KR100568970B1 - Method of sintering body having high hardness - Google Patents

Method of sintering body having high hardness Download PDF

Info

Publication number
KR100568970B1
KR100568970B1 KR1020040002148A KR20040002148A KR100568970B1 KR 100568970 B1 KR100568970 B1 KR 100568970B1 KR 1020040002148 A KR1020040002148 A KR 1020040002148A KR 20040002148 A KR20040002148 A KR 20040002148A KR 100568970 B1 KR100568970 B1 KR 100568970B1
Authority
KR
South Korea
Prior art keywords
diamond
sintered
high hardness
powder
cemented carbide
Prior art date
Application number
KR1020040002148A
Other languages
Korean (ko)
Other versions
KR20050073988A (en
Inventor
오장욱
신택중
오규환
김동익
Original Assignee
일진다이아몬드(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일진다이아몬드(주) filed Critical 일진다이아몬드(주)
Priority to KR1020040002148A priority Critical patent/KR100568970B1/en
Priority to EP05721763A priority patent/EP1715972A1/en
Priority to PCT/KR2005/000079 priority patent/WO2005068113A1/en
Publication of KR20050073988A publication Critical patent/KR20050073988A/en
Application granted granted Critical
Publication of KR100568970B1 publication Critical patent/KR100568970B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/062Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/03Drying; Subsequent reconstitution
    • A23B4/031Apparatus for drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/007Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27JMECHANICAL WORKING OF CANE, CORK, OR SIMILAR MATERIALS
    • B27J1/00Mechanical working of cane or the like
    • B27J1/003Joining the cane side by side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/062Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/063Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/0645Boronitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Forests & Forestry (AREA)
  • Powder Metallurgy (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

본 발명은, 초경기판에 다결정다이아몬드(PolyCrystaline Diamond;이하, PCD라 함) 고경도층을 형성시킨 고경도 소결체의 제조방법에 관한 것으로, The present invention relates to a method of manufacturing a high hardness sintered body in which a polycrystalline diamond (PolyCrystaline Diamond (hereinafter referred to as PCD)) high hardness layer is formed on a cemented carbide substrate.

다이아몬드분말을 포함하는 소결원료분말을 준비하는 단계; 상기 소결원료분말을 WC/Co계 초경기판상에 위치시키는 단계; 상기 초경기판과 소결원료분말을, 4족~6족의 4~6주기에 속하는 촉매전이금속 및 이들의 탄화물, 질화물, 탄질화물 및 상기 촉매전이금속의 상호고용체 화합물로 구성된 그룹으로부터 선택되는 하나 이상의 고융점재료와, Fe, Co, Ni 중에서 선택되는 하나 이상의 결합재인 저융점재료를 포함하여 구성된 소결체 도가니에 장입하고 다이아몬드가 안정한 고온고압하에서 소결하여 상기 초경기판상에 피씨디(PCD;PolyCrystaline Diamond) 고경도층을 형성시키는 단계;를 포함한다.Preparing a sintered raw material powder containing diamond powder; Placing the sintered raw material powder on a WC / Co based cemented carbide substrate; The cemented carbide substrate and the sintered raw material powder are at least one selected from the group consisting of catalyst transition metals belonging to 4 to 6 cycles of Groups 4 to 6 and their carbide, nitride, carbonitride and intersolvent compounds of the catalyst transition metal. Charged into a sintered crucible comprising a high melting point material and a low melting point material which is one or more binders selected from Fe, Co, and Ni, and sintered under high temperature and high pressure where diamond is stable, thereby forming a PC (PolyCrystaline Diamond) on the cemented carbide substrate. Forming a high hardness layer.

본 발명에 의하면, 추가적인 입자성장억제물질이 포함된 결합재분말을 첨가하지 않고도, 고경도 소결체의 PCD층의 비정상적인 다이아몬드 입자성장을 방지할 수 있으므로 피삭성이 우수할 뿐 아니라, 가공성이 우수한 고경도 소결체를 제조할 수 있다. According to the present invention, it is possible to prevent abnormal diamond grain growth of the PCD layer of the high hardness sintered body without adding a binder powder containing an additional grain growth inhibitory material, so that not only the excellent machinability but also the high hardness sintered body have excellent workability. Can be prepared.

WC/Co계 초경기판, 금속기지복합체, 다결정다이아몬드, 입자성장억제물질WC / Co cemented carbide substrate, metal base composite, polycrystalline diamond, grain growth inhibitor

Description

고경도 소결체의 제조방법{METHOD OF SINTERING BODY HAVING HIGH HARDNESS} Manufacturing method of high hardness sintered body {METHOD OF SINTERING BODY HAVING HIGH HARDNESS}             

도 1은, 종래의 고경도 소결체의 제조방법을 나타내는 개략도이고,1 is a schematic view showing a conventional method for producing a high hardness sintered body,

도 2는, 본 발명의 고경도 소결체의 제조방법을 나타내는 개략도이고,2 is a schematic view showing a method for producing a high hardness sintered body of the present invention,

도 3a는, 종래의 제조방법에 의하여 제조된 고경도 소결체의 전자현미경사진이고,3A is an electron micrograph of a high hardness sintered body manufactured by a conventional manufacturing method,

도 3b는, 본 발명의 제조방법에 의하여 제조된 고경도 소결체의 전자현미경사진이다.3B is an electron micrograph of the high hardness sintered body produced by the production method of the present invention.

본 발명은, 초경기판에 다결정다이아몬드(PolyCrystaline Diamond;이하, PCD라 함) 고경도층을 형성시킨 고경도 소결체의 제조방법에 관한 것으로, 특히 소결과정에서의 다이아몬드 입자의 비정상적인 성장을 억제할 수 있는 고경도 소결체의 제조방법에 관한 것이다. The present invention relates to a method of manufacturing a high hardness sintered body in which a polycrystalline diamond (PolyCrystaline Diamond (hereinafter referred to as PCD)) high hardness layer is formed on a cemented carbide substrate, and in particular, abnormal growth of diamond particles during sintering can be suppressed. It is related with the manufacturing method of a high hardness sintered compact.

WC/Co계 초경기판에 PCD 고경도층을 형성한 고경도 소결체는 공구재료로서 많이 쓰이고 있다. 도 1은, 이러한 종래의 고경도 소결체의 제조방법을 나타내는 개략도이다.High hardness sintered bodies in which a PCD high hardness layer is formed on a WC / Co based cemented carbide substrate are widely used as tool materials. 1 is a schematic view showing a method for producing such a conventional high hardness sintered body.

도시된 바와 같이, 종래의 고경도 소결체는 WC/Co계 초경기판 상에 다이아몬드분말과 코발트를 주성분으로 하는 결합재분말을 혼합한 원료분말을 올려놓고, 2000℃ 이상의 고융점재료(예컨대 Ta, Mo, Nb 등)로 이루어진 내화금속도가니에 장입하여 다이아몬드가 안정한 고온고압하에서 소결되어 제조된다.As shown in the drawing, the conventional high hardness sintered compact is placed on a WC / Co-based cemented carbide substrate with a raw material powder mixed with a diamond powder and a binder powder containing cobalt as a main component, and has a high melting point material of 2000 ° C. or higher (eg, Ta, Mo, It is charged into a refractory metal crucible consisting of Nb and the like, and diamond is sintered under stable high temperature and high pressure to be manufactured.

다결정다이아몬드 소결층의 주된 결합재는 초경기판으로부터 확산되어 들어오거나, 원료분말의 결합재분말에 포함되어 있던 코발트이다. 코발트는 상기 소결온도 및 압력 하에서 용융하여 액상을 이루는데, 이러한 액상 코발트는 PCD 형성반응의 촉매역할을 하게 된다. 즉, 액상 코발트 내에서 다이아몬드의 활동도는 매우 높아지므로, 상기 액상의 코발트 내로 확산된 다이아몬드입자의 성장 및 결합반응이 활발하게 일어나서 다결정을 이루게 된다. The main binder of the polycrystalline diamond sintered layer is cobalt diffused from the cemented carbide substrate or contained in the binder powder of the raw material powder. Cobalt is melted under the sintering temperature and pressure to form a liquid phase. The liquid cobalt serves as a catalyst for the PCD formation reaction. That is, since the activity of diamond in the liquid cobalt is very high, the growth and bonding reaction of the diamond particles diffused into the liquid cobalt is active to form a polycrystalline.

한편, 상기 도가니는 2000℃ 이상의 고융점재료로 이루어져 있어, PCD 소결과정에서 용융되지 않고 안정하게 유지된다.On the other hand, the crucible is made of a high melting point material of 2000 ℃ or more, it is maintained stable without melting during the PCD sintering process.

그러나, 이러한 종래의 제조방법에 의하면, 소결과정에서 도가니에 인접한 다이아몬드 표면 부근의 입자가 비정상적으로 성장하는 문제점이 있었다. However, according to the conventional manufacturing method, there was a problem that the particles near the surface of the diamond adjacent to the crucible grow abnormally during the sintering process.

다이아몬드가 입자성장을 일으키게 되면, 목표한 입도의 미세결정을 가지는 소결체를 제작할 수 없다. 또한, 비정상적인 입자성장이 일어난 소결체로 제작된 공구로 피삭재를 절단하면, 피삭재 절단면의 조도가 나빠지는 문제점이 있다.When diamond causes grain growth, a sintered compact having microcrystals of a target particle size cannot be produced. In addition, when the workpiece is cut with a tool made of a sintered body in which abnormal grain growth has occurred, there is a problem that the roughness of the workpiece cut surface is deteriorated.

특히, 다이아몬드 입자가 100㎛ 이상으로 비정상성장할 경우에는, 소결체를 공구로 제작하기 위한 EDM(Electrical Discharge Machine) 와이어 방전가공이 불가능하게 되는 문제가 있다.In particular, when the diamond particles grow abnormally to 100 µm or more, there is a problem in that electrical discharge machine (EDM) wire discharge processing for producing a sintered compact is not possible.

이러한 다이아몬드의 비정상적인 입자성장을 방지하기 위하여, 다이아몬드 입자의 입계에 위치하여 다이아몬드입자성장을 방해하는 4~6족 금속의 탄화물, 질화물, 붕화물이나 이들의 혼합분말을 다이아몬드분말과 혼합하여 소결하는 방법이 제안된 바 있다.In order to prevent abnormal grain growth of the diamond, carbides, nitrides, borides or mixed powders of Group 4 to 6 metals located at the grain boundaries of the diamond particles and hinder the diamond grain growth are mixed with the diamond powder and sintered. This has been proposed.

그러나, 상기 방법에 의하면 입자성장억제물질들이 PCD층 내에 편석될 우려가 있어 소결체의 기계적특성의 균질도를 저하시키는 문제가 있었다. 이를 방지하기 위해서, 입자성장억제물질을 다이아몬드분말 이하로 미세하게 분쇄하여 균일하게 혼합시키고 있지만, 이러한 경우에도 편석의 문제가 완전히 해결되기는 어렵다.However, according to the above method, the grain growth inhibitory materials may be segregated in the PCD layer, thereby lowering the homogeneity of the mechanical properties of the sintered body. In order to prevent this, the grain growth inhibitor is finely ground and mixed evenly below the diamond powder, but even in this case, the problem of segregation is not completely solved.

또한, 상기 방법의 경우, 결합재인 코발트 외의 다른 물질이 다이아몬드 사이를 채우게 되어 소결치밀도가 떨어진다는 문제가 있다.In addition, in the case of the above method, there is a problem in that other materials other than cobalt as a binder fill the diamond, thereby decreasing the sintered density.

본 발명은 상기 문제점을 해결하기 위하여 안출된 것으로, 입자성장을 일으키는 액상 코발트의 풀이 생성을 억제하는 도가니를 사용하여 고경도 소결체를 제조함으로서 입자성장을 억제할 수 있는 고경도 소결체의 제조방법을 제공하는 것을 목적으로 한다.
The present invention has been made to solve the above problems, and provides a method for producing a high hardness sintered body that can suppress the growth of particles by producing a high hardness sintered body using a crucible that suppresses the generation of the liquid cobalt pool causing particle growth. It aims to do it.

상기 목적을 달성하기 위한 본 발명의 고경도 소결체 제조방법은,High hardness sintered body manufacturing method of the present invention for achieving the above object,

다이아몬드분말을 포함하는 소결원료분말을 준비하는 단계;Preparing a sintered raw material powder containing diamond powder;

상기 소결원료분말을 WC/Co계 초경기판상에 위치시키는 단계;Placing the sintered raw material powder on a WC / Co based cemented carbide substrate;

상기 초경기판과 소결원료분말을, 4족~6족의 4~6주기에 속하는 촉매전이금속 및 이들의 탄화물, 질화물, 탄질화물 및 상기 촉매전이금속의 상호고용체 화합물로 구성된 그룹으로부터 선택되는 하나 이상의 고융점재료와 Fe, Co, Ni 중에서 선택되는 하나 이상의 결합재인 저융점재료를 포함하여 구성된 소결체 도가니에 장입하고 다이아몬드가 안정한 고온고압하에서 소결하여 상기 초경기판상에 피씨디(PCD;PolyCrystaline Diamond) 고경도층을 형성시키는 단계;를 포함한다.The cemented carbide substrate and the sintered raw material powder are at least one selected from the group consisting of catalyst transition metals belonging to 4 to 6 cycles of Groups 4 to 6 and their carbide, nitride, carbonitride and intersolvent compounds of the catalyst transition metal. Charged into a sintered crucible composed of a high melting point material and a low melting point material which is one or more binders selected from Fe, Co, and Ni, and sintered under high temperature and high pressure where diamond is stable, thereby forming a PC (PolyCrystaline Diamond) on a cemented carbide substrate. Forming a coating layer.

상기 도가니의 결합재는 5~30wt% 인 것이 바람직하다.The binder of the crucible is preferably 5 ~ 30wt%.

또한, 상기 다이아몬드분말의 평균입도는 3㎛ 이하인 것이 바람직하다.Moreover, it is preferable that the average particle size of the said diamond powder is 3 micrometers or less.

한편, 상기 소결원료분말은 3족~10족의 4~6주기에 속하는 촉매전이금속 및 이들의 탄화물, 질화물, 붕화물, 탄질화물 및 상기 촉매전이금속의 상호고용체 화합물로 구성된 그룹으로부터 선택되는 하나 이상으로 이루어진 결합재분말을 포함하는 것이 바람직하다.On the other hand, the sintered raw material powder is one selected from the group consisting of catalyst transition metals belonging to 4 to 6 cycles of Groups 3 to 10 and their carbide, nitrides, borides, carbonitrides and intersolvent compounds of the catalyst transition metals It is preferable to include the binder material powder which consists of the above.

이하에서는, 본 발명에 대하여 자세하게 설명한다.Hereinafter, the present invention will be described in detail.

본 발명자는 예의연구한 결과, 다이아몬드 표면 부근에서 입자성장이 일어나는 것은, 초경기판 또는 결합재로부터 용융되어 나온 코발트의 액상 풀(pool)이 내화금속 도가니의 벽을 따라 형성되기 때문임을 알게 되었다. 즉, 코발트 액상 풀에 서의 다이아몬드 입자는 활동도가 매우 커지므로 액상 풀과 인접한 부분의 다이아몬드입자가 비정상적으로 성장하게 되는 것으로 판단되었다. As a result of careful study, the inventors found that the grain growth occurs near the diamond surface because the liquid pool of cobalt melted from the cemented carbide or binder is formed along the walls of the refractory metal crucible. That is, the diamond particles in the cobalt liquid pool is very active, it was determined that the diamond particles in the area adjacent to the liquid pool is abnormally grown.

상기 코발트의 액상 풀은 이른바 스퀴즈아웃(squeeze out) 현상에 의하여 형성되는 것으로 추정된다. 스퀴즈아웃이란, 소결과정이 진행됨에 따라 다이아몬드 입자가 점점 더 접근하면서, 다이아몬드 사이의 코발트성분을 외부로 밀어내는 것을 말하는데, 종래의 도가니는 소결온도에서 안정하고 치밀한 순수금속(Mo, Ta, Nb 등 중의 하나)이나 이들의 합금으로 구성되어 있으므로, 외부로 밀려나온 액상 코발트가 상기 도가니 벽을 따라 액상 풀을 형성하게 되는 것이다. It is assumed that the liquid pool of cobalt is formed by a so-called squeeze out phenomenon. Squeeze out refers to the cobalt component between diamonds being pushed to the outside as the sintering process is gradually approaching, and the conventional crucible is stable and dense pure metal (Mo, Ta, Nb, etc.) at the sintering temperature. And cobalt, which is pushed out to form a liquid pool along the crucible wall.

본 발명자는 상기와 같은 입자성장메카니즘에 착안하여 도가니벽을 따라 코발트의 액상 풀이 형성되지 않게 하거나, 감소시키는 방향에 대하여 연구한 결과, 스퀴즈아웃되어 나온 액상 코발트를 흡수할 수 있도록 소결 도가니를 코발트의 액상 풀을 흡수할 수 있는 도가니로 구성하면, 입자성장을 막을 수 있다는 것을 발견하였다.The present inventors have focused on the above-described grain growth mechanism, and have studied the direction in which the liquid pool of cobalt is not formed or reduced along the crucible wall. As a result, the sintered crucible of the sintered crucible can be absorbed to absorb the squeezed out liquid cobalt. It has been found that by constructing a crucible capable of absorbing liquid pools, particle growth can be prevented.

본 발명자의 연구에 의하면, 그러한 도가니로서, 4족~6족의 4~6주기에 속하는 촉매전이금속 및 이들의 탄화물, 질화물, 탄질화물 및 상기 촉매전이금속의 상호고용체 화합물로 구성된 그룹으로부터 선택되는 하나 이상의 고융점재료와, Fe, Co, Ni 중에서 선택되는 하나 이상의 결합재인 저융점재료로 구성된 소결체 도가니가 적합함을 알 수 있었다.According to the research of the present inventors, such a crucible is selected from the group consisting of catalyst transition metals belonging to groups 4 to 6 of Groups 4 to 6 and their carbide, nitride, carbonitride and intersolvent compounds of the catalyst transition metal. It was found that a sintered crucible composed of at least one high melting point material and a low melting point material which is at least one binder selected from Fe, Co, and Ni is suitable.

상기 소결체 도가니 중 4족~6족의 4~6주기에 속하는 촉매전이금속 및 이들의 탄화물, 질화물, 탄질화물 및 상기 촉매전이금속의 상호고용체 화합물로 구성된 고융점재료들은 PCD 소결조건인 1000~1700℃, 3~10GPa 하에서 용융되지 않고 고상으로 남아있는 재료들이며 입자성장을 억제하는 역할도 하고 있다.Among the sintered crucibles, the high-melting point materials composed of the catalyst transition metals belonging to the 4-6 cycles of Groups 4 to 6, their carbides, nitrides, carbonitrides, and inter-solid compounds of the catalyst transition metals are 1000 to 1700, which are PCD sintering conditions. It is a material that does not melt under 3 ℃ ~ 10GPa and remains in a solid state. It also plays a role in suppressing particle growth.

또한, 소결체 도가니 중 Fe, Co, Ni은, 다이아몬드분말의 결합재인 코발트와 전율고용을 이루는 물질들이며, 상기 소결조건에서 용융된다.Also, Fe, Co, and Ni in the sintered crucibles are materials which form a high rate of employment with cobalt, which is a binder of diamond powder, and are melted under the sintering conditions.

소결 전에는 상기 도가니는 상기 고융점재료가 저융점의 결합재에 점점이 박혀있는 형태의 구조로서, 상기 결합재가 상기 고융점재료 사이사이에 개재하여 고융점재료를 서로 결합시키고 있다. Prior to sintering, the crucible has a structure in which the high melting point material is gradually embedded in the low melting point binder, and the binding material is interposed between the high melting point materials to bond the high melting point materials to each other.

본 발명의 구체적인 입자성장억제메카니즘은 다음과 같다.Specific grain growth inhibition mechanism of the present invention is as follows.

다이아몬드분말 또는 다이아몬드분말과 결합재분말의 혼합분말이 표면에 놓여진 초경기판을 상기와 같은 구성의 도가니에 장입하고 다이아몬드가 안정한 고온고압 하에서 소결하면, 스퀴즈아웃에 의하여 코발트가 거의 100%인 액상물질이 도가니벽을 따라 용출된다.When the cemented carbide substrate on which the diamond powder or the mixed powder of the diamond powder and the binder powder is placed is placed in the crucible of the above structure and the diamond is sintered under stable high temperature and high pressure, the liquid substance having almost 100% cobalt by the squeeze out is crucible. Elution along the wall.

또한, 도가니의 결합재성분은 저융점의 Fe, Co, Ni 중 하나 이상으로 구성되어 있으므로 소결과정에서 결합재성분도 용융되며, 이 때 도가니 중의 고융점재료입자들은 고상상태로서 상기 결합재 액상 위에 둥둥 떠 있는 상태가 된다. In addition, since the binder component of the crucible is composed of at least one of Fe, Co, and Ni of low melting point, the binder component is also melted during the sintering process, and the high melting point material particles in the crucible are in a solid state and floating on the binder liquid phase. Becomes

농도평형의 관점에서, 도가니벽에는 코발트가 거의 100%이므로, 결합재 중의 고융점재료 입자들은 도가니벽 상의 액상물질 속으로 침투해 들어가게 되며, 도가니벽 상의 액상코발트는 도가니 중의 결합재 액상 쪽으로 흘러들어가게 된다.In terms of concentration equilibrium, since the crucible wall has almost 100% cobalt, the high melting point material particles in the binder enter the liquid material on the crucible wall, and the liquid cobalt on the crucible wall flows toward the binder liquid in the crucible.

이러한 과정은 거의 동시에 이루어지므로, 도가니벽 상에 비정상적인 입자성장을 일으킬 수 있을 정도의 큰 코발트 액상 풀이 형성되기 매우 어렵게 된다.This process takes place at about the same time, making it very difficult to form a large cobalt liquid pool on the crucible wall that can cause abnormal grain growth.

한편, 도가니 중의 결합재 양이 5% 미만이면, 도가니 중의 고융점재료가 이른바 에타상으로 바뀌어 브리틀(brittle)해지는 경향이 있을 뿐 아니라, 상기 고융점재료의 유동성이 떨어져 액상 풀로의 이동이 억제되므로 효과적으로 액상 풀 형성을 저지하기 힘들다. 또한, 도가니 중 결합재의 양이 30wt% 를 초과하면, 소결과정에서 도가니의 형태가 붕괴될 수 있다. 따라서, 상기 결합재의 양은 5~30wt%인 것이 바람직하다.On the other hand, if the amount of binder in the crucible is less than 5%, the high melting point material in the crucible tends to be brittle due to the so-called eta phase, and the fluidity of the high melting point material is lowered, so that the movement to the liquid pool is suppressed. It is difficult to prevent liquid pool formation effectively. In addition, when the amount of the binder in the crucible exceeds 30wt%, the shape of the crucible may collapse during the sintering process. Therefore, the amount of the binder is preferably 5 ~ 30wt%.

본 발명의 특징적인 점은, 종래와 같이 입자성장억제물질을 다이아몬드 사이에 개재시켜 입자성장을 방지하는 것이 아니라, 주로 문제가 되는 입자성장이 발생하는 PCD층 표면 근방(액상 코발트 풀이 형성되는 곳) 부근에만 입자성장억제물질 내지는 액상 코발트 풀 형성 방해물질을 개재시킴과 동시에 액상 코발트 풀을 도가니 쪽으로 흐르게 함으로써, 입자성장을 억제한다는 점이다.The characteristic feature of the present invention is not to prevent particle growth by interposing a particle growth inhibitor material between diamonds as in the prior art, but near the surface of the PCD layer where the problem particle growth occurs (where the liquid cobalt pool is formed). Particle growth inhibitory material or liquid cobalt pool formation interfering material is interposed in the vicinity, and the liquid cobalt pool flows to the crucible, thereby suppressing particle growth.

따라서, 본 발명은 종래와 같은 입자성장억제물질의 편석문제나 소결치밀도 저하의 문제가 없다는 장점이 있다.Therefore, the present invention has the advantage that there is no problem of segregation of the grain growth inhibitory material or a decrease in sintered densities as in the prior art.

한편, 다이아몬드입자의 비정상적인 성장은 다이아몬드분말의 크기가 작을 수록 더욱 크게 일어난다. 왜냐하면, 다이아몬드분말의 크기가 작을 수록 이와 접하는 액상 코발트와의 계면이 커져서 입자성장의 구동력이 되는 계면에너지가 대폭 증가하기 때문이다. On the other hand, abnormal growth of diamond grains occurs as the size of the diamond powder becomes smaller. This is because the smaller the size of the diamond powder, the larger the interface with the liquid cobalt in contact with it, the greater the interfacial energy that becomes the driving force for grain growth.

통상, 원료다이아몬드 분말의 평균입도가 3㎛를 넘어서면, 계면에너지가 부족하여 비정상적인 입자성장이 발생빈도가 대폭 줄어든다. 그러므로, 본 발명은 특히 3㎛ 이하의 미세 다이아몬드분말 소결의 경우에 특히 의미가 있다.In general, when the average particle size of the raw material diamond powder exceeds 3 μm, the frequency of occurrence of abnormal particle growth due to lack of interfacial energy is greatly reduced. Therefore, the present invention is particularly meaningful in the case of fine diamond powder sintering of 3 mu m or less.

이론적으로는 초경기판에서 확산되는 코발트성분만으로도 다이아몬드분말을 소결할 수 있으므로, 소결원료분말에 별도의 결합재분말을 넣지 않고 원료분말을 순수 다이아몬드분말로 구성할 수 있다.Theoretically, since the diamond powder can be sintered only by the cobalt component diffused from the cemented carbide substrate, the raw material powder can be composed of pure diamond powder without adding a separate binder powder to the sintered raw material powder.

하지만, 통상은 소결체의 조직균일성을 위하여 다이아몬드분말에 미리 결합재분말을 혼합하는 것이 보통이다.However, it is common to mix the binder powder in advance with the diamond powder for the uniformity of the structure of the sintered compact.

소결원료분말에 주로 첨가되는 결합재는 Fe, Co, Ni 등의 촉매금속이지만, 다른 특성을 부가하기 위하여 그 밖의 촉매금속을 첨가할 수도 있다. 상기 결합재분말은 3족~10족의 4~6주기에 속하는 촉매전이금속 및 이들의 탄화물, 질화물, 붕화물, 탄질화물 및 상기 촉매전이금속의 상호고용체 화합물 중 하나 이상을 사용할 수 있다. The binder mainly added to the sintered raw material powder is a catalyst metal such as Fe, Co, and Ni, but other catalyst metals may be added to add other properties. The binder powder may use at least one of a catalyst transition metal belonging to 4 to 6 cycles of Group 3 to Group 10, and carbides, nitrides, borides, carbonitrides, and inter-solid-solvent compounds of the catalyst transition metals.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 대하여 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described a preferred embodiment of the present invention.

[실시예]EXAMPLE

시편Psalter AA BB CC DD 다이아몬드분말 평균입도Diamond Powder Average Particle Size 22 22 22 44 결합재분말중 Co wt%Co wt% in binder powder 55 55 55 55 결합재분말중 WC wt% WC wt% in binder powder                                          00 2020 3535 00

평균입도 2㎛와 4㎛의 다이아몬드분말에, 표와 같은 조성의 평균입도 1.5㎛의 코발트 분말과 평균입도 0.8㎛의 WC 분말로 이루어진 결합재분말을 혼합하여 소 결원료분말로 한 후, WC-8wt% Co의 초경기판상에 올려놓은 다음, 상기 혼합원료분말과 기판을 WC-6wt% Co 도가니와 Ta도가니에 각각 장입하고, 벨트형의 고압장비를 사용하여 1600℃, 6Gpa 하에서 1시간 동안 소결하였다.WC-8wt was mixed with a diamond powder with an average particle size of 2 µm and 4 µm, and a binder powder composed of cobalt powder with an average particle size of 1.5 µm and a WC powder with an average particle size of 0.8 µm was prepared as a sintered raw material powder. After placing on a cemented carbide substrate of% Co, the mixed raw material powder and the substrate were charged in a WC-6wt% Co crucible and a Ta crucible, respectively, and sintered at 1600 ° C. and 6 Gpa for 1 hour using a belt-type high pressure equipment. .

소결된 소결체를 연마, 폴리싱 가공하고 EDM 와이어방전가공절단하여 절단면을 관찰한 결과, WC-6wt% Co 도가니에 장입한 본 발명의 실시예 시편의 경우 모든 시편에 있어서 입자성장이 거의 일어나지 않았다. 도 3b는 시편 A조성의 소결원료분말을 사용하여 소결한 소결체의 절단면 사진이다. 도시된 바와 같이, 입자성장이 거의 발생하지 않은 것을 알 수 있다.The sintered sintered body was polished, polished and EDM wire-discharge cut to observe the cut surface. As a result, the grain growth did not occur in all the specimens in the Example specimen of the present invention charged in the WC-6wt% Co crucible. Figure 3b is a photograph of the cut surface of the sintered body sintered using the sintered raw material powder of the specimen A composition. As shown, it can be seen that grain growth hardly occurred.

하지만, Ta도가니에 장입하여 소결한 비교예 시편 A 및 B의 경우는, 거의 100㎛ 이상의 입자성장이 심각하게 발생하였다. 도 3a는 시편 B조성의 소결원료분말을 사용한 소결체의 절단면 사진으로서, 심각한 입자성장이 발생한 것을 알 수 있다.However, in the case of Comparative Samples A and B charged into a Ta crucible and sintered, grain growth of about 100 μm or more occurred seriously. Figure 3a is a photograph of the cut surface of the sintered body using the sintered raw material of the specimen B composition, it can be seen that severe grain growth occurred.

한편, WC을 35wt% 첨가한 비교예 C의 경우 입자성장이 발생하지 않았는데, 이는 WC가 다이아몬드 입자의 결합을 방해하여 입자성장이 발생하지 않은 것으로 파악된다. On the other hand, in the case of Comparative Example C to which WC was added 35wt% grain growth did not occur, it is understood that the grain growth did not occur because the WC interferes with the bonding of the diamond particles.

또한, 비교예 B는 다이아몬드 입자의 평균입도가 3㎛를 초과하여 입자성장에 필요한 구동력이 부족하여 심각한 입자성장은 거의 일어나지 않은 것으로 파악되었다. In addition, in Comparative Example B, it was found that the average particle size of the diamond particles exceeded 3 µm, so that the driving force necessary for grain growth was insufficient, so that severe grain growth hardly occurred.

이와 같이, 본 발명의 경우 원료분말에 포함된 결합재의 조성에 상관없이, 입자성장이 거의 발생하지 않았지만, 비교예의 경우 WC를 상당한 양 첨가하여야 입 자성장을 방지할 수 있었다.As such, in the case of the present invention, regardless of the composition of the binder contained in the raw material powder, the growth of the particles hardly occurred, but in the case of the comparative example, it was necessary to add a considerable amount of WC to prevent grain growth.

이상에서 살펴본 바와 같이, 본 발명에 의하면, 추가적인 입자성장억제물질이 포함된 결합재분말을 첨가하지 않고도, 고경도 소결체의 PCD층의 비정상적인 다이아몬드 입자성장을 방지할 수 있으므로 피삭성이 우수할 뿐 아니라, 가공성이 우수한 고경도 소결체를 제조할 수 있다. As described above, according to the present invention, since it is possible to prevent abnormal diamond grain growth of the PCD layer of the high hardness sintered body without adding the binder powder containing the additional grain growth inhibitory material, The high hardness sintered compact excellent in workability can be manufactured.

Claims (4)

다이아몬드분말을 포함하는 소결원료분말을 준비하는 단계;Preparing a sintered raw material powder containing diamond powder; 상기 소결원료분말을 WC/Co계 초경기판상에 위치시키는 단계;Placing the sintered raw material powder on a WC / Co based cemented carbide substrate; 상기 초경기판과 소결원료분말을, 4족~6족의 4~6주기에 속하는 촉매전이금속 및 이들의 탄화물, 질화물, 탄질화물 및 상기 촉매전이금속의 상호고용체 화합물로 구성된 그룹으로부터 선택되는 하나 이상의 고융점재료와, Fe, Co, Ni 중에서 선택되는 하나 이상의 결합재인 저융점재료를 포함하여 구성된 소결체 도가니에 장입하고 다이아몬드가 안정한 고온고압하에서 소결하여 상기 초경기판상에 피씨디(PCD;PolyCrystaline Diamond) 고경도층을 형성시키는 단계;를 포함하는 고경도 소결체의 제조방법.The cemented carbide substrate and the sintered raw material powder are at least one selected from the group consisting of catalyst transition metals belonging to 4 to 6 cycles of Groups 4 to 6 and their carbide, nitride, carbonitride and intersolvent compounds of the catalyst transition metal. Charged into a sintered crucible comprising a high melting point material and a low melting point material which is one or more binders selected from Fe, Co, and Ni, and sintered under high temperature and high pressure where diamond is stable, thereby forming a PC (PolyCrystaline Diamond) on the cemented carbide substrate. Forming a high hardness layer; Method for producing a high hardness sintered body comprising a. 제1항에 있어서,The method of claim 1, 상기 도가니의 결합재는 5~30wt%인 것을 특징으로 하는 고경도 소결체의 제조방법.The binder of the crucible is a method for producing a high hardness sintered body, characterized in that 5 ~ 30wt%. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2, 상기 다이아몬드분말의 평균입도는 3㎛ 이하인 것을 특징으로 하는 고경도 소결체의 제조방법The average particle size of the diamond powder is a manufacturing method of a high hardness sintered compact, characterized in that 3㎛ or less 제1항에 있어서,The method of claim 1, 상기 소결원료분말은 3족~10족의 4~6주기에 속하는 촉매전이금속 및 이들의 탄화물, 질화물, 붕화물, 탄질화물 및 상기 촉매전이금속의 상호고용체 화합물로 구성된 그룹으로부터 선택되는 하나 이상으로 이루어진 결합재분말을 포함하는 것을 특징으로 하는 고경도 소결체의 제조방법.The sintered raw material powder is at least one selected from the group consisting of catalyst transition metals belonging to groups 4 to 6 of Groups 3 to 10, their carbides, nitrides, borides, carbonitrides, and inter-solid compounds of the catalyst transition metals. Method for producing a high hardness sintered body comprising a binder powder made of.
KR1020040002148A 2004-01-13 2004-01-13 Method of sintering body having high hardness KR100568970B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020040002148A KR100568970B1 (en) 2004-01-13 2004-01-13 Method of sintering body having high hardness
EP05721763A EP1715972A1 (en) 2004-01-13 2005-01-11 Method of sintering body having high hardness
PCT/KR2005/000079 WO2005068113A1 (en) 2004-01-13 2005-01-11 Method of sintering body having high hardness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040002148A KR100568970B1 (en) 2004-01-13 2004-01-13 Method of sintering body having high hardness

Publications (2)

Publication Number Publication Date
KR20050073988A KR20050073988A (en) 2005-07-18
KR100568970B1 true KR100568970B1 (en) 2006-04-07

Family

ID=34793234

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040002148A KR100568970B1 (en) 2004-01-13 2004-01-13 Method of sintering body having high hardness

Country Status (3)

Country Link
EP (1) EP1715972A1 (en)
KR (1) KR100568970B1 (en)
WO (1) WO2005068113A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104493182A (en) * 2014-10-23 2015-04-08 金华中烨超硬材料有限公司 Diamond-high vanadium-titanium hard alloy polycrystalline composite chip and preparation method thereof

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8435317B2 (en) * 2005-08-16 2013-05-07 Anthony Roy Burgess Fine grained polycrystalline abrasive material
GB0819257D0 (en) * 2008-10-21 2008-11-26 Element Six Holding Gmbh Insert for an attack tool
US8069937B2 (en) * 2009-02-26 2011-12-06 Us Synthetic Corporation Polycrystalline diamond compact including a cemented tungsten carbide substrate that is substantially free of tungsten carbide grains exhibiting abnormal grain growth and applications therefor
US8277722B2 (en) * 2009-09-29 2012-10-02 Baker Hughes Incorporated Production of reduced catalyst PDC via gradient driven reactivity
US8505654B2 (en) 2009-10-09 2013-08-13 Element Six Limited Polycrystalline diamond
GB0917670D0 (en) * 2009-10-09 2009-11-25 Element Six Ltd Polycrystalline diamond composite compact element and tools incorporating same
KR101457850B1 (en) * 2011-08-23 2014-11-04 엘리먼트 씩스 리미티드 Fine polycrystalline diamond compact with a grain growth inhibitor layer between diamond and substrate
CN103602887B (en) * 2013-10-10 2015-11-18 安徽澳德矿山机械设备有限公司 A kind of Powder metallurgy bit matrix and preparation method thereof
US10933511B2 (en) 2015-12-27 2021-03-02 Schlumberger Technology Corporation Polycrystalline diamond constructions with modified reaction zone
CN107442776B (en) * 2017-07-12 2019-12-31 东北大学 Method for preparing bimetal composite material by surface liquid phase sintering
CN108284229B (en) * 2018-01-26 2020-04-17 上海工程技术大学 Sintering connection method of nano hard alloy and invar alloy
CN110253024B (en) * 2019-07-22 2021-07-13 吉林大学 Diamond composite sheet containing graphene and preparation method thereof
CN110919004B (en) * 2019-12-04 2022-04-01 武汉玖石超硬材料有限公司 High impact toughness polycrystalline diamond hard alloy composite sheet and manufacturing method thereof
CN111482609B (en) * 2020-06-28 2020-10-13 北京春仑石油技术开发有限公司 Method for manufacturing radial centralizing sliding bearing moving ring

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59563B2 (en) * 1981-10-26 1984-01-07 科学技術庁無機材質研究所長 Manufacturing method of diamond sintered body
AU571419B2 (en) * 1984-09-08 1988-04-14 Sumitomo Electric Industries, Ltd. Diamond sintered for tools and method of manufacture
EP0701861B1 (en) * 1994-09-16 2004-11-17 Sumitomo Electric Industries, Ltd. A diamond sintered body and a process for the production of the same, tools and abrasive grains using the same
JPH11240762A (en) * 1998-02-26 1999-09-07 Sumitomo Electric Ind Ltd High-strength, high-abrasion-resistant diamond sintered product and tool therefrom

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104493182A (en) * 2014-10-23 2015-04-08 金华中烨超硬材料有限公司 Diamond-high vanadium-titanium hard alloy polycrystalline composite chip and preparation method thereof

Also Published As

Publication number Publication date
KR20050073988A (en) 2005-07-18
WO2005068113A1 (en) 2005-07-28
EP1715972A1 (en) 2006-11-02

Similar Documents

Publication Publication Date Title
KR100568970B1 (en) Method of sintering body having high hardness
EP1831130B1 (en) Method of making a powder suitable for manufacturing a cubic boron nitride compact
EP1948837B1 (en) Method of making a powdered composition for a cubic boron nitride compact
KR100219930B1 (en) Superhard composite member and its production
EP1716086B1 (en) Sintered compact
KR20100065348A (en) Ultrahard diamond composites
US8231698B2 (en) Polycrystalline diamond abrasive compacts
KR102217787B1 (en) Carbide with toughness-increasing structure
KR20090086999A (en) Polycrystalline diamond abrasive compacts
CA2762306A1 (en) Polycrystalline diamond
KR20050072753A (en) Method for producing a sintered, supported polycrystalline diamond compact
US20140165474A1 (en) Titanium Diboride Composition in PCBN
CN108145168A (en) Fine-granularity diamond composite sheet and preparation method thereof
US20080302023A1 (en) Cubic Boron Nitride Compact
US20190184524A1 (en) Polycrystalline diamond construction & method of making
CN108115142A (en) Diamond compact and preparation method thereof
WO2005068114A1 (en) Method of sintering body having high hardness
CN113059161B (en) Polycrystalline diamond compact and preparation method thereof
JPH0530897B2 (en)
US20050226691A1 (en) Sintered body with high hardness for cutting cast iron and the method for producing same
KR100756390B1 (en) Cutting tip for cutting tool
JPS6355161A (en) Manufacture of industrial diamond sintered body
JPH0564691B2 (en)
JPH0333771B2 (en)
CN115038534A (en) Polycrystalline diamond structure and method of making same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090403

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee