KR100568367B1 - Method for manufacturing high strength galvannealed steel sheets excellent in drawability and resistance of secondary work embrittlement - Google Patents

Method for manufacturing high strength galvannealed steel sheets excellent in drawability and resistance of secondary work embrittlement Download PDF

Info

Publication number
KR100568367B1
KR100568367B1 KR1020030095162A KR20030095162A KR100568367B1 KR 100568367 B1 KR100568367 B1 KR 100568367B1 KR 1020030095162 A KR1020030095162 A KR 1020030095162A KR 20030095162 A KR20030095162 A KR 20030095162A KR 100568367 B1 KR100568367 B1 KR 100568367B1
Authority
KR
South Korea
Prior art keywords
steel
less
steel sheet
content
high strength
Prior art date
Application number
KR1020030095162A
Other languages
Korean (ko)
Other versions
KR20050063917A (en
Inventor
진광근
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020030095162A priority Critical patent/KR100568367B1/en
Publication of KR20050063917A publication Critical patent/KR20050063917A/en
Application granted granted Critical
Publication of KR100568367B1 publication Critical patent/KR100568367B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/002Pretreatement
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Abstract

본 발명은 합금화 용융아연도금 강판의 제조방법에 관한 것이다.The present invention relates to a method for producing an alloyed hot dip galvanized steel sheet.

본 발명은 중량%로, C: 0.0005~0.01%, Si: 0.05~0.30%, Mn: 0.3~2.0%, P: 0.02~0.1%, S: 0.02% 이하, N: 0.003% 이하, Sol.Al: 0.01~0.2%, B: 0.0003~0.003%, Ti: 0.005~0.05%와 Nb: 0.005~0.05% 가운데 1종 이상, 나머지 Fe 및 기타 불가피한 불순물로 조성되며, 상기 B와 Si가 0.005 ≤ B/Si ≤ 0.02 을 만족하는 강을 열간 및 냉간압연하고, 760~830℃의 온도에서 10~120초 동안 소둔한 다음 480~540℃에서 합금화 용융아연도금하는 것을 포함하여 이루어진다.In the present invention, by weight%, C: 0.0005 to 0.01%, Si: 0.05 to 0.30%, Mn: 0.3 to 2.0%, P: 0.02 to 0.1%, S: 0.02% or less, N: 0.003% or less, Sol.Al : 0.01 to 0.2%, B: 0.0003 to 0.003%, Ti: 0.005 to 0.05% and Nb: 0.005 to 0.05% of at least one of the remaining Fe and other unavoidable impurities, the B and Si is 0.005 ≤ B / The steel satisfying Si ≦ 0.02 may be hot and cold rolled, annealed for 10 to 120 seconds at a temperature of 760 to 830 ° C., and then alloyed hot dip galvanized at 480 to 540 ° C.

또한, 본 발명에 따르면 성형성 및 내2차가공취성이 우수한 고강도 합금화 용융아연도금 강판을 제공할 수 있는 효과가 있다.In addition, according to the present invention there is an effect that can provide a high strength alloyed hot-dip galvanized steel sheet excellent in moldability and secondary workability.

합금화 용융아연도금, 고강도, 내2차가공취성, 합금도금층, 성형성Alloyed hot dip galvanized, high strength, secondary processing brittleness, alloy plating layer, formability

Description

성형성 및 내2차가공취성이 우수한 고강도 합금화 용융아연도금 강판의 제조방법{Method for manufacturing high strength galvannealed steel sheets excellent in drawability and resistance of secondary work embrittlement} Method for manufacturing high strength galvannealed steel sheets excellent in drawability and resistance of secondary work embrittlement}             

도 1은 합금층의 Fe함량에 따른 연성취성천이온도의 변화를 나타내는 그래프이다.1 is a graph showing the change in ductile brittle transition temperature according to the Fe content of the alloy layer.

본 발명은 합금화 용융아연도금 강판의 제조방법에 관한 것으로, 보다 상세하게는 내식성이 요구되는 자동차 판넬 및 구조용 부품 등에 사용되는 성형성 및 내2차가공취성이 우수한 고강도 합금화 용융아연도금 강판의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing an alloyed hot-dip galvanized steel sheet, and more particularly, to a method for manufacturing a high strength alloyed hot-dip galvanized steel sheet having excellent moldability and secondary work resistance for use in automobile panels and structural parts requiring corrosion resistance. It is about.

최근 환경문제와 관련하여 자동차의 연비를 개선시키기 위하여 차체 경량화를 위한 연구가 진행되고 있으며, 이에 따라 고강도 강판의 사용이 증가되고 있다. 이와 동시에 차량의 수명을 연장하기 위하여 방청, 내구멍 부식 등 차체 내식성에 대한 요구도 강화되고 있으며, 그 대책으로 도금강판의 적용 비율이 날로 늘어나고 있는 추세이다. Recently, in order to improve fuel efficiency of automobiles in relation to environmental problems, researches for lightening the vehicle body have been conducted. Accordingly, the use of high strength steel sheets is increasing. At the same time, in order to extend the life of the vehicle, the demand for corrosion resistance of the vehicle body, such as rust prevention and corrosion of holes, is being strengthened. As a countermeasure, the application rate of plated steel sheet is increasing day by day.

성형성이 우수한 고강도 강판에 관한 종래기술로는 일본 공개특허공보 소57-57945호, 소59-74232호, 평5-59491호, 평5-214487호, 소63-47338호, 평5-9698호가 있다.Conventional techniques related to high strength steel sheets excellent in formability include Japanese Patent Application Laid-Open Nos. 57-57945, 59-74232, 5-59491, 5-214487, 63-47338, and 5-9698. There is an arc.

상기한 종래기술중 일본 공개특허공보 소57-57945호는 극저탄소강에 Ti 또는 Nb와 같은 탄질화물 형성원소를 첨가한 소위 IF강에 고용강화 원소로 P, Si, Mn 등을 첨가한 강판이다. 그러나, 상기 종래기술에서 P는 강화능이 Si, Mn보다 크고 고용탄소가 존재하는 경우 r값을 감소시키는 경향이 작기 때문에 고용강화 원소로 매우 효과적인 원소이지만, P의 입계편석으로 2차가공취성이 증가되는 문제점이 있다.Japanese Laid-Open Patent Publication No. 57-57945 is a steel sheet in which P, Si, Mn, and the like are added to so-called IF steel in which carbonitride-forming elements such as Ti or Nb are added to ultra low carbon steel as a solid solution strengthening element. . However, in the prior art, P is a very effective element as a solid solution strengthening element because P has a higher reinforcing capacity than Si and Mn and a small tendency to decrease r value in the presence of solid carbon, but secondary processing brittleness increases due to grain boundary segregation of P. There is a problem.

이러한 2차가공취성의 문제를 해결하기 위한 종래기술이 일본 공개특허공보 소59-74232호이다. 상기 종래기술에서는 P를 첨가한 극저탄소강에 다량의 B를 첨가하여 입계에 고용상태의 B를 존재하게 함으로써 높은 내2차가공취성을 확보하고 있다. 그러나, 상기 B첨가에 의한 2차가공취성의 억제효과는 P첨가량 및 Mn첨가량이 증가하면 현저하게 감소되는 문제점이 있다.Japanese Laid-Open Patent Publication No. 59-74232 is a prior art for solving such a problem of secondary processing brittleness. In the above prior art, a large amount of B is added to ultra low carbon steel to which P is added, so that B in solid solution exists at grain boundaries, thereby ensuring high secondary processing brittleness. However, there is a problem that the suppression effect of secondary processing brittleness by the addition of B is significantly reduced as the amount of P addition and Mn addition increases.

따라서, 상기 일본 공개특허공보 평5-59491호 및 평5-214487호에서는 P에 의한 고용강화 대신 Si, Mn을 이용한 고용강화 방법을 제시하고 있다. 그러나, 상기 Si은 산화되기 쉬운 원소이기 때문에 열연 및 소둔과정에서 표면에 산화피막을 형성시켜 용융아연도금 공정에서 미도금 등의 문제를 발생시키고, Mn의 경우에는 Mn의 강화능이 작기 때문에 다량으로 첨가할 필요가 있고 이 경우 2차가공취성이 열화될 뿐 아니라 비용도 증가하는 문제점이 있다.Therefore, Japanese Patent Laid-Open Nos. Hei 5-59491 and Hei 5-214487 propose a solid solution strengthening method using Si and Mn instead of solid solution strengthening by P. However, since Si is an element that is easy to oxidize, an oxide film is formed on the surface during hot rolling and annealing, thereby causing problems such as unplating in the hot dip galvanizing process, and in the case of Mn, since Mn has a small reinforcing ability, Mn is added in a large amount. In this case, the secondary processing brittleness is not only deteriorated, but also increases the cost.

또한, 일본 공개특허공보 소63-47338호에서는 Si, P를 함유한 IF강을 이용하여 최적의 B와 고용탄소 양을 동시에 확보함으로써, 2차가공취성의 문제를 해결하고 있지만 용융아연도금 강판의 도금밀착성의 개선 및 합금화 속도에 대한 대책이 없는 문제점이 있다.In addition, Japanese Laid-Open Patent Publication No. 63-47338 solves the problem of secondary work brittleness by simultaneously securing an optimum amount of B and solid solution carbon using IF steel containing Si and P. There is a problem in that there is no measure for improvement of plating adhesion and alloying speed.

따라서, 상기 일본 공개특허공보 평5-9698호에서는 Si, Mn, P를 첨가한 IF강을 열간압연한 후 600℃ 이상에서 권취하고, 800~950℃로 소둔하는 과정에서 노내 분위기 가스의 산화발란스를 제어하여 용융아연욕에 침적하기 전 강판 표면의 300Å까지 Si농화량을 1.5mg/㎡이하로 낮춤으로써 도금밀착성을 개선하였다. 그러나, 상기 종래기술의 경우 Si농화량이 가열중 산화발란스에 의하여 조정되기 때문에 정밀한 제어가 어렵고, Si농화량이 1.5mg/㎡ 이상이 되면 도금밀착성이 급격히 열화될 뿐만 아니라 합금화 속도가 지연되는 문제점이 있다.Therefore, in JP-A-5-9698, the oxide balance of the atmosphere gas in the furnace in the process of hot rolling the IF steel containing Si, Mn, and P after hot rolling at 600 ° C or higher and annealing at 800 to 950 ° C. The coating adhesion was improved by lowering the Si concentration to less than 1.5 mg / m 2 up to 300 kPa on the surface of the steel sheet before being deposited in the molten zinc bath. However, in the prior art, since the Si concentration is adjusted by the oxidation balance during heating, precise control is difficult, and when the Si concentration is 1.5 mg / m 2 or more, the plating adhesion is rapidly degraded and the alloying speed is delayed. .

본 발명은 상기한 종래기술의 문제점을 해결하기 위한 것으로, P를 함유한 Ti-B 또는 Ti-Nb-B 첨가 극저탄소강을 원판으로 하는 고강도 합금화 용융아연도금 강판에 있어서 강판과 인접한 합금 도금층의 Fe함량을 적절하게 제어함에 의하여 강판표층으로의 아연의 입계확산을 억제함으로써 성형성 및 내2차가공취성이 우수한 고강도 합금화 용융아연도금 강판을 제공하는데 그 목적이 있다.
The present invention is to solve the above-mentioned problems of the prior art, in the high strength alloyed hot-dip galvanized steel sheet containing P-containing Ti-B or Ti-Nb-B-added ultra-low carbon steel as a base, It is an object of the present invention to provide a high strength alloyed hot dip galvanized steel sheet excellent in moldability and secondary workability by suppressing the grain boundary diffusion of zinc into the steel sheet surface by appropriately controlling the Fe content.

상기한 목적을 달성하기 위한 본 발명은, 중량%로, C: 0.0005~0.01%, Si: 0.05~0.30%, Mn: 0.3~2.0%, P: 0.02~0.1%, S: 0.02% 이하, N: 0.003% 이하, Sol.Al: 0.01~0.2%, B: 0.0003~0.003%, Ti: 0.005~0.05%와 Nb: 0.005~0.05% 가운데 1종 이상, 나머지 Fe 및 기타 불가피한 불순물로 조성되며, 상기 B와 Si가 0.005 ≤ B/Si ≤ 0.02 을 만족하는 강을 열간 및 냉간압연하고, 760~830℃의 온도에서 10~120초 동안 소둔한 다음 480~540℃에서 합금화 용융아연도금하는 것을 포함하여 이루어진다.The present invention for achieving the above object, in weight%, C: 0.0005 ~ 0.01%, Si: 0.05 ~ 0.30%, Mn: 0.3 ~ 2.0%, P: 0.02 ~ 0.1%, S: 0.02% or less, N : 0.003% or less, Sol.Al: 0.01% to 0.2%, B: 0.0003% to 0.003%, Ti: 0.005% to 0.05%, and Nb: 0.005% to 0.05%, and are composed of the remaining Fe and other unavoidable impurities. Including hot and cold rolling of steels with B and Si satisfying 0.005 ≦ B / Si ≦ 0.02, annealing at a temperature of 760-830 ° C. for 10-120 seconds and hot-dip galvanizing at 480-540 ° C. Is done.

이하, 본 발명에 대하여 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은 Si, Mn, P 등을 첨가한 극저탄소강에 Si와 B의 비를 적절하게 제어함으로써 강판 표면 산화물의 형성을 제어하고, 합금화 용융아연도금시 합금화 온도를 적절하게 제어함에 의하여 강판과 접촉하고 있는 합금도금층의 Fe함량을 13% 이하로 제어함으로써 우수한 성형성과 내2차가공취성을 확보하는데 특징이 있다. The present invention controls the formation of steel sheet surface oxide by controlling the ratio of Si and B to ultra low carbon steel to which Si, Mn, P, etc. are added, and by appropriately controlling the alloying temperature during alloying hot dip galvanizing. By controlling the Fe content of the alloy plating layer in contact with 13% or less, it is characterized by ensuring excellent moldability and secondary workability.

이하, 본 발명의 성분 및 제조조건에 대하여 상세하게 설명한다.Hereinafter, the component and manufacturing conditions of this invention are demonstrated in detail.

C: 0.0005~0.01중량%(이하, 단순히 '%'로 기재함)C: 0.0005 to 0.01 wt% (hereinafter simply referred to as '%')

상기 C는 소둔판의 (111)집합조직의 발달을 억제시켜 성형성을 저하시키는 원소로 Ti 또는 Nb를 첨가하여 열연판에서 석출시키는 것이 성형성 확보를 위하여 바람직하다. 상기 C의 함량이 0.0005% 미만이면 탄소함량을 낮추기 위한 탈가스 비용이 너무 증가하고, 0.01%를 초과하면 C를 석출시키기 위한 Ti 또는 Nb 첨가량이 증가하여 비용이 증가하고, 탄화물이 증가하면 성형성이 저하되는 문제점이 있으므로, 그 함량은 0.0005~0.01%로 제한하는 것이 바람직하다.The C is preferably an element for inhibiting the development of the (111) aggregate structure of the annealing plate to reduce the formability and to precipitate it in the hot rolled plate by adding Ti or Nb. If the content of C is less than 0.0005%, the degassing cost for lowering carbon content is too high, and if it exceeds 0.01%, the amount of Ti or Nb for depositing C is increased to increase the cost, and if carbide is increased, moldability is increased. Since there is a problem that is lowered, the content is preferably limited to 0.0005 ~ 0.01%.

Si: 0.05~0.30%Si: 0.05 ~ 0.30%

상기 Si은 고용강화 원소로서 강도를 높이는데 유효한 성분이다. 상기 Si의 함량이 0.05% 미만이면 첨가에 따른 상기 효과가 너무 미미하고, 0.30중량%를 초과하여 첨가되면 강 표면에 농화되는 Mn, B와 복합 산화피막을 형성시켜 미도금을 발생시키기 때문에, 그 함량은 0.05~0.30%로 제한하는 것이 바람직하다.Si is a component effective for increasing the strength as a solid solution strengthening element. If the content of Si is less than 0.05%, the effect of the addition is too small, and if it is added in excess of 0.30% by weight, a complex oxide film is formed with Mn and B, which are concentrated on the surface of the steel, so that unplating occurs. The content is preferably limited to 0.05 to 0.30%.

Mn: 0.3~2.0%Mn: 0.3 ~ 2.0%

상기 Mn은 고용강화 원소로 강도를 향상시키는데 유효한 성분이다. 상기 Mn의 함량이 0.3% 미만이면 첨가에 따른 상기 효과가 너무 미미하고, 2.0%를 초과하여 첨가되면 성형성과 도금밀착성이 저하되는 문제점이 있으므로, 그 함량은 0.3~2.0%로 제한하는 것이 바람직하다.The Mn is a solid solution hardening element and is an effective component for improving the strength. When the content of Mn is less than 0.3%, the effect of addition is too small, and when added in excess of 2.0%, there is a problem in that moldability and plating adhesion are lowered, so the content is preferably limited to 0.3 to 2.0%. .

P: 0.02~0.1%P: 0.02 ~ 0.1%

상기 P는 고용강화 효과가 가장 우수한 성분이다. 상기 P의 함량이 0.02% 미만이면 상기 고용강화 효과가 너무 작고, 0.1%를 초과하면 과다한 FeTiP를 형성하여 소둔 재결정 온도를 상승시킴으로써 성형성을 열화시킬 뿐만 아니라 입계편석량이 증가하여 내2차가공취성 및 점용접성을 열화시키므로, 그 함량은 0.02~0.1%로 제한하는 것이 바람직하다.P is a component having the highest solid solution strengthening effect. If the content of P is less than 0.02%, the solid solution strengthening effect is too small. If the content of P exceeds 0.1%, excessive FeTiP is formed to increase the annealing recrystallization temperature, thereby degrading the formability and increasing the grain boundary segregation to increase the secondary processing. Since the brittleness and the spot weldability deteriorate, the content thereof is preferably limited to 0.02 to 0.1%.

S: 0.02% 이하S: 0.02% or less

상기 S의 함량이 0.02%를 초과하면 유해한 개재물인 MnS를 형성하고 열간가공성을 저하시키므로, 그 함량은 0.02% 이하로 제한하는 것이 바람직하다.When the content of S exceeds 0.02%, it forms a harmful inclusion MnS and lowers the hot workability, so the content is preferably limited to 0.02% or less.

N: 0.003% 이하N: 0.003% or less

상기 N은 강중 Ti 또는 Nb와 결합하여 석출물을 형성하는 성분이다. 상기 N의 함량이 0.003%를 초과하면 드로잉성을 저하시키므로, 그 함량을 0.003% 이하로 제한하는 것이 바람직하다.N is a component that forms a precipitate by combining with Ti or Nb in the steel. When the content of N exceeds 0.003%, the drawing property is lowered, so it is preferable to limit the content to 0.003% or less.

Sol.Al: 0.01~0.2%Sol.Al: 0.01 ~ 0.2%

상기 Sol.Al은 용강의 탈산작용을 하여 강중의 산소를 낮추고, 고온역에서 입계에 편석하여 열연판 결정립과 탄화물을 미세하게 하는데 유효한 성분이다. 상기 Sol.Al의 함량이 0.01% 미만이면 탈산이 부족하고, 0.2%를 초과하면 합금비용이 과도하게 증가할 뿐만 아니라 성형성도 열화되므로, 그 함량은 0.2% 이하로 제한하는 것이 바람직하다.Sol.Al is an effective component to deoxidize molten steel to lower oxygen in the steel and to segregate at grain boundaries in high temperature regions to refine hot-rolled sheet grains and carbides. If the content of Sol.Al is less than 0.01%, deoxidation is insufficient. If the content of Sol.Al exceeds 0.2%, not only the alloy cost is excessively increased but also the moldability is degraded, the content is preferably limited to 0.2% or less.

B: 0.0003~0.003%B: 0.0003-0.003%

상기 B는 입계강도를 증가시켜 내2차가공취성을 향상시키고, 용융아연도금 강판의 경우 용융아연이 강판의 입계로 확산하여 Zn-Fe 금속간 화합물을 형성함으로써 결정립계를 취약하게 하는 현상을 억제하는데 유효한 성분이다. 또한, Si, Mn 등과 함께 강판의 표면에 복합 산화피막을 형성함과 동시에 산화피막의 융점을 낮추고 표면장력을 증가시키기 때문에 Si, Mn 등을 첨가한 강판에서 용융 아연도금 이전에 산화피막이 존재하지 않는 표면을 제공하여 용융아연과 강판의 밀착성을 향상시키는 효과가 있다. 상기 B의 함량이 0.0003% 미만이면 첨가에 따른 상기 효과를 얻을 수 없고, 0.003%를 초과하면 재결정온도를 과도하게 상승시켜 성형성을 저하시키므로, 그 함량은 0.0003~0.003%로 제한하는 것이 바람직하다.The B is to increase the grain strength to improve the secondary work embrittlement resistance, and in the case of hot-dip galvanized steel sheet to suppress the phenomenon that the molten zinc diffuses to the grain boundary of the steel sheet to form a Zn-Fe intermetallic compound to weaken the grain boundary It is a valid ingredient. In addition, since the oxide film is formed on the surface of the steel sheet together with Si and Mn, the melting point of the oxide film is lowered and the surface tension is increased, so that the oxide film does not exist before the hot dip galvanizing in the steel sheet containing Si and Mn. Providing a surface has the effect of improving the adhesion between the molten zinc and the steel sheet. If the content of B is less than 0.0003%, the effect of the addition may not be obtained. If the content of B is more than 0.003%, the recrystallization temperature is excessively increased to lower moldability, and therefore the content is preferably limited to 0.0003 to 0.003%. .

Ti: 0.005~0.05%와 Nb: 0.005~0.05% 가운데 1종 이상At least one of Ti: 0.005 to 0.05% and Nb: 0.005 to 0.05%

상기 Ti는 강중의 질소, 황, 탄소를 석출물로 고정시켜 성형성을 향상시키는데 유효한 성분이다. 상기 Ti의 함량이 0.005% 미만이면 상기 원소들과 결합하는데 불충분하고, 0.05%를 초과하면 도금층의 합금화를 촉진시켜 강판과 인접한 합금도금층의 Fe함량을 증가시킴으로써 내2차가공취성을 저해하므로, 그 함량은 0.005~0.05%로 제한하는 것이 바람직하다.Ti is an effective component for fixing formability by fixing nitrogen, sulfur and carbon in steel as precipitates. If the content of Ti is less than 0.005%, it is insufficient to bond with the elements. If the content of Ti is more than 0.05%, it promotes alloying of the plating layer and increases the Fe content of the alloy plating layer adjacent to the steel sheet, thereby inhibiting secondary workability. The content is preferably limited to 0.005 to 0.05%.

상기 Nb는 강중 탄소를 고정하여 성형성을 개선하고 r값과 연신율의 이방성을 감소시키는데 유효한 성분이다. 상기 Nb의 함량이 0.005% 미만이면 첨가에 따른 상기 효과가 적으며, 0.05%를 초과하면 연신율이 저하되므로, 그 함량은 0.005~0.05%로 제한하는 것이 바람직하다.The Nb is an effective component to fix the carbon in the steel to improve the formability and to reduce the anisotropy of the r value and elongation. If the content of Nb is less than 0.005%, the effect of the addition is less, and if it exceeds 0.05%, the elongation is lowered, the content is preferably limited to 0.005 ~ 0.05%.

상기한 성분 이외의 나머지는 Fe 및 기타 불가피한 불순물로 조성된다.The remainder other than the above components is composed of Fe and other unavoidable impurities.

본 발명에서는 B의 첨가 효과를 극대화하기 위해서, 0.005 ≤ B/Si ≤ 0.02 을 만족하는 것이 요구된다. 즉, 상기한 B의 효과는 B/Si 비의 영향을 받으며, B/Si 비가 0.005 미만이면 국부적인 보론 농화층이 강판 표면에 형성되어 국부적인 미도금을 발생시키며, 0.02를 초과하면 보론의 표면 농화량이 증가하여 복합산화피막의 유동성을 증가시켜 조대한 산화피막을 형성함으로써 미도금이 증가되므로, 상기 B/Si 비는 0.005~0.02로 제한하는 것이 바람직하다.In the present invention, in order to maximize the effect of the addition of B, it is required to satisfy 0.005 ≦ B / Si ≦ 0.02. In other words, the effect of B is affected by the B / Si ratio, and if the B / Si ratio is less than 0.005, a local boron thickening layer is formed on the surface of the steel sheet to generate a local unplated, if exceeding 0.02 the surface of the boron Since the amount of thickening is increased to increase the fluidity of the composite oxide film to form a coarse oxide film, unplating is increased, so the B / Si ratio is preferably limited to 0.005 to 0.02.

상기와 같이 조성되는 강을 열간압연 및 냉간압연한 다음, 760~830℃에서 10~120초 동안 소둔한다. 즉, 냉간압연된 강판은 성형성 확보를 위하여 용융아연도금 전에 정해진 온도에서 일정한 시간동안 소둔을 행하게 되는데, 상기 소둔온도가 760℃ 미만이거나 소둔시간이 10초 미만이면 소둔에 의하여 강판의 연화가 충분하게 일어나지 않아 성형성이 열화된다. 또한, 소둔온도가 830℃를 초과하거나 소둔시간이 120초를 초과하면 Si, Mn, B의 농화양이 너무 증가하여 산화피막의 도포면 적이 증가하고, 그 결과 도금 밀착성이 저하하여 미도금이 발생하게 된다.The steel formed as described above is hot rolled and cold rolled, and then annealed at 760-830 ° C. for 10-120 seconds. That is, the cold rolled steel sheet is subjected to annealing for a predetermined time at a predetermined temperature before hot dip galvanizing to ensure formability. If the annealing temperature is less than 760 ℃ or annealing time is less than 10 seconds, the softening of the steel sheet is sufficient by annealing. It does not occur so that moldability deteriorates. In addition, when the annealing temperature exceeds 830 ° C. or when the annealing time exceeds 120 seconds, the amount of thickening of Si, Mn, and B is excessively increased, and the coating area of the oxide film is increased. do.

이후, 소둔이 끝난 강판을 용융아연욕에 침적한 다음 다시 가열하여 아연도금층을 합금화시키면 여러가지의 Zn-Fe 화합물이 형성된다. 통상의 합금화 용융아연도금 강판의 합금도금층의 경우 강판과 계면에서부터 Γ상(FeZn10), ζ상(FeZn13), δ상(FeZn7) 등의 화합물을 형성하는데, 각 상들은 각각 24~31%, 6.7~7.2%, 8.5~13%의 Fe함량을 갖는다. 본 발명에서는 합금화 용융아연도금 강판의 내2차가공취성은 Fe함량이 많은 Γ상이 강판 표층에 형성되면 저하되며, 따라서 합금화 반응속도를 제어하여 강판과 계면의 합금도금층의 화합물 상이 Fe함량이 13%이하인 ζ상, δ상이 되도록 함으로써, 내2차가공취성을 개선하게 된다.Subsequently, the annealed steel sheet is immersed in a molten zinc bath and then heated again to alloy the zinc plated layer to form various Zn-Fe compounds. In the case of an alloy plating layer of a conventional alloyed hot-dip galvanized steel sheet, compounds such as Γ phase (FeZn 10 ), ζ phase (FeZn 13 ), δ phase (FeZn 7 ), etc. are formed from the interface with the steel sheet. %, 6.7 ~ 7.2%, 8.5 ~ 13% Fe content. In the present invention, the secondary work embrittlement resistance of the alloyed hot-dip galvanized steel sheet is lowered when a Γ phase having a large amount of Fe is formed on the surface of the steel sheet. By setting it as the following ζ phase and δ phase, the secondary workability is improved.

이를 위하여 본 발명에서는 합금화 처리시 합금화 온도를 480~540℃로 제어한다. 상기 합금화 온도가 480℃ 미만이면 Zn-Fe합금상이 형성되지 않고, 540℃를 초과하면 과합금화에 의하여 Γ상이 발달함으로써 내2차가공취성을 저하시키므로, 상기 합금화처리 온도는 480~540℃로 제한하는 것이 바람직하다.To this end, in the present invention, the alloying temperature is controlled to 480 ~ 540 ℃ during the alloying treatment. If the alloying temperature is less than 480 ℃ Zn-Fe alloy phase is not formed, if it exceeds 540 ℃ to develop the Γ phase by over-alloying to lower the secondary workability, the alloying temperature is limited to 480 ~ 540 ℃ It is desirable to.

상기와 같은 합금화처리 온도에서 합금화처리를 행하면 강판과 인접한 합금도금층의 Fe함량이 13% 이하로 제어되어 -50℃ 이하의 내2차가공취성을 얻을 수 있다.When the alloying treatment is performed at the alloying treatment temperature as described above, the Fe content of the alloy plating layer adjacent to the steel sheet is controlled to 13% or less, thereby obtaining secondary work brittleness of -50 ° C or less.

본 발명에 따라 제조된 고강도 합금화 용융아연도금 강판은 우수한 성형성 및 내2차가공취성을 가질 뿐만 아니라 인장강도도 340~440MPa을 가지게 된다.The high strength alloyed hot dip galvanized steel sheet prepared according to the present invention has not only excellent moldability and secondary workability, but also tensile strength of 340 to 440 MPa.

이하, 실시예를 통하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

하기 표 1과 같은 성분을 갖는 강을 열간 마무리압연 온도는 920℃로 하여 3.2mm로 열간압연하였고, 권취온도 560℃로 권취하였으며, 산세후 0.8mm로 냉간압연하였다.The steel having the components shown in Table 1 was hot rolled to 3.2 mm with a hot finish rolling temperature of 920 ° C., wound up to a winding temperature of 560 ° C., and cold rolled to 0.8 mm after pickling.

이어 하기 표 2와 같은 조건에서 소둔 및 합금화 용융아연도금을 실시하였다. 이렇게 제조된 시편들의 기계적 성질, 합금화 용융아연도금 강판의 표면검사 및 파우더링 특성을 조사하였으며, 그 결과는 하기 표 2와 같다.Then, annealing and alloying hot dip galvanizing was performed under the conditions shown in Table 2 below. The mechanical properties of the specimens thus prepared, the surface inspection and powdering properties of the alloyed hot-dip galvanized steel sheet were investigated, and the results are shown in Table 2 below.

상기 파우더링 특성은 60도 V-굽힘후 다시 펴서 테이프 박리폭(W:mm)으로 평가하였다.The powdering properties were evaluated by tape peeling width (W: mm) after 60 degree V-bending again.

구분division 성분함량(중량%)Ingredient Content (wt%) B/SiB / Si CC SiSi MnMn PP SS NN AlAl BB TiTi NbNb 발명강AInventive Steel A 0.00240.0024 0.060.06 0.550.55 0.0250.025 0.0100.010 0.00160.0016 0.110.11 0.00050.0005 0.0310.031 -- 0.0080.008 발명강BInventive Steel B 0.00210.0021 0.060.06 0.520.52 0.0260.026 0.0100.010 0.00240.0024 0.130.13 0.00060.0006 -- 0.0450.045 0.0100.010 발명강CInvention Steel C 0.00180.0018 0.060.06 0.590.59 0.0300.030 0.0100.010 0.00230.0023 0.110.11 0.00060.0006 0.0280.028 0.0090.009 0.0100.010 발명강DInventive Steel D 0.00320.0032 0.140.14 0.910.91 0.0510.051 0.0110.011 0.00250.0025 0.060.06 0.00110.0011 0.0210.021 0.0150.015 0.0080.008 발명강EInventive Steel E 0.00410.0041 0.160.16 1.211.21 0.0860.086 0.0110.011 0.00230.0023 0.060.06 0.00150.0015 0.0200.020 0.0470.047 0.0090.009 비교강AComparative Steel A 0.01200.0120 0.140.14 0.900.90 0.0710.071 0.0120.012 0.00200.0020 0.150.15 0.00100.0010 0.0320.032 0.0110.011 0.0070.007 비교강BComparative Steel B 0.00350.0035 0.500.50 0.910.91 0.0520.052 0.0110.011 0.00250.0025 0.060.06 0.00110.0011 0.0210.021 0.0150.015 0.0020.002 비교강CComparative Steel C 0.00330.0033 0.210.21 2.252.25 0.0420.042 0.0100.010 0.00200.0020 0.050.05 0.00080.0008 0.0250.025 0.0300.030 0.0040.004 비교강DComparative Steel D 0.00350.0035 0.130.13 0.930.93 0.1230.123 0.0110.011 0.00220.0022 0.130.13 0.00120.0012 0.0290.029 0.0110.011 0.0090.009 비교강EComparative Steel E 0.00300.0030 0.130.13 0.900.90 0.0760.076 0.0120.012 0.00220.0022 0.130.13 0.00020.0002 0.0320.032 0.0130.013 0.00150.0015 비교강FComparative Steel F 0.00310.0031 0.120.12 0.920.92 0.0770.077 0.0120.012 0.00220.0022 0.130.13 0.00380.0038 0.0320.032 0.0130.013 0.0320.032 비교강GComparative Steel G 0.00350.0035 0.130.13 0.960.96 0.0690.069 0.0110.011 0.00250.0025 0.100.10 0.00120.0012 0.0650.065 0.0120.012 0.0090.009 비교강HComparative Steel H 0.00370.0037 0.140.14 0.950.95 0.0700.070 0.0130.013 0.00150.0015 0.120.12 0.00110.0011 0.0300.030 0.0650.065 0.0080.008

구분division 강종Steel grade 소둔 온도 (℃)Annealing Temperature (℃) 소둔 시간 (초)Annealing time (seconds) 합금화 온도 (℃)Alloying temperature (℃) 인장강도 (kg/㎟)Tensile Strength (kg / ㎠) 연신율 (%)Elongation (%) 드로잉성 r값Drawability r value 파우더링 (W)Powder Ring (W) 도금성Plating 발명재1Invention 1 발명강AInventive Steel A 790790 9090 500500 35.235.2 41.641.6 2.022.02 22 양호Good 발명재2Invention 2 발명강BInventive Steel B 790790 9090 500500 36.636.6 41.041.0 1.931.93 22 양호Good 발명재3Invention 3 발명강CInvention Steel C 790790 9090 500500 36.536.5 41.341.3 2.092.09 22 양호Good 발명재4Invention 4 발명강DInventive Steel D 790790 9090 520520 41.641.6 38.838.8 1.761.76 33 양호Good 발명재5Invention 5 발명강EInventive Steel E 790790 9090 520520 45.945.9 36.536.5 1.621.62 44 양호Good 비교재1Comparative Material 1 비교강AComparative Steel A 790790 9090 520520 44.344.3 33.633.6 1.201.20 44 양호Good 비교재2Comparative Material 2 비교강BComparative Steel B 790790 9090 520520 41.541.5 36.336.3 1.651.65 77 불량Bad 비교재3Comparative Material 3 비교강CComparative Steel C 790790 9090 520520 46.546.5 31.831.8 1.391.39 99 불량Bad 비교재4Comparative Material 4 비교강DComparative Steel D 790790 9090 520520 46.846.8 32.032.0 1.461.46 66 불량Bad 비교재5Comparative Material 5 비교강EComparative Steel E 790790 9090 520520 40.840.8 39.239.2 1.781.78 77 불량Bad 비교재6Comparative Material 6 비교강FComparative Steel F 790790 9090 520520 42.042.0 34.334.3 1.371.37 88 불량Bad 비교재7Comparative Material7 비교강GComparative Steel G 790790 9090 520520 40.940.9 37.437.4 1.741.74 77 불량Bad 비교재8Comparative Material 8 비교강HComparative Steel H 790790 9090 520520 43.543.5 34.734.7 1.451.45 44 양호Good 비교재9Comparative Material 9 발명강DInventive Steel D 740740 9090 520520 43.843.8 28.628.6 1.221.22 33 양호Good 비교재10Comparative Material 10 발명강DInventive Steel D 850850 9090 520520 39.439.4 37.737.7 1.671.67 66 불량Bad

상기 표 2에 나타난 바와 같이, 본 발명의 범위를 만족하는 발명재 1~5는 성형성을 나타내는 드로잉성이 1.6 이상이고, 합금화 도금층의 파우더링성이 4mm 이하로 양호한 특성을 나타내었다.As shown in Table 2, Inventive Materials 1 to 5 satisfying the scope of the present invention had a drawability of 1.6 or more showing moldability, and exhibited good characteristics of 4 mm or less in powdering property of the alloy plating layer.

반면에 본 발명의 범위를 만족하지 않는 비교재 1~10은 드로잉성 또는 파우더링성이 불량하였다.On the other hand, Comparative Materials 1 to 10, which do not satisfy the scope of the present invention, were poor in drawing or powdering properties.

도 1은 발명재 5를 이용하여 드로잉비(Drawing ratio) 2.0으로 원통형 컵을 성형하고 컵 온도를 저온조에서 변화시키면서 추를 떨어뜨려 충격을 가할 때 컵의 벽을 따라 발생하는 파괴양상을 관찰하여 강판과 인접한 합금도금층의 Fe함량에 따른 합금화 용융아연도금 강판의 내2차가공취성을 나타내는 지수인 DBTT(연성-취성 천이온도)의 관계를 나타낸 것이다. 하기 표 3은 강판과 인접한 합금층의 Fe함량에 따른 DBTT를 나타낸 것이다.FIG. 1 is a drawing of a cylindrical cup with a drawing ratio of 2.0 using Inventive Material 5 and observing the fracture pattern generated along the wall of the cup when the weight is dropped while the cup temperature is changed in a low temperature bath. The relationship between the DBTT (ductility-brittle transition temperature), which is an index indicating secondary work brittleness of the alloyed hot dip galvanized steel sheet according to the Fe content of the alloy plating layer adjacent to the steel sheet, is shown. Table 3 shows the DBTT according to the Fe content of the alloy layer and the adjacent steel sheet.

합금층의 Fe 함량 (중량%)Fe content of the alloy layer (wt%) DBTT (℃)DBTT (℃) 6.96.9 -65-65 7.37.3 -60-60 7.57.5 -60-60 7.57.5 -60-60 88 -55-55 8.88.8 -55-55 9.69.6 -55-55 1010 -50-50 1111 -50-50 1414 -40-40 1616 -40-40 1717 -35-35 2525 -25-25 2727 -20-20 2929 -20-20

상술한 바와 같이, 본 발명에 따르면 B/Si 비를 적절하게 제어한 Ti 또는 Nb를 1종 이상 함유한 극저탄소강을 이용하여 강판과 합금 도금층 계면의 Fe함량을 13% 이하로 억제함으로써, 성형성이 우수하고 내2차가공취성이 -50℃ 이하의 고강도 합금화 용융아연도금 강판을 제공할 수 있는 효과가 있다.As described above, according to the present invention, by using the ultra-low carbon steel containing one or more kinds of Ti or Nb which properly controlled the B / Si ratio, the Fe content of the interface between the steel sheet and the alloy plating layer is reduced to 13% or less, thereby forming There is an effect that can provide a high-strength alloyed hot-dip galvanized steel sheet having excellent properties and secondary processing brittleness of less than -50 ℃.

Claims (2)

중량%로, C: 0.0005~0.01%, Si: 0.05~0.30%, Mn: 0.3~2.0%, P: 0.02~0.1%, S: 0.02% 이하, N: 0.003% 이하, Sol.Al: 0.01~0.2%, B: 0.0003~0.003%와, 여기에 Ti: 0.005~0.05%와 Nb: 0.005~0.05% 가운데 1종 이상, 나머지 Fe 및 기타 불가피한 불순물로 조성되며, 상기 B와 Si가 0.005 ≤ B/Si ≤ 0.02 을 만족하는 강을 열간 및 냉간압연하고, 760~830℃의 온도에서 10~120초 동안 소둔한 다음 480~540℃에서 합금화 용융아연도금하는 것을 포함하여 이루어지는 성형성 및 내2차 가공취성이 우수한 고강도 합금화 용융아연도금 강판의 제조방법.By weight%, C: 0.0005 to 0.01%, Si: 0.05 to 0.30%, Mn: 0.3 to 2.0%, P: 0.02 to 0.1%, S: 0.02% or less, N: 0.003% or less, Sol.Al: 0.01 to 0.2%, B: 0.0003% to 0.003%, Ti: 0.005% to 0.05%, and Nb: 0.005% to 0.05%, and are composed of at least one of Fe and other unavoidable impurities, and B and Si are 0.005 ≦ B / Formability and secondary processing, including hot and cold rolling of a steel satisfying Si ≤ 0.02, annealing for 10 to 120 seconds at a temperature of 760 to 830 ° C, and then hot-dip galvanizing at 480 to 540 ° C Method for producing high strength alloyed hot dip galvanized steel sheet having excellent brittleness. 제 1항에 있어서, 상기 합금화 용융아연도금 후 강판과 인접한 합금 도금층의 Fe함량이 13% 이하임을 특징으로 하는 성형성 및 내2차 가공취성이 우수한 고강도 합금화 용융아연도금 강판의 제조방법.The method of claim 1, wherein the Fe content of the alloy plating layer adjacent to the steel sheet after the alloying hot dip galvanizing is 13% or less.
KR1020030095162A 2003-12-23 2003-12-23 Method for manufacturing high strength galvannealed steel sheets excellent in drawability and resistance of secondary work embrittlement KR100568367B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030095162A KR100568367B1 (en) 2003-12-23 2003-12-23 Method for manufacturing high strength galvannealed steel sheets excellent in drawability and resistance of secondary work embrittlement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030095162A KR100568367B1 (en) 2003-12-23 2003-12-23 Method for manufacturing high strength galvannealed steel sheets excellent in drawability and resistance of secondary work embrittlement

Publications (2)

Publication Number Publication Date
KR20050063917A KR20050063917A (en) 2005-06-29
KR100568367B1 true KR100568367B1 (en) 2006-04-05

Family

ID=37255580

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030095162A KR100568367B1 (en) 2003-12-23 2003-12-23 Method for manufacturing high strength galvannealed steel sheets excellent in drawability and resistance of secondary work embrittlement

Country Status (1)

Country Link
KR (1) KR100568367B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100685034B1 (en) * 2005-08-17 2007-02-20 주식회사 포스코 Method for manufacturing high strength galvannealed steel sheet
KR101318060B1 (en) 2013-05-09 2013-10-15 현대제철 주식회사 Hot stamping product with advanced toughness and method of manufacturing the same
KR102451002B1 (en) 2020-12-15 2022-10-11 주식회사 포스코 Plated steel sheet having excellent strength, formability and surface property and method for manufacturing the same

Also Published As

Publication number Publication date
KR20050063917A (en) 2005-06-29

Similar Documents

Publication Publication Date Title
JP6763023B2 (en) High-strength hot-dip galvanized steel sheet with excellent surface quality and spot weldability and its manufacturing method
KR101273308B1 (en) Process for manufacturing a galvannealed steel sheet by dff regulation
US20090202382A1 (en) High manganese steel strips with excellent coatability and superior surface property, coated steel strips using steel strips and method for manufacturing the steel strips
KR100786052B1 (en) High tensile strength hot dip plated steel sheet and method for production thereof
KR102266855B1 (en) High strength cold rolled steel sheet, plated steel sheet having ecellent weldability and method of manufacturing the same
KR20090089791A (en) High strength steel sheet having superior ductility and method for manufacturing the same
KR20100032435A (en) Galvanized or galvannealed silicon steel
KR20100030627A (en) Process for manufacturing a galvanized or a galvannealed steel sheet by dff regulation
KR20070067593A (en) High mn steel sheet for high corrosion resistance and method of manufacturing galvanizing the steel sheet
KR20140007476A (en) Process for producing high-strength hot-dip galvanized steel sheet with excellent material-quality stability, processability, and deposit appearance
US8388771B2 (en) High strength steel sheet having excellent formability
KR101647224B1 (en) High strength galvanized steel sheet having excellent surface qualities, plating adhesion and formability and method for manufacturing the same
KR20120099517A (en) High-strength hot-dip galvanized steel sheet with excellent processability and spot weldability and process for producing same
JPH0913147A (en) High strength galvannealed steel plate excellent in formability and plating adhesion and its production
CN113122772A (en) Thin steel sheet and plated steel sheet, and method for producing thin steel sheet and plated steel sheet
US20230158774A1 (en) Hot-dip coated steel sheet
KR101647223B1 (en) Method for manufacturing high strength galvanized steel sheet having excellent surface property and coating adhesion
JP5251207B2 (en) High strength steel plate with excellent deep drawability and method for producing the same
WO2014178358A1 (en) Galvanized steel sheet and production method therefor
KR101647225B1 (en) High-strength galvannealed sheet steels having excellent surface qualities and powdering resistance and method for manufacturing the same
JP4613618B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and its manufacturing method
KR100568367B1 (en) Method for manufacturing high strength galvannealed steel sheets excellent in drawability and resistance of secondary work embrittlement
JP3873638B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
CN112368145A (en) Low-ratio-repeat steel sheet excellent in strength and plating properties, and method for producing same
KR20200013289A (en) Low density steel clad sheet having excellent strength, formability and galvanizability, and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment
FPAY Annual fee payment
FPAY Annual fee payment

Payment date: 20160325

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170314

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180327

Year of fee payment: 13