium salt is used Ca (OH) 2 .

또한, 적당한 반응조(20) 안에 처리대상인 불소함유 폐수를 연속 또는 간헐적으로 주입할 때 철염을 첨가하여 반응의 효율을 높인다. 바람직하게 상기 철염은 Fe이온을 함유하는 것으로 제2 철이온을 첨가해 생성된 수산화 제2 철과 불화칼슘과의 공침효과에 의해 불소제거효율을 증대시킨다. In addition, when the fluorine-containing wastewater to be treated is continuously or intermittently injected into the appropriate reactor 20, iron salt is added to increase the efficiency of the reaction. Preferably, the iron salt contains Fe ions to increase the fluorine removal efficiency by the coprecipitation effect of ferric hydroxide and calcium fluoride formed by adding ferric ions.

이때, 제2 철이온을 사용하는 경우 제2 철이온의 사용량에 특별한 제한은 없지만 생성된 불화칼슘(CaF2) 몰농도에 대해 0.12∼1.2배 가량 정도이고 특히 0.23∼0.47배량이 바람직하다. 사용농도가 적으면 공침효과에 의한 불소처리효율의 향상은 기대할 수 없고, 반대로 과량으로 주입하는 경우에는 처리약품량이 많아지므로 바람직하지 않다. At this time, in the case of using the ferric ions there is no particular limitation on the amount of ferric ions produced calcium fluoride (CaF 2 ) It is about 0.12 to 1.2 times the molar concentration, and 0.23 to 0.47 times is particularly preferable. If the use concentration is small, the improvement of the fluorine treatment efficiency due to the coprecipitation effect cannot be expected. On the contrary, if the injection amount is excessive, the amount of chemicals to be treated increases, which is undesirable.

이와 같은 1단의 제1 공정만으로 난분해성 불소가 포함되지 않은 불소함유 폐수는 안정적으로 처리가 가능하며 폐수의 원수 농도 변화에도 안정적으로 처리가 가능하다. 또한, 종결정효과와 공침효과에 의한 상승효과로 소량의 약품량을 투입 하여 원하는 수질의 처리할 수 있다. The fluorine-containing wastewater containing no hardly decomposable fluorine can be stably treated only by the first step of the first stage, and can be stably treated even when the raw water concentration of the wastewater changes. In addition, a small amount of chemical can be added to the desired water quality as a synergistic effect by the seed crystallization and coprecipitation effect.

또한, 알루미늄계 약품을 사용하지 않으므로 처리 슬러지의 재이용에 아무런 문제가 없으며 상기의 철염의 사용으로 소량의 처리제만을 이용하여 불소를 불화칼슘화하여 처리할 수 있다. In addition, since no aluminum-based chemicals are used, there is no problem in reuse of the treated sludge, and the fluorine may be treated by calcium fluoride using only a small amount of the treating agent using the iron salt.

그러나, 붕화불소(BF4)등의 난분해성 불소 화합물은 1차 공정으로 제거가 되지 않는다. 이러한 난분해성 불소 화합물을 처리하기 위한 2차 공정(200)으로 상기 1차 침강조(30)를 통과한 난분해성 불소함유 폐수는 슬러지를 탈수한 후 남은 탈수여액과 함께 펌핑탱크(40)로 이송되고 상기 펌핑탱크(40)에서 뜨거운 스팀과, pH조절 및 난분해성 불소물질의 분해효율을 높이기 위한 약품과 함께 고온고압 반응기(210)로 이송된다. 그리고, 상기 고온고압 반응기(210)에서 가수분해된 불소함유 페수는 2차 반응조(50)로 이송되어 칼슘염, 철염, pH조절 산성약품, Polymer등의 처리제와 함께 반응하여 상기 불소는 불화칼슘의 형태로 고형화되고 2차 침강조(60)에서 응집침전과정을 거쳐 제거된다. 이때, 도 3을 참조하여 살펴보면, 바람직하게 제2 반응조(50)와 제2 침강조(60)를 거친 폐수는 반송관(80)에 의해 반송되어 불소처리효율을 증대시킨다. However, hardly decomposable fluorine compounds such as fluorine boride (BF 4 ) are not removed in the first step. In the secondary process 200 for treating such hardly decomposable fluorine compounds, the hardly decomposable fluorine-containing wastewater passing through the primary settling tank 30 is transferred to the pumping tank 40 together with the dehydration remaining after dewatering the sludge. And the pumping tank 40 is transferred to the high temperature and high pressure reactor 210 together with the hot steam, chemicals to increase the pH and control the decomposition efficiency of the hardly decomposable fluorine material. In addition, the fluorine-containing waste water hydrolyzed in the high temperature and high pressure reactor 210 is transferred to the secondary reaction tank 50 and reacted with a treatment agent such as calcium salt, iron salt, pH controlled acidic chemicals, polymer, and the like. It is solidified in the form and is removed through the coagulation sedimentation process in the secondary settling tank (60). At this time, referring to Figure 3, preferably, the wastewater passing through the second reaction tank 50 and the second settling tank 60 is conveyed by the conveying pipe 80 to increase the fluorine treatment efficiency.

또한, 제1 공정(100)과 제2 공정(200)은 외부에 형성된 콘트롤 박스(111)에 의해 자동제어 또는 수동제어된다. In addition, the first process 100 and the second process 200 are automatically controlled or manually controlled by the control box 111 formed outside.

일반적으로 LCD 제조공정상 발생하는 B2O3는 식각공정에서 HF에 의하여 용융되어 붕불화수소산(HBF4)이 되며 이 BF4는 매우 안정한 화합물로 일반적인 처리방법 으로는 제거되지 않는 난분해성 물질이다. In general, B 2 O 3 generated during the LCD manufacturing process is melted by HF in the etching process to form hydrofluoric acid (HBF 4 ). This BF 4 is a very stable compound and is a hardly decomposable substance that cannot be removed by a general treatment method.

이러한 BF4를 처리하기 위해 기본은 가수분해를 일으켜 붕소와 불소로 분리시킨 후 불소는 불화칼슘의 형태로 처리하는 것이다. To treat this BF 4 , the basic is hydrolysis to separate boron and fluorine, and then fluorine is treated in the form of calcium fluoride.

HBF4 + H2O → HBF3(OH) + HF ------- ①HBF 4 + H 2 O → HBF 3 (OH) + HF ------- ①

HBF3(OH) + H2O → HBF2(OH)2 + HF ------- ②HBF 3 (OH) + H 2 O → HBF 2 (OH) 2 + HF ------- ②

HBF2(OH)2 + H2O → HBF3(OH)3 + HF ------- ③HBF 2 (OH) 2 + H 2 O → HBF 3 (OH) 3 + HF ------- ③

HBF(OH)3 + H2O → H3BO3 + HF ------- ④HBF (OH) 3 + H 2 O → H 3 BO 3 + HF ------- ④

상기 고온고압 반응기(210)는 난분해성 물질인 상기 BF4를 처리하기 위해 최적의 온도, 압력, pH 조건을 가지고 상기 가수분해 반응을 유도한다. The high temperature and high pressure reactor 210 induces the hydrolysis reaction with the optimum temperature, pressure, pH conditions to treat the BF 4 which is a hardly decomposable material.

이와 같이 붕소와 불소로 분리된 난분해성 물질을 포함한 폐수는 제2 반응조(50)로 이송되고 상기 불소는 주입된 칼슘염에 의해 불화칼슘의 형태로 처리제거된다. As such, the wastewater containing the hardly decomposable substance separated from boron and fluorine is transferred to the second reactor 50 and the fluorine is treated and removed in the form of calcium fluoride by the injected calcium salt.

도 4를 참조하여 난분해성 불소 화합물을 가수분해하여 처리가 용이하도록 하는 제2 공정(200)의 고온고압 반응기(210)를 살펴보면 다음과 같다. Referring to FIG. 4, the high temperature and high pressure reactor 210 of the second process 200 to hydrolyze the hardly decomposable fluorine compound is as follows.

상기 고온고압반응기(210)는 난분해성 불소화합물, 예를 들면 붕화불산을 가수분해하여 붕소와 불소로 분리시키기 위해 온도, 압력, pH를 최적의 조건으로 유지할 수 있도록 구성한다. The high temperature and high pressure reactor 210 is configured to maintain temperature, pressure, and pH in optimal conditions in order to hydrolyze a hardly decomposable fluorine compound, for example, hydrofluoric acid to separate boron and fluorine.

이때, 상기 고온고압반응기(210)의 온도는 110∼130℃가 적당하고, pH는 3∼ 4 그리고 압력은 1.5㎏/㎠∼3㎏/㎠을 유지하도록 한다. At this time, the temperature of the high temperature and high pressure reactor 210 is suitable for 110 ~ 130 ℃, pH 3 ~ 4 and pressure to maintain 1.5kg / ㎠ ~ 3kg / ㎠.

이를 위해 상기 고온고압 반응기(210)는 제1 공정을 거친 난분해성 불소함유 폐수를 이송하는 폐수이송관(201)과 고압의 공기를 주입하는 공기주입관(203)과 뜨거운 스팀을 주입하는 스팀주입관(202)과 연통되고, pH 조절 및 난분해성 불소 물질의 분해효율을 높이기 위해 주입하는 약품 주입관(204)이 필요에 따라 직·간접적으로 연통되게 구성한다. 또한, 상기 고온고압 반응기(210)의 내부에 가수분해가 용이하도록 난분해성 불소함유 폐수를 혼합하는 교반장치(211)와 상기 고온고압 반응기(210) 내부의 온도, pH, 압력을 측정하는 검침계(212)와 내부 수면과 동일수면을 가지는 높이의 월류벽(213)과 처리수를 배출하기 위한 배출관(214)을 포함해 구성한다. To this end, the high temperature and high pressure reactor 210 is a wastewater transport pipe 201 for transporting the hardly decomposable fluorine-containing wastewater, an air injection pipe 203 for injecting high pressure air, and a steam injection pipe for injecting hot steam. The chemical injection tube 204 which communicates with 202, and which is injected in order to adjust pH and increase the decomposition efficiency of the hardly decomposable fluorine substance, is configured to communicate directly or indirectly as necessary. In addition, a meter for measuring the temperature, pH, pressure inside the stirring apparatus 211 and the high temperature and high pressure reactor 210 to mix the hardly decomposable fluorine-containing waste water to facilitate hydrolysis in the high temperature and high pressure reactor 210. 212 and the overflow wall 213 of the height which has the same water surface as the inner surface, and the discharge pipe 214 for discharging the treated water.

그리고, 열교환기(220), 스팀혼합부(230) 그리고 약품혼합부(240)를 상기 고온고압 반응기의 외부에 포함하여 구성해 폐수 중의 난분해성 불소화합물을 가수분해한다. The heat exchanger 220, the steam mixing unit 230, and the chemical mixing unit 240 are included outside the high temperature and high pressure reactor to hydrolyze the hardly decomposable fluorine compound in the wastewater.

우선, 상기 폐수이송관(201)은 1차 공정(100)을 통과한 난분해성 불소화합물을 함유한 폐수와 슬러지를 탈수한 탈수여액을 집수하는 펌핑탱크(40)를 통과한 폐수를 이송하는 관으로 상기 스팀혼합부(230)와 약품혼합부(240)를 통과하면서 난분해성 불소화합물의 가수분해가 용이한 온도와 pH를 가지게 되고 바람직하게 상기 고온고압 반응기(210)의 상부에 연통된다.First, the wastewater transport pipe 201 is a pipe for transporting the wastewater passing through the pumping tank 40 for collecting the wastewater containing the hardly decomposable fluorine compound passed through the primary process 100 and the dehydration filtrate dehydrated the sludge. While passing through the steam mixing unit 230 and the chemical mixing unit 240 has a temperature and pH that is easy to hydrolyze the hardly decomposable fluorine compound, it is preferably in communication with the upper portion of the high temperature and high pressure reactor (210).

그리고, 상기 공기주입관(203)은 압력을 조절하기 위한 것으로 고압의 공기를 상기 고온고압 반응기(210)내로 강제주입하여 반응기 내의 압력을 가수분해에 용이한 1.5㎏/㎠∼3㎏/㎠내로 유지하도록 한다. In addition, the air injection pipe 203 is for controlling the pressure by forcibly injecting high-pressure air into the high temperature and high pressure reactor 210 to the pressure in the reactor into 1.5kg / ㎠ ~ 3kg / ㎠ for easy hydrolysis Keep it.

또한, 상기 스팀주입관(202)은 온도를 조절하기 위한 것으로 다수의 밸브(205)에 의해 2개로 나뉘어 지는데, 하나는 상기 고온고압 반응기(210)의 하부에 연결되어 직접 반응기내로 뜨거운 스팀을 주입하게 되고, 다른 하나는 상기 스팀혼합부(230)에 연결되어 상기 폐수이송관(201)에 의해 이송되는 폐수와 혼합되고 상기 폐수의 온도를 상승하게 한다. In addition, the steam injection pipe 202 is for controlling the temperature is divided into two by a plurality of valves 205, one is connected to the lower portion of the high temperature and high pressure reactor 210 to direct hot steam into the reactor The other is connected to the steam mixing unit 230 is mixed with the waste water conveyed by the waste water conveying pipe 201 to increase the temperature of the waste water.

이때, 상기 고온고압 반응기(210)와 직접 연결된 스팀주입관(202)은 반응기를 작동하게 되는 초기 또는 비상시에 작동하여 반응기내의 온도를 가수분해에 용이한 110∼130℃의 온도를 유지하도록 한다. At this time, the steam injection pipe 202 directly connected to the high temperature and high pressure reactor 210 is operated at the initial or emergency to operate the reactor to maintain the temperature of the reactor 110 to 130 ℃ easy for hydrolysis.

이와 같이, 난분해성 불소화합물의 가수분해에 용이한 최적의 온도, 압력, pH를 구성한 고온고압 반응기(210)는 내부의 교반장치(211)를 이용해 폐수를 혼합하고 상기 혼합하는 과정에서 난분해성 불소화합물 HBF4는 붕소와 불소로 가수분해된다. 그리고, 상기 가수분해된 불소를 함유한 폐수는 상부에 웨어를 형성한 월류벽(213)을 월류하여 하측에 형성된 배출관(214)을 타고 배출된다. As such, the high temperature and high pressure reactor 210 having an optimal temperature, pressure, and pH for easy hydrolysis of the hardly decomposable fluorine compound is mixed with the wastewater using the internal agitator 211, and the hardly decomposable fluorine in the mixing process. Compound HBF 4 is hydrolyzed to boron and fluorine. In addition, the hydrolyzed wastewater containing fluorine is discharged through the discharge pipe 214 formed at the lower side by overflowing the overflow wall 213 having a ware formed thereon.

이때, 바람직하게 상기 월류벽(213)은 고온고압 반응기(210)의 일측을 구획하여 공간을 형성하고 반응기 내의 수면과 동일높이를 가지도록 형성되며, 상기 배출관(214)은 상기 월류벽(213)이 형성하는 공간내에 위치하여 가수분해된 불소를 함유한 폐수 중 상등수를 이송한다. In this case, preferably, the overflow wall 213 is formed to form a space by partitioning one side of the high temperature and high pressure reactor 210 and have the same height as the water surface in the reactor, and the discharge pipe 214 is the overflow wall 213. The supernatant is transported in the wastewater containing hydrolyzed fluorine which is located in the space to form.

또한, 상기 고온고압 반응기(210)의 외부에는 에너지를 절감하기 위해 열회 수 시스템으로 열교환기(220)를 포함해 구성하는데, 상기 열교환기(220)에서 상기 배출관(214)과 펌핑탱크(도2, 40)로부터 폐수를 이송하는 폐수이송관(201)의 열교환이 일어난다. 상기 고온고압 반응기(210)내부의 온도는 가수분해에 용이한 110∼130℃의 온도로 상기 배출관(214)을 따라 이송하는 처리수의 온도 또한 상기 온도를 유지하고 있으며, 상기 폐수이송관(201)을 따라 이송되는 불소함유 폐수는 상온의 온도를 유지하고 있다. 따라서, 상기 열교환기 내에서 상기 배출관(214)과 폐수이송관(201)은 열교환해 상기 불소함유 폐수는 일정 온도 상승하게 되고 처리수는 바람직하게 40℃ 이하의 온도를 유지하며 다음 공정으로 이송된다. In addition, the outside of the high temperature and high pressure reactor 210 is configured to include a heat exchanger 220 as a heat recovery system in order to save energy, the exhaust pipe 214 and the pumping tank (Fig. 2) in the heat exchanger 220 , The heat exchange of the waste water transfer pipe 201 for transferring the waste water from the 40 takes place. The temperature inside the high temperature and high pressure reactor 210 maintains the temperature of the treated water transferred along the discharge pipe 214 at a temperature of 110 to 130 ° C. that is easy for hydrolysis, and the waste water transfer pipe 201. The fluorine-containing wastewater transported along is maintained at room temperature. Therefore, in the heat exchanger, the discharge pipe 214 and the waste water conveying pipe 201 are heat-exchanged so that the fluorine-containing waste water rises a certain temperature and the treated water is preferably transferred to the next process while maintaining a temperature of 40 ° C or less.

그리고, 상기 열교환기(220)를 통과한 폐수이송관(210)은 고온고압 반응기(210)에 폐수를 유입하기 전에 상기 스팀주입관(202)과 스팀혼합부(230)에서 연통되어 반응에 필요한 온도를 유지하게 된다. 이때, 상기 스팀혼합부(230)는 가스와 액체가 혼합되는 곳으로 바람직하게는 벤츄리관의 형상을 가지며 일측에 상기 폐수이송관(201)과 뜨거운 공기를 이송하는 스팀주입관(202)이 연통되어 있다. In addition, the wastewater transport pipe 210 that has passed through the heat exchanger 220 is in communication with the steam injection pipe 202 and the steam mixing unit 230 before the wastewater flows into the high temperature and high pressure reactor 210 to perform the temperature. Will be maintained. At this time, the steam mixing unit 230 is a place where the gas and liquid is mixed preferably has the shape of a venturi tube and the steam inlet pipe 202 for transferring hot water and the waste water transfer pipe 201 is connected to one side have.

이때, 상기 스팀주입관(202)은 상기 고온고압 반응기(210)와 연통된 관과 별개의 관으로 밸브(205)에 의해 구분되고 바람직하게 대부분의 뜨거운 스팀은 상기 스팀주입관(202)을 통해 상기 스팀혼합부(230)내로 유입되어 폐수의 온도를 상승시킨다. At this time, the steam injection pipe 202 is divided by the valve 205 into a separate pipe and a pipe communicating with the high temperature and high pressure reactor 210 and preferably most hot steam through the steam injection pipe 202 It is introduced into the steam mixing unit 230 to increase the temperature of the waste water.

또한, 상기 폐수이송관(201)은 상기 고온고압 반응기(210)로 폐수를 유입하기 전에 최적의 pH를 유지하기 위해 상기 약품주입관(204)과 약품혼합부(240)에서 연통되어 폐수와 pH조절 약품을 혼합한다. In addition, the waste water transfer pipe 201 is in communication with the chemical injection pipe 204 and the chemical mixing unit 240 in order to maintain the optimum pH before the waste water is introduced into the high temperature and high pressure reactor 210 to adjust the wastewater and pH. Mix the medicine.

상기 약품주입관(204)은 고온고압 반응기(210)내의 pH를 3∼4로 유지하고 난분해성 불소물질의 분해율을 높이기 위한 약품이 주입되는 관으로 상기 약품은 상기 약품혼합부(240)에서 스팀혼합부(230)를 통과해 온도가 상승된 폐수이송관(201)과 연통되어 상기 폐수이송관을 통해 이송되는 폐수의 pH 유지 및 가수분해 효율을 높인다. The chemical injection pipe 204 is a tube in which a chemical is injected to maintain the pH in the high temperature and high pressure reactor 210 at 3 to 4 and increase the decomposition rate of the hardly decomposable fluorine material, and the chemical is steam in the chemical mixing unit 240. The temperature is increased and the hydrolysis efficiency of the waste water is passed through the mixing unit 230 is communicated with the waste water transfer pipe 201 is transferred through the waste water transfer pipe.

그리고, 상기 약품혼합부(240)는 도 5를 참조하여 살펴보면 내주면이 나선형의 홈을 포함한 관으로 상기 약품혼합부(240)에서 폐수는 상기 나선형의 홈을 따라 회전하면서 이동하게 된다. 이때, 상기 약품혼합부(240)의 일측에 연통되게 형성된 약품주입관(204)을 통해 주입된 약품은 상기 나선형의 홈을 따라 회전하는 폐수에 골고루 섞여 혼합되고 따라서 상기 폐수는 난분해성 불소화합물의 가수분해가 용이한 최적의 pH를 가지게 된다. In addition, the chemical mixing unit 240 is a pipe containing an inner circumferential surface of the spiral groove as shown in FIG. 5 and the wastewater in the chemical mixing unit 240 is moved while rotating along the spiral groove. At this time, the medicine injected through the drug injection pipe 204 formed in communication with one side of the drug mixing unit 240 is mixed evenly mixed in the waste water rotating along the spiral groove and thus the waste water of the hardly decomposable fluorine compound It will have an optimal pH that is easy to hydrolyze.

다시 도 4를 참조하면, 이렇게 온도가 상승하고 적정 pH를 갖춘 난분해성 불소함유 페수는 폐수이송관(201)을 통해 상기 고온고압 반응기(210)내로 유입된다. Referring to FIG. 4 again, the hardly decomposable fluorine-containing wastewater having a temperature rise and having an appropriate pH is introduced into the high temperature and high pressure reactor 210 through the wastewater transport pipe 201.

이와 같이 구성한 고온고압 반응기(210)에서의 난분해성 불소화합물의 가수분해과정을 폐수의 흐름에 따라 설명하면 다음과 같다. The hydrolysis process of the hardly decomposable fluorine compound in the high temperature and high pressure reactor 210 configured as described above will be described according to the flow of waste water.

먼저, 펌핑탱크(도2, 40)에 펌핑된 난분해성 불소화합물을 함유한 폐수는 폐수이송관(201)에 의해 이송되고, 상기 폐수는 폐수이송관(201)이 열교환기(220)를 통과하면서 열교환에 의해 어느정도 온도가 상승하게 된다. First, the wastewater containing the hardly decomposable fluorine compound pumped into the pumping tank (FIGS. 2 and 40) is transferred by the wastewater conveying pipe 201, and the wastewater is heat-exchanged while the wastewater conveying pipe 201 passes through the heat exchanger 220. The temperature rises to some extent.

그리고, 상기 폐수는 스팀혼합부(230)에서 주입된 뜨거운 스팀에 의해 가수분해에 용이한 최적의 온도를 가지게 되고, 약품혼합부(240)에서 주입된 pH조절 약 품 및 난분해성 불소물질 제거효율을 높이기 위한 약품에 의해 pH가 3∼4를 유지하게 되며, 이와 같이 온도과 pH가 조절된 폐수는 폐수이송관(201)에 의해 상기 고온고압 반응기(210)내로 유입된다. In addition, the wastewater has an optimum temperature that is easy to hydrolyze by hot steam injected from the steam mixing unit 230, the pH control chemicals injected from the chemical mixing unit 240 and the removal efficiency of the hardly decomposable fluorine material The pH is maintained by the chemical to increase the 3 to 4, the waste water temperature and pH is adjusted in this way is introduced into the high temperature and high pressure reactor 210 by the waste water transfer pipe (201).

다음으로, 상기 폐수는 고온고압 반응기(210)에서 공기주입관(203)을 통해 주입된 고압의 공기에 의해 1.5㎏/㎠∼3㎏/㎠의 압력을 받게 되고 폐수에 포함된 난분해성 불소화합물 HBF4는 가수분해반응을 일으켜 붕소와 불소로 분리된다. Next, the wastewater is subjected to a pressure of 1.5㎏ / ㎠ ~ 3㎏ / ㎠ by the high-pressure air injected through the air injection pipe 203 in the high temperature and high pressure reactor 210 and hardly decomposable fluorine compound contained in the wastewater HBF 4 is hydrolyzed to separate boron and fluorine.

그리고, 상기 가수분해된 불소함유 폐수는 월류벽(213)을 넘어 고온고압 반응기(210)의 일측에 형성된 배출관(214)을 따라 제2 반응조(50)와 제2 침강조(60)로 이송되고, 상기 불소는 주입된 칼슘염과 철염 등의 불소처리제에 의해 불화칼슘의 형태로 고형화되어 처리된다. In addition, the hydrolyzed fluorine-containing wastewater is transferred to the second reactor 50 and the second settling tank 60 along the discharge pipe 214 formed on one side of the high temperature and high pressure reactor 210 beyond the overflow wall 213. The fluorine is solidified and treated in the form of calcium fluoride by a fluorine treatment agent such as injected calcium salt and iron salt.

이상에서 설명한 본 발명은 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 한정되는 것은 아니다.The present invention described above is limited to the above-described embodiment and the accompanying drawings as various substitutions and modifications can be made within a range without departing from the technical spirit of the present invention for those skilled in the art. It doesn't happen.

상기와 같이 이루어지는 본 발명의 불소함유 폐수 처리 시스템은, 난분해성 불소 화합물을 처리가 용이하도록 가수분해하기 때문에 불소함유 폐수로부터 불소제거효율을 극대화한다. The fluorine-containing wastewater treatment system of the present invention made as described above maximizes the fluorine removal efficiency from the fluorine-containing wastewater because hydrolyzable hardly decomposable fluorine compounds are easily hydrolyzed.

또한, 고농도 불소함유 폐수처리에 적용가능(원수 HF농도 5000~10000ppm)하여 원수 농도변화에 영향 받지 않고 안정적으로 처리 가능하고, 보통의 경우 1차공 정의 1단처리만으로도 불소농도 10ppm 이하 처리가 가능하다. Also, it can be applied to high concentration fluorine-containing wastewater treatment (raw water HF concentration 5000 ~ 10000ppm), so that it can be treated stably without changing raw water concentration, and in general, it is possible to treat fluorine concentration 10ppm or less with only one step treatment. .

Claims (5)

난분해성 불소함유 폐수를 집수하는 집수조와, 상기 집수조를 거친 폐수가 불소처리제와 반응하여 불화칼슘으로 고형화되는 제1 반응조와, 상기 제1 반응조를 거친 폐수와 불화칼슘을 응집침전하여 분리하는 제1 침강조를 포함하여 구성하는 제1 공정과; A water collecting tank for collecting the hardly decomposable fluorine-containing waste water, a first reaction tank in which the waste water passing through the water collecting tank solidifies with calcium fluoride by reacting with a fluorine treatment agent, and a first separation for coagulation and sedimentation of the waste water and calcium fluoride which have passed through the first reaction tank. A first step comprising a sedimentation tank; 상기 제1 공정을 통과한 폐수 중의 난분해성 불소 화합물이 가수분해되는 고온고압 반응기와, 상기 고온고압 반응기를 거친 폐수와 함께 불소처리제를 첨가하여 고온고압 반응기에서 가수분해된 불소를 불화칼슘으로 고형화하는 제2 반응조와, 상기 제2 반응조를 거친 폐수와 불화칼슘을 응집침전하여 고액분리하는 제2 침강조를 포함하여 구성하는 제2 공정으로 이루어지고; Solidifying the hydrolyzed fluorine with calcium fluoride in a high temperature and high pressure reactor by adding a fluorine treatment agent together with the high temperature and high pressure reactor for hydrolyzing the hardly decomposable fluorine compound in the wastewater that has passed the first process, and the wastewater that has passed through the high temperature and high pressure reactor. A second step including a second reactor and a second settling tank for coagulating and sedimenting the wastewater and calcium fluoride which have passed through the second reactor for solid-liquid separation; 상기 불소처리제는 칼슘염, Fe이온을 함유한 철염, pH조절 산성약품, Polymer(강음이온성 고분자 응집제)로서 폐수 중의 불소는 상기 칼슘염과 반응하여 불화칼슘을 형성하고, 상기 철염에 의해 생성된 수산화 제2철과 상기 불화칼슘이 공침효과를 일으키는 것을 특징으로 하는 난분해성 불소함유 폐수 처리 시스템. The fluorine treatment agent is a calcium salt, an iron salt containing Fe ions, a pH-controlled acidic chemical, a polymer (a strong anionic polymer flocculant), and the fluorine in the waste water reacts with the calcium salt to form calcium fluoride, which is produced by the iron salt. A non-degradable fluorine-containing wastewater treatment system, characterized in that the ferric hydroxide and the calcium fluoride cause a coprecipitation effect. 제 1항에 있어서, The method of claim 1, 상기 난분해성 불소 화합물은 붕불화수소산(HBF4)으로 상기 BF4는 제2 공정의 고온고압 반응기에서 가수분해되어 붕소와 불소로 분리되고, 상기 분리된 불소 는 칼슘염에 의해 불화칼슘의 형태로 고정처리되는 것을 특징으로 하는 난분해성 불소함유 폐수 처리 시스템. The hardly decomposable fluorine compound is hydrofluoric acid (HBF 4 ) and the BF 4 is hydrolyzed in a high temperature and high pressure reactor of the second process to be separated into boron and fluorine, and the separated fluorine is in the form of calcium fluoride by calcium salt. A non-degradable fluorine-containing wastewater treatment system, characterized in that it is fixed. 제 1항 또는 제 2항에 있어서,The method according to claim 1 or 2, 상기 고온고압 반응기는 제1 공정을 거친 난분해성 불소함유 폐수를 이송하는 폐수이송관과, 고압의 공기를 주입하는 공기주입관과, 뜨거운 스팀을 주입하는 스팀주입관과 연통되고;The high temperature and high pressure reactor is in communication with the wastewater conveying pipe for conveying the hardly decomposable fluorine-containing wastewater, the air injection pipe for injecting high pressure air, and the steam injection pipe for injecting hot steam; 상기 고온고압 반응기 내부의 불소함유 폐수를 혼합하는 교반장치와;A stirring device for mixing the fluorine-containing wastewater inside the high temperature and high pressure reactor; 상기 고온고압 반응기 내부의 온도, pH, 압력을 측정하는 검침계와;A meter for measuring temperature, pH, and pressure in the high temperature and high pressure reactor; 상기 고온고압 반응기의 일측에 공간을 형성하고 반응기 내부 수면과 동일수면을 가지는 높이의 월류벽과;A wall overflow wall having a height formed on one side of the high temperature and high pressure reactor and having the same surface as the inner surface of the reactor; 상기 월류벽을 월류한 처리수를 배출하기 위한 배출관을 포함해 구성하고;A discharge pipe for discharging the treated water that has flowed through the overflow wall; 상기 제1 공정을 거친 폐수를 이송하는 폐수이송관과 상기 고온고압 반응기의 배출관 사이의 열교환이 일어나는 열교환기와;A heat exchanger in which heat exchange occurs between a wastewater transfer pipe for transferring the wastewater passed through the first process and a discharge pipe of the high temperature and high pressure reactor; 상기 열교환기를 통과한 폐수이송관과 상기 스팀주입관이 연통되어 폐수와 뜨거운 스팀이 혼합되는 벤츄리관 형상의 스팀혼합부와; A vent mixing tube-shaped steam mixing part in which the waste water transfer pipe passing through the heat exchanger and the steam injection pipe communicate with each other to mix waste water and hot steam; 상기 스팀혼합부를 통과한 폐수이송관과 pH조절 및 난분해성 불소물질의 분해효율을 높이기 위한 약품을 주입하는 약품주입관이 연통되어 폐수와 약품이 혼합되는 약품혼합부를 상기 고온고압 반응기의 외부에 포함하여 구성하는 것을 특징으로 하는 난분해성 불소함유 폐수 처리 시스템. The waste water transfer pipe passing through the steam mixing unit and the chemical injection tube for injecting a chemical to increase the decomposition efficiency of the pH control and the hardly decomposable fluorine material are communicated to include a chemical mixing part in which the waste water and the chemical is mixed outside of the high temperature and high pressure reactor. A non-degradable fluorine-containing wastewater treatment system comprising: 제 3항에 있어서, The method of claim 3, wherein 상기 고온고압 반응기의 pH는 3∼4 사이이고, 상기 고온고압 반응기의 압력은 1.5㎏/㎠∼3㎏/㎠이며, 상기 고온고압 반응기 내의 온도는 110∼130℃인 것을 특징으로 하는 난분해성 불소함유 폐수 처리 시스템. The pH of the high temperature and high pressure reactor is between 3 and 4, the pressure of the high temperature and high pressure reactor is 1.5kg / ㎠ ~ 3kg / ㎠, the temperature in the high temperature and high pressure reactor is 110 ~ 130 ℃ characterized in that the hardly decomposable fluorine Containing wastewater treatment system. 제 3항에 있어서, The method of claim 3, wherein 상기 고온고압 반응기의 약품 혼합부는 내주면이 나선형의 홈을 형성한 관으로 폐수가 상기 나선형의 홈을 따라 이동하면서 상기 약품주입관을 통해 주입된 약품과 혼합되어 폐수의 pH를 조절하는 것을 특징으로 하는 난분해성 불소함유 폐수 처리 시스템.The chemical mixing part of the high temperature and high pressure reactor is a tube in which the inner circumferential surface is formed with a spiral groove, and the waste water moves along the spiral groove to be mixed with the chemical injected through the chemical injection tube to adjust the pH of the waste water. Refractory fluorine-containing wastewater treatment system.
KR1020050133209A 2005-12-29 2005-12-29 System of Treating wastewater containing Hardly degradable fluorine KR100569649B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050133209A KR100569649B1 (en) 2005-12-29 2005-12-29 System of Treating wastewater containing Hardly degradable fluorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050133209A KR100569649B1 (en) 2005-12-29 2005-12-29 System of Treating wastewater containing Hardly degradable fluorine

Publications (2)

Publication Number Publication Date
KR20060004639A KR20060004639A (en) 2006-01-12
KR100569649B1 true KR100569649B1 (en) 2006-04-10

Family

ID=37116911

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050133209A KR100569649B1 (en) 2005-12-29 2005-12-29 System of Treating wastewater containing Hardly degradable fluorine

Country Status (1)

Country Link
KR (1) KR100569649B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101273168B1 (en) * 2011-06-21 2013-06-17 주식회사 이코니 Treatment process for fluorine compounds containing water

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115594280A (en) * 2022-11-08 2023-01-13 苏州淡林环境科技有限公司(Cn) Pretreatment process of wastewater containing fluorine sulfonate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000033386A (en) 1998-07-15 2000-02-02 Nec Environment Eng Ltd Treatment of fluorine-containing waste water and device therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000033386A (en) 1998-07-15 2000-02-02 Nec Environment Eng Ltd Treatment of fluorine-containing waste water and device therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101273168B1 (en) * 2011-06-21 2013-06-17 주식회사 이코니 Treatment process for fluorine compounds containing water

Also Published As

Publication number Publication date
KR20060004639A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
KR100960363B1 (en) Method for treating wastewater containing fluorine
US3966600A (en) Process for the treatment of waste water from a fiberglass manufacturing process
WO2008067723A1 (en) Method and device for treating waste water congtaining fluorine by using limestone
CN105289191A (en) Method and device for treating chlorosilane tail gas
CN102115279B (en) Method for removing phosphorus in sodium hypochlorite wastewater in acetylene cleaning process
CN112759143A (en) Device and process for preparing high-molecular aluminum salt coagulant by utilizing high-salinity wastewater zero-discharge system sludge
CN105129832B (en) The method that liquid calcium chloride is continuously produced using fluorine-containing by-product waste hydrochloric acid
CN107879501A (en) A kind of method of the recovery containing sodium hypochlorite waste water
JP2006212471A (en) Treatment method and reuse method of fluorine-containing waste liquid containing nitric acid, and its recycle method
KR100569649B1 (en) System of Treating wastewater containing Hardly degradable fluorine
CN104860465B (en) Double-tower catalysis thermal-coupling reflux deamination method and deamination device thereof
WO2008030234A1 (en) Nutrient recovery process
CN108393328B (en) Aluminum oxidation sludge and waste acid treatment method
KR101990179B1 (en) Method and apparatus for treating borofluoride-containing water
KR101297435B1 (en) The preparing method of aluminium sulfate from waste water
KR101018636B1 (en) Sewage and wastewater phosphorus removal system and method
KR20140065243A (en) Treatment process for hydrofluoric acid waste water
CN107162279A (en) A kind of cleaning system and purification method for handling high-concentration fluorine-contained waste liquid
CN110023250B (en) Treatment system and treatment method for treating water containing silicon dioxide
CN105384296A (en) System and method for processing wastewater generated during regeneration of SCR denitration catalyst
CN105600977A (en) Treating method for waste water contaning fluoroboric acid produced in etch process
JP6467651B2 (en) Method for producing aluminum compound solution
KR101086076B1 (en) The system for treating wastewater which cotain ammonia
KR102274386B1 (en) Method for producing CaF₂from waste water including HF
JP2000189980A (en) Treatment of waste water

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120404

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130401

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150504

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160404

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170501

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee