KR100559364B1 - An electrode and lithium battery comprising a porous three-dimensional current collector and fabrication method thereof - Google Patents

An electrode and lithium battery comprising a porous three-dimensional current collector and fabrication method thereof Download PDF

Info

Publication number
KR100559364B1
KR100559364B1 KR1020030029455A KR20030029455A KR100559364B1 KR 100559364 B1 KR100559364 B1 KR 100559364B1 KR 1020030029455 A KR1020030029455 A KR 1020030029455A KR 20030029455 A KR20030029455 A KR 20030029455A KR 100559364 B1 KR100559364 B1 KR 100559364B1
Authority
KR
South Korea
Prior art keywords
positive electrode
active material
lithium
lithium battery
electrode active
Prior art date
Application number
KR1020030029455A
Other languages
Korean (ko)
Other versions
KR20040096381A (en
Inventor
조병원
조원일
이중기
김형선
김현중
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020030029455A priority Critical patent/KR100559364B1/en
Publication of KR20040096381A publication Critical patent/KR20040096381A/en
Application granted granted Critical
Publication of KR100559364B1 publication Critical patent/KR100559364B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/76Containers for holding the active material, e.g. tubes, capsules
    • H01M4/762Porous or perforated metallic containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/808Foamed, spongy materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 다공성 3차원 집전체의 기공 내에 전극 활물질이 균일하게 분포되어 있는 전극과 이를 이용한 리튬전지, 및 그 제조방법에 관한 것이다. 본 발명에 따른 전극은 전도도가 우수하고, 전극 표면의 전위 분포도가 일정하게 유지되며, 전극 활물질의 이탈이 방지되므로 전극 활물질의 이용률, 사이클 수명 및 고율 충방전 특성이 우수하다.

Figure 112003016560588-pat00001

다공성 3차원 집전체, 리튬전지, 나노 소재, 양극, 음극

The present invention relates to an electrode in which an electrode active material is uniformly distributed in pores of a porous three-dimensional current collector, a lithium battery using the same, and a method of manufacturing the same. Electrode according to the present invention is excellent in conductivity, the potential distribution on the surface of the electrode is maintained constant, and the separation of the electrode active material is prevented, the utilization rate, cycle life and high rate charge and discharge characteristics of the electrode active material is excellent.

Figure 112003016560588-pat00001

Porous 3D current collector, lithium battery, nano material, anode, cathode

Description

다공성의 3차원 집전체로 구성된 전극과 이를 이용한 리튬전지, 및 그 제조방법{AN ELECTRODE AND LITHIUM BATTERY COMPRISING A POROUS THREE-DIMENSIONAL CURRENT COLLECTOR AND FABRICATION METHOD THEREOF}Electrode composed of porous three-dimensional current collector and lithium battery using same, and manufacturing method therefor {AN ELECTRODE AND LITHIUM BATTERY COMPRISING A POROUS THREE-DIMENSIONAL CURRENT COLLECTOR AND FABRICATION METHOD THEREOF}

도 1a 및 1b는 본 발명의 다공성 3차원 집전체로 구성된 전극의 단면도로서, 구리, 니켈, 스텐레스 스틸, 알루미늄 또는 은 등의 다공성 3차원 집전체의 기공 내에 전극 활물질이 균일하게 분포되어 있는 구조를 나타낸다.1A and 1B are cross-sectional views of an electrode composed of a porous three-dimensional current collector of the present invention, in which the electrode active material is uniformly distributed in pores of a porous three-dimensional current collector such as copper, nickel, stainless steel, aluminum, or silver. Indicates.

도 2는 본 발명의 실시예 1, 2, 3, 4 및 5의 리튬이차전지와, 비교예 1의 리튬이차전지의 전극 용량 및 수명시험 결과를 나타낸 그래프이다.Figure 2 is a graph showing the electrode capacity and the life test results of the lithium secondary battery of Examples 1, 2, 3, 4 and 5 of the present invention, and the lithium secondary battery of Comparative Example 1.

도 3은 본 발명의 실시예 1의 리튬이차전지와 비교예 1의 리튬이차전지의 고율 방전 특성을 나타낸 그래프이다.3 is a graph showing high rate discharge characteristics of the lithium secondary battery of Example 1 and the lithium secondary battery of Comparative Example 1 of the present invention.

도 4는 본 발명의 실시예 6의 리튬일차전지와 비교예 2의 리튬일차전지의 방전 특성을 나타낸 그래프이다.4 is a graph showing discharge characteristics of the lithium primary battery of Example 6 and the lithium primary battery of Comparative Example 2 of the present invention.

본 발명은 다공성의 3차원 집전체를 이용한 전극과 이를 이용한 리튬 전지, 및 그 제조방법에 관한 것이다. 보다 구체적으로는, 구리, 니켈, 스텐레스 스틸, 알루미늄 또는 은 등과 같은 다공성 3차원 집전체의 기공 내에 전극 활물질이 균일하게 분포되어 있는 전극과 이를 이용한 리튬전지, 및 그 제조방법에 관한 것이다.The present invention relates to an electrode using a porous three-dimensional current collector, a lithium battery using the same, and a method of manufacturing the same. More specifically, the present invention relates to an electrode in which an electrode active material is uniformly distributed in pores of a porous three-dimensional current collector such as copper, nickel, stainless steel, aluminum, or silver, a lithium battery using the same, and a method of manufacturing the same.

종래의 리튬전지는 리튬일차전지와 리튬이차전지로 대별할 수 있다. 리튬일차전지는 음극으로 리튬을 사용하고, 양극의 종류에 따라 Li-MnO2, Li-(CF)n, Li-SOCl2 등의 전지로 나누어지며, 이들은 현재 상용화되어 있다 (J. O. Besenhard, Handbook of Battery Materials, WILEY-VCH, Weinheim (1999)). 리튬일차전지는 리튬 전극의 국부적인 용해 반응에 의한 전위분포의 불균일화가 일어나 전극 이용률이 저하되는 단점이 있다. 또한 양극은 2차원 구조인 확장된 박판(expanded foil), 구멍 뚫린 박판(punched foil) 또는 기공 없는 박판을 집전체로 사용하므로, 고율 방전특성 및 이용률이 저하되는 단점이 있다. Conventional lithium batteries can be roughly classified into lithium primary batteries and lithium secondary batteries. Lithium primary battery uses lithium as a negative electrode, and is divided into Li-MnO 2 , Li- (CF) n , Li-SOCl 2, etc. according to the type of positive electrode, and these are currently commercialized (JO Besenhard, Handbook of Battery Materials, WILEY-VCH, Weinheim (1999). Lithium primary batteries have a disadvantage in that the dislocation unevenness occurs due to the local dissolution reaction of the lithium electrode, thereby lowering the electrode utilization rate. In addition, since the anode uses an expanded foil, a punched foil, or a non-porous foil as a current collector, a two-dimensional structure, high rate discharge characteristics and utilization rates are deteriorated.

리튬이차전지의 경우는 현재 음극으로 탄소계 물질을 사용하고, 양극으로 LiCoO2 또는 LiMn2O4를 사용하는 전지가 상용화되어 있다. 그러나 전지의 성능을 높이기 위하여, 전극 활물질의 이용률과 사이클 수명을 증대시키고, 고율 충방전 특성을 향상시키기 위한 새로운 전극 활물질의 제조, 전극 활물질의 표면개질, 분리막과 고분자 전해질의 성능 향상, 유기용매 전해질의 성능향상 등에 대하여 많은 연구가 이루어지고 있다. In the case of a lithium secondary battery, a battery using a carbon-based material as a negative electrode and using LiCoO 2 or LiMn 2 O 4 as a positive electrode has been commercialized. However, in order to increase the performance of the battery, the production of a new electrode active material, the surface modification of the electrode active material, the performance improvement of the membrane and polymer electrolyte, the organic solvent electrolyte to increase the utilization and cycle life of the electrode active material, and to improve the high rate charge and discharge characteristics Much research has been done on the improvement of the performance.

현재 상용화된 리튬이온전지의 경우 음극에는 구리박판 집전체가 양극에는 알루미늄 박판 집전체가 사용되고 있으며, 리튬이온폴리머전지의 경우 음극에는 확장된 구리 박판(expanded copper foil) 또는 구멍 뚫린 구리 박판(punched copper foil) 형태의 집전체가, 양극에는 확장된 알루미늄 박판(expanded aluminum foil) 또는 구멍 뚫린 알루미늄 박판(punched aluminum foil) 형태의 집전체가 사용되고 있다. 이러한 집전체들은 2차원적 집전체로서, 전극 활물질과 집전체와의 결합력을 높이기 위하여 전극 제조 시에 결합제를 많이 사용하여야 한다거나, 집전체 표면을 개질 처리하여야 한다는 점과, 전극 활물질을 두껍게 할 수 없는 것과 같은 단점이 있다. 이로 인하여 전극 활물질의 이용률과 사이클 수명의 한계를 드러내고 있고, 고율 충방전 특성이 다소 저조하여 이의 개선이 필요하다 (D. Linden, Handbook of Batteries, McGRAW-HILL INC., New York(2002)). In the case of commercially available lithium ion batteries, a thin copper current collector is used for the negative electrode, and an aluminum thin current collector is used for the positive electrode. In the case of a lithium ion polymer battery, an expanded copper foil or a punched copper foil is used for the negative electrode. In the current collector in the form of foil, a current collector in the form of expanded aluminum foil or punched aluminum foil is used for the positive electrode. These current collectors are two-dimensional current collectors, and in order to increase the binding force between the electrode active material and the current collector, a large amount of binder must be used in the manufacture of the electrode, or the surface of the current collector must be modified, and the electrode active material can be thickened. It has the same disadvantage as none. As a result, the utilization rate and cycle life of the electrode active material are exposed, and high rate charge / discharge characteristics are somewhat low, and thus improvement is necessary (D. Linden, Handbook of Batteries, McGRAW-HILL INC., New York (2002)).

본 발명은 전도도가 우수하고, 전극 표면의 전위 분포도가 일정하게 유지되며, 전극 활물질의 이탈이 방지되어 전극 활물질의 이용률, 사이클 수명 및 고율 충방전 특성이 우수한 전극과 이를 이용한 리튬전지, 및 그 제조방법을 제공하는 것이다. The present invention is excellent in conductivity, the potential distribution of the electrode surface is kept constant, the separation of the electrode active material is prevented, the electrode excellent in the utilization rate, cycle life and high rate charge and discharge characteristics of the electrode active material, and a lithium battery using the same, and its manufacture To provide a way.

상술한 것과 같은 본 발명의 목적은 전극 활물질이 다공성 3차원 집전체의 기공 내에 균일하게 분포되어 있는 전극과 이를 이용한 리튬전지 및 그 제조방법을 제공하는 것에 의하여 달성된다. The object of the present invention as described above is achieved by providing an electrode in which the electrode active material is uniformly distributed in the pores of the porous three-dimensional current collector, a lithium battery using the same, and a method of manufacturing the same.

본 발명의 전극은 구리, 니켈, 스텐레스 스틸, 알루미늄 또는 은 등의 다공성 3차원 집전체의 기공 내에 전극 활물질이 균일하게 분포되어 있는 것이다. 상기 다공성 3차원 집전체는 Ni, Cu, SUS, Ti, V, Cr, Mn, Fe, Co, Zn, Mo, W, Ag, Au, Ru, Pt, Ir, Al, Sn, Bi 및 Sb로 구성된 군에서 선택되며, 그 형태는 발포 금속(foamed metal), 금속 파이버(metal fiber), 다공성 금속(porous metal), 에칭된 금속(etched metal) 또는 앞뒤로 요철화된 금속 등의 형태일 수 있다. 다공성 3차원 집전체의 기공 크기는 1 ㎛ - 10 ㎜인 것이 적절하다.In the electrode of the present invention, an electrode active material is uniformly distributed in pores of a porous three-dimensional current collector such as copper, nickel, stainless steel, aluminum, or silver. The porous three-dimensional current collector is composed of Ni, Cu, SUS, Ti, V, Cr, Mn, Fe, Co, Zn, Mo, W, Ag, Au, Ru, Pt, Ir, Al, Sn, Bi and Sb It is selected from the group, and the form may be in the form of foamed metal, metal fiber, porous metal, etched metal or uneven back and forth metal. The pore size of the porous three-dimensional current collector is suitably 1 μm-10 mm.

본 발명의 전극에 사용되는 양극 활물질과 음극 활물질로는 종래에 알려진 어떠한 활물질도 사용할 수 있다. 예를 들면, 양극 활물질로는 리튬일차전지의 경우에는 MnO2 또는 (CF)n이, 리튬이차전지의 경우에는 LiCoO2, LiNiO2 , LiNiCoO2, LiMn2O4, LiMnO2, S, LiFePO4, V2O5 또는 V6O13 등이 사용될 수 있으며, 음극 활물질로는 탄소, 주석 산화물, Si, Al, Sn, Bi, Sb, 이들의 혼합물 또는 화합물, 이들 음극 활물질을 리튬화(lithiation)한 것이 사용될 수 있다. Any active material known in the art may be used as the positive electrode active material and the negative electrode active material used for the electrode of the present invention. For example, as a cathode active material, MnO 2 or (CF) n is used for a lithium primary battery, and LiCoO 2 , LiNiO 2 , LiNiCoO 2 , LiMn 2 O 4 , LiMnO 2 , S, and LiFePO 4 for a lithium secondary battery. , V 2 O 5 or V 6 O 13 may be used, and the negative electrode active material is carbon, tin oxide, Si, Al, Sn, Bi, Sb, mixtures or compounds thereof, lithiation of these negative electrode active materials One can be used.

본 발명에 있어서, 다공성 3차원의 집전체 내에 충진되는 전극 활물질, 결합제 및 도전재의 혼합물의 양은 전극의 총 중량에 대하여 70 - 95 중량%인 것이 바람직하다. 한편, 전극 활물질, 결합제 및 도전재의 혼합물 중의 각 성분의 함량은 활물질이 70 - 99 중량%, 결합제가 0.5 - 10 중량%, 도전재가 0.5 - 20 중량%인 것이 적절하다. In the present invention, the amount of the mixture of the electrode active material, the binder and the conductive material to be filled in the porous three-dimensional current collector is preferably 70 to 95% by weight relative to the total weight of the electrode. On the other hand, the content of each component in the mixture of the electrode active material, the binder and the conductive material is suitably 70 to 99% by weight of the active material, 0.5 to 10% by weight of the binder, 0.5 to 20% by weight of the conductive material.

한편, 나노크기 소재의 전극 활물질인 경우에 본 발명의 효과가 증대될 수 있다. 나노크기 소재 활물질인 경우, 단위 무게당 활물질의 표면적이 크고 이에 따라 도전재와 결합제의 양이 많아지므로, 일반적으로는 전극 내에 함유되는 전극 활물질의 양이 상대적으로 작아지고 저항이 커져서 전극용량이 저하되고 고율 충방전 특성이 저하될 가능성이 있다. 그러나 본 발명에서와 같이, 다공성의 3차원 집전체를 사용하는 경우에는 적은 양의 결합제를 사용하여 전극을 제조할 수 있고 전기 전도가 3차원적으로 일어나 도전재도 적게 사용할 수 있으므로, 나노크기 소재 활물질을 사용하는 경우에도 전극용량 및 고율 충방전 특성을 향상시킬 수 있다. 따라서 향후 나노 소재 활물질이 개발되어 상용화되는 경우, 이들 활물질이 충진된 본 발명의 다공성 3차원 집전체로 이루어진 전극의 역할이 매우 중요하고 그 효과도 매우 클 것이다. 본 발명에 사용되기에 적합한 활물질 입자는 10 nm - 100 ㎛의 크기를 갖는 것이 적합하다. On the other hand, in the case of an electrode active material of nano-size material, the effect of the present invention can be increased. In the case of a nano-size active material, since the surface area of the active material per unit weight is large, and thus the amount of the conductive material and the binder is increased, the amount of the electrode active material contained in the electrode is relatively small and the resistance is large, thereby decreasing the electrode capacity. And high rate charge / discharge characteristics may fall. However, as in the present invention, when using a porous three-dimensional current collector, since the electrode can be manufactured using a small amount of binder and the electrical conduction occurs in three dimensions, the conductive material can be used less, nano-size material active material In the case of using, the electrode capacitance and the high rate charge / discharge characteristics can be improved. Therefore, when nanomaterial active materials are developed and commercialized in the future, the role of the electrode consisting of the porous three-dimensional current collector of the present invention filled with these active materials is very important and the effect will be very large. Suitable active material particles suitable for use in the present invention preferably have a size of 10 nm-100 μm .

도 1a와 1b는 각각 본 발명에 따른 전극의 평단면도와 종단면도를 나타낸 것으로서, 도 1a는 전극 활물질 입자 (1)가 다공성 3차원 집전체 (2, 실선 부분)의 기공 내에 균일하게 분포되어 있는 것을, 도 1b는 전극 활물질 입자 (3)가 앞뒤로 요철화된 형태의 다공성 3차원 집전체 (4)의 기공 내에 균일하게 분포되어 있는 것을 보여준다. 1A and 1B show a planar cross-sectional view and a longitudinal cross-sectional view of an electrode according to the present invention, respectively. FIG. 1A shows that the electrode active material particles 1 are uniformly distributed in the pores of the porous three-dimensional current collector 2 (solid line portion). 1B shows that the electrode active material particles 3 are uniformly distributed in the pores of the porous three-dimensional current collector 4 in the form of unevenness back and forth.

이하에서는 본 발명에 따른 전극을 제조하는 방법을 설명한다. 우선, 전극 활물질 입자를 도전재, 결합제 및 용매와 함께 페이스트화하고, 이를 다공성 3차원 집전체의 기공 내에 페이스트 도포 방식으로 균일하게 충진시킨다. 그 다음, 이를 건조시키고, 고온 롤 프레스 또는 평판 프레스를 사용하여 80℃ - 150℃의 온도에서 10kg/㎠ - 100t/㎠의 압력으로 압착하여 전극을 얻는다. 상기 용매로는 1-메틸-2-피롤리딘온과 아세톤의 혼합물을 사용할 수 있지만, 반드시 이에 한정되는 것은 아니다. Hereinafter, a method of manufacturing an electrode according to the present invention will be described. First, the electrode active material particles are pasted together with a conductive material, a binder, and a solvent, and uniformly filled in the pores of the porous three-dimensional current collector by a paste coating method. Then, it was dried and pressed using a hot roll press or a flat plate press at a pressure of 10 kg / cm 2 -100 t / cm 2 at a temperature of 80 ° C. to 150 ° C. to obtain an electrode. The solvent may be a mixture of 1-methyl-2-pyrrolidinone and acetone, but is not necessarily limited thereto.

본 발명은 음극 활물질 또는 양극 활물질을 다공성 3차원 집전체의 기공 내에 용이하게 충진할 수 있고, 결합제 사용량을 줄일 수 있고, 전극 내의 전극 활물질 함량을 증가시킬 수 있으며, 경우에 따라서는 도전재의 사용량까지도 줄일 수 있다는 장점이 있다.According to the present invention, the anode active material or the cathode active material can be easily filled in the pores of the porous three-dimensional current collector, the amount of the binder used can be reduced, the content of the electrode active material in the electrode can be increased, and even the amount of the conductive material may be used. The advantage is that it can be reduced.

본 발명의 전극은 전기 전도성이 향상되어 전극에서의 전류 및 전위 분포도가 일정하게 되어 국부적인 과충전 반응이 억제되고, 전극 활물질의 이탈이 방지되므로, 전극의 이용률 및 사이클 수명이 증대되며, 특히, 대형 전지에서는 그 효과가 더 크게 된다. The electrode of the present invention has an improved electrical conductivity, thereby maintaining a constant current and potential distribution in the electrode, thereby suppressing local overcharge reactions and preventing separation of the electrode active material, thereby increasing the utilization rate and cycle life of the electrode. In batteries, the effect is greater.

본 발명에 의한 전극은 PP(polypropylene), PE(polyethylene) 등의 분리막을 사용하는 리튬전지, 고분자 전해질을 사용하는 리튬 고분자전지 및 고체전해질을 사용하는 전고체형 리튬전지에 음극 및/또는 양극으로 사용될 수 있다. Electrode according to the present invention can be used as a negative electrode and / or a positive electrode in a lithium battery using a separator such as PP (polypropylene), PE (polyethylene), lithium polymer battery using a polymer electrolyte and all-solid lithium battery using a solid electrolyte Can be.

실시예Example

이하에서는 본 발명을 실시예를 통하여 보다 상세히 설명한다. 그러나 실시예는 본 발명의 예시에 불과할 뿐, 본 발명의 범위가 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the embodiments are only examples of the present invention, and the scope of the present invention is not limited thereto.

실시예 1Example 1

흑연 6.0 g과 폴리비닐리덴플루오라이드(이하, "PVdF"라 한다) 0.2 g을 적당량의 1-메틸-2-피롤리딘온(이하, "NMP"라 한다) 및 아세톤과 혼합하고, 적당한 점도가 얻어졌을 때, 이 페이스트를 다공성 3차원 발포 니켈(foamed nickel) 집전체의 기공 내에 충진하여 건조시킨 후, 가열 압연하여 탄소음극을 얻었다. 6.0 g of graphite and 0.2 g of polyvinylidene fluoride (hereinafter referred to as "PVdF") are mixed with an appropriate amount of 1-methyl-2-pyrrolidinone (hereinafter referred to as "NMP") and acetone, When obtained, the paste was filled into the pores of the porous three-dimensional foamed nickel current collector and dried, followed by hot rolling to obtain a carbon cathode.

LiCoO2 5.7 g, 아세틸렌블랙(이하, "AB"라 한다) 0.6 g 및 PVdF 0.4 g을 적당량의 NMP 및 아세톤과 혼합하고, 적당한 점도가 얻어졌을 때, 이 페이스트를 다공성 3차원 발포 니켈 집전체의 기공 내에 충진하여 건조시키고, 가열 압연하여 LiCoO2 양극을 얻었다. 5.7 g of LiCoO 2 , 0.6 g of acetylene black (hereinafter referred to as "AB") and 0.4 g of PVdF are mixed with an appropriate amount of NMP and acetone, and when the appropriate viscosity is obtained, the paste is added to the porous three-dimensional foamed nickel current collector. Filled in the pores, dried, and rolled to obtain a LiCoO 2 positive electrode.

탄소음극, PP 분리막 및 LiCoO2 양극을 적층하여 리튬이차전지를 구성하고, 1M LiPF6가 용해된 EC/EMC 용액을 주입한 다음, 충방전율 C/2로 양극을 기준으로 한 전극용량 및 사이클 수명을 조사하였다.A lithium secondary battery was formed by stacking a carbon cathode, a PP separator, and a LiCoO 2 positive electrode, injecting an EC / EMC solution in which 1M LiPF 6 was dissolved, and then charging and discharging rate C / 2 based on the electrode capacity and cycle life. Was investigated.

실시예 2Example 2

흑연 6.0 g과 PVdF 0.2 g을 적당량의 NMP 및 아세톤과 혼합하고, 적당한 점도가 얻어졌을 때, 이 페이스트를 다공성 3차원 니켈 파이버(nickel fiber) 집전체의 기공 내에 충진하여 건조시킨 후, 가열 압연하여 탄소음극을 얻었다. 6.0 g of graphite and 0.2 g of PVdF are mixed with an appropriate amount of NMP and acetone. When a suitable viscosity is obtained, the paste is filled into the pores of a porous three-dimensional nickel fiber current collector, dried, and then heated and rolled. A carbon cathode was obtained.

LiCoO2 5.7 g, AB 0.6 g 및 PVdF 0.4 g을 적당량의 NMP 및 아세톤과 혼합하고, 적당한 점도가 얻어졌을 때, 이 페이스트를 다공성 3차원 니켈 파이버 집전체의 기공 내에 충진하여 건조시킨 후, 가열 압연하여 LiCoO2 양극을 얻었다. 5.7 g of LiCoO 2 , 0.6 g of AB and 0.4 g of PVdF are mixed with an appropriate amount of NMP and acetone, and when the appropriate viscosity is obtained, the paste is filled into the pores of the porous three-dimensional nickel fiber current collector and dried, followed by hot rolling To obtain a LiCoO 2 anode.

탄소음극, PP 분리막 및 LiCoO2 양극을 적층하여 리튬이차전지를 구성하고, 1M LiPF6가 용해된 EC/EMC 용액을 주입한 다음, 충방전율 C/2로 양극을 기준으로 한 전극용량 및 사이클 수명을 조사하였다.A lithium secondary battery was formed by stacking a carbon cathode, a PP separator, and a LiCoO 2 positive electrode, injecting an EC / EMC solution in which 1M LiPF 6 was dissolved, and then charging and discharging rate C / 2 based on the electrode capacity and cycle life. Was investigated.

실시예 3Example 3

흑연 6.0 g과 PVdF 0.2 g을 적당량의 NMP 및 아세톤과 혼합하고, 적당한 점도가 얻어졌을 때, 이 페이스트를 전기 도금법으로 제조한 다공성 3차원 다공성 구리(porous copper) 집전체의 기공 내에 캐스팅하여 건조시킨 후, 가열 압연하여 탄소음극을 얻었다. 6.0 g of graphite and 0.2 g of PVdF are mixed with an appropriate amount of NMP and acetone, and when the appropriate viscosity is obtained, the paste is cast into the pores of the porous three-dimensional porous copper current collector prepared by electroplating and dried. Then, it was heated and rolled to obtain a carbon cathode.

LiCoO2 5.7 g, AB 0.6 g 및 PVdF 0.4 g을 적당량의 NMP 및 아세톤과 혼합하고, 적당한 점도가 얻어졌을 때, 이 페이스트를 다공성 3차원 발포 니켈 집전체의 기공 내에 충진하여 건조시킨 후, 가열 압연하여 LiCoO2 양극을 얻었다. 5.7 g of LiCoO 2 , 0.6 g of AB and 0.4 g of PVdF are mixed with an appropriate amount of NMP and acetone, and when the appropriate viscosity is obtained, the paste is filled into the pores of the porous three-dimensional expanded nickel current collector and dried, followed by hot rolling To obtain a LiCoO 2 anode.

탄소음극, PP 분리막 및 LiCoO2 양극을 적층하여 리튬이차전지를 구성하고, 1M LiPF6가 용해된 EC/EMC 용액을 주입한 다음, 충방전율 C/2로 양극을 기준으로 한 전극용량 및 사이클 수명을 조사하였다.A lithium secondary battery was formed by stacking a carbon cathode, a PP separator, and a LiCoO 2 positive electrode, injecting an EC / EMC solution in which 1M LiPF 6 was dissolved, and then charging and discharging rate C / 2 based on the electrode capacity and cycle life. Was investigated.

실시예 4Example 4

흑연 6.0 g과 PVdF 0.2 g을 적당량의 NMP 및 아세톤과 혼합하고, 적당한 점도가 얻어졌을 때, 이 페이스트를 다공성 3차원 에칭된 구리(etched copper) 집전체의 기공 내에 캐스팅하여 건조시킨 후, 가열 압연하여 탄소음극을 얻었다. 6.0 g of graphite and 0.2 g of PVdF are mixed with an appropriate amount of NMP and acetone, and when the appropriate viscosity is obtained, the paste is cast into the pores of the porous three-dimensional etched copper current collector and dried, followed by hot rolling To obtain a carbon cathode.

LiCoO2 5.7 g, AB 0.6 g 및 PVdF 0.4 g을 적당량의 NMP 및 아세톤과 혼합하고, 적당한 점도가 얻어졌을 때, 이 페이스트를 다공성 3차원 에칭된 알루미늄(etched aluminum) 집전체의 기공 내에 캐스팅하여 건조시킨 후, 가열 압연하여 LiCoO2 양극을 얻었다. 5.7 g of LiCoO 2 , 0.6 g of AB and 0.4 g of PVdF are mixed with an appropriate amount of NMP and acetone, and when the appropriate viscosity is obtained, the paste is cast into pores of the porous three-dimensional etched aluminum current collector to dry After heating, it was heated and rolled to obtain a LiCoO 2 anode.

탄소음극, PP 분리막 및 LiCoO2 양극을 적층하여 리튬이차전지를 구성하고, 1M LiPF6가 용해된 EC/EMC 용액을 주입한 다음, 충방전율 C/2로 양극을 기준으로 한 전극용량 및 사이클 수명을 조사하였다.A lithium secondary battery was formed by stacking a carbon cathode, a PP separator, and a LiCoO 2 positive electrode, injecting an EC / EMC solution in which 1M LiPF 6 was dissolved, and then charging and discharging rate C / 2 based on the electrode capacity and cycle life. Was investigated.

실시예 5Example 5

흑연 6.0 g과 PVdF 0.2 g을 적당량의 NMP 및 아세톤과 혼합하고, 적당한 점도가 얻어졌을 때, 이 페이스트를 앞뒤로 요철화된 구리 집전체의 기공 내에 캐스팅하여 건조시킨 후, 가열 압연하여 탄소음극을 얻었다. 6.0 g of graphite and 0.2 g of PVdF were mixed with an appropriate amount of NMP and acetone, and when the appropriate viscosity was obtained, the paste was cast back and forth in the pores of the uneven copper current collector, dried and heated and rolled to obtain a carbon cathode. .

LiCoO2 5.7 g, AB 0.6 g 및 PVdF 0.4 g을 적당량의 NMP 및 아세톤과 혼합하고, 적당한 점도가 얻어졌을 때, 이 페이스트를 앞뒤로 요철화된 알루미늄 집전체의 기공 내에 캐스팅하여 건조시킨 후, 가열 압연하여 LiCoO2 양극을 얻었다. 5.7 g of LiCoO 2 , 0.6 g of AB and 0.4 g of PVdF are mixed with an appropriate amount of NMP and acetone, and when the appropriate viscosity is obtained, the paste is cast back and forth in the pores of the uneven aluminum current collector and dried, followed by hot rolling To obtain a LiCoO 2 anode.

탄소음극, PP 분리막 및 LiCoO2 양극을 적층하여 리튬이차전지를 구성하고, 1M LiPF6가 용해된 EC/EMC 용액을 주입한 다음, 충방전율 C/2로 양극을 기준으로 한 전극용량 및 사이클 수명을 조사하였다.A lithium secondary battery was formed by stacking a carbon cathode, a PP separator, and a LiCoO 2 positive electrode, injecting an EC / EMC solution in which 1M LiPF 6 was dissolved, and then charging and discharging rate C / 2 based on the electrode capacity and cycle life. Was investigated.

실시예 6Example 6

MnO2 5.7 g, AB 0.6 g 및 PVdF 0.4 g을 적당량의 NMP 및 아세톤과 혼합하고, 적당한 점도가 얻어졌을 때, 이 페이스트를 다공성 3차원 발포 니켈 집전체의 기공 내에 충진하여 건조시킨 후, 가열 압연하여 MnO2 양극을 얻었다. 5.7 g of MnO 2 , 0.6 g of AB and 0.4 g of PVdF are mixed with an appropriate amount of NMP and acetone, and when the appropriate viscosity is obtained, the paste is filled into the pores of the porous three-dimensional expanded nickel current collector and dried, followed by hot rolling The MnO 2 anode was obtained.

리튬음극, PP 분리막 및 MnO2 양극을 적층하여 리튬일차전지를 구성하고, 1M LiPF6가 용해된 PC/EMC 용액을 주입한 후 방전율 C/10으로 방전특성을 조사하였다.Lithium anode, PP separator and MnO 2 positive electrode were laminated to constitute a lithium primary battery, and after discharging the PC / EMC solution in which 1M LiPF 6 was dissolved, the discharge characteristics were investigated at a discharge rate of C / 10.

비교예 1Comparative Example 1

흑연 6.0 g과 PVdF 0.2 g을 적당량의 NMP 및 아세톤과 혼합하고, 적당한 점도가 얻어졌을 때, 이 페이스트를 구리 박판(copper foil)에 캐스팅하여 건조시킨 후, 가열 압연하여 탄소음극을 얻었다.6.0 g of graphite and 0.2 g of PVdF were mixed with an appropriate amount of NMP and acetone. When a suitable viscosity was obtained, the paste was cast on a copper foil, dried, and then heated and rolled to obtain a carbon cathode.

LiCoO2 5.7 g, AB 0.6 g 및 PVdF 0.4 g을 적당량의 NMP 및 아세톤과 혼합하고, 적당한 점도가 얻어졌을 때, 이 페이스트를 알루미늄 박판(aluminum foil)에 캐스팅하여 건조시킨 후, 가열 압연하여 LiCoO2 양극을 얻었다. 5.7 g of LiCoO 2 , 0.6 g of AB and 0.4 g of PVdF are mixed with an appropriate amount of NMP and acetone, and when the appropriate viscosity is obtained, the paste is cast into an aluminum foil, dried, and then heated and rolled to LiCoO 2 A positive electrode was obtained.

탄소음극, PP 분리막 및 LiCoO2 양극을 적층하여 리튬이차전지를 구성하고, 1M LiPF6가 용해된 EC/EMC 용액을 주입한 다음, 충방전율 C/2로 양극을 기준으로 한 전극용량 및 사이클 수명을 조사하였다.A lithium secondary battery was formed by stacking a carbon cathode, a PP separator, and a LiCoO 2 positive electrode, injecting an EC / EMC solution in which 1M LiPF 6 was dissolved, and then charging and discharging rate C / 2 based on the electrode capacity and cycle life. Was investigated.

비교예 2Comparative Example 2

MnO2 5.7 g, AB 0.6 g 및 PVdF 0.4 g을 적당량의 NMP 및 아세톤과 혼합하고, 적당한 점도가 얻어졌을 때, 이 페이스트를 알루미늄 박판에 캐스팅하여 건조시킨 후, 가열 압연하여 MnO2 양극을 얻었다. 5.7 g of MnO 2 , 0.6 g of AB and 0.4 g of PVdF were mixed with an appropriate amount of NMP and acetone, and when a suitable viscosity was obtained, the paste was cast on a thin aluminum sheet, dried, and then heated and rolled to obtain a MnO 2 anode.

리튬음극, PP 분리막, MnO2 양극을 적층하여 리튬일차전지를 구성하고, 1M LiPF6가 용해된 PC/EMC 용액을 주입한 후 방전율 C/10로 방전특성을 조사하였다.A lithium primary battery was formed by stacking a lithium cathode, a PP separator, and an MnO 2 anode, and the discharge characteristics were investigated at a discharge rate of C / 10 after injecting a PC / EMC solution in which 1M LiPF 6 was dissolved.

실시예 1 내지 5와 비교예 1에서 제조된 리튬이차전지의 전극용량(LiCoO2 활물질 기준) 및 사이클 특성을 조사한 결과를 도 2에 나타내었다. 이로부터, 본 발명에 따른 전지의 전극용량 및 사이클 수명 특성이 비교예의 전지에 비하여 우수하다는 것을 알 수 있다. The electrode capacities (based on the LiCoO 2 active material) and cycle characteristics of the lithium secondary batteries prepared in Examples 1 to 5 and Comparative Example 1 are shown in FIG. 2. From this, it can be seen that the electrode capacity and cycle life characteristics of the battery according to the present invention are superior to the battery of the comparative example.

도 3은 실시예 1과 비교예 1에서 제조된 리튬이차전지의 고율방전특성(1C)을 나타낸 것으로서, 본 발명의 실시예 1의 리튬이차전지의 고율 방전특성이 비교예 1의 전지에 비하여 우수하다는 것을 알 수 있다. Figure 3 shows the high rate discharge characteristics (1C) of the lithium secondary battery prepared in Example 1 and Comparative Example 1, the high rate discharge characteristics of the lithium secondary battery of Example 1 of the present invention is superior to the battery of Comparative Example 1 You can see that.

도 4는 실시예 6과 비교예 2에서 제조된 리튬일차전지의 방전특성(0.1C)을 나타낸 것으로서, 본 발명의 실시예 1의 전지의 방전특성이 비교예 2의 전지에 비하여 우수하다는 것을 알 수 있다.Figure 4 shows the discharge characteristics (0.1C) of the lithium primary battery prepared in Example 6 and Comparative Example 2, it can be seen that the discharge characteristics of the battery of Example 1 of the present invention is superior to the battery of Comparative Example 2 Can be.

본 발명에 따라 전극 활물질이 다공성 3차원 집전체의 기공 내에 균일하게 분포되어 있는 전극과 이를 이용한 리튬전지 및 그 제조방법이 제공되었다. 본 발명에 따른 전극은 전극 이용률, 사이클 수명 및 고율 충방전 특성이 우수하므로, 각종 소형전자기기, 통신기기 및 전기자동차의 전원용 등 다양한 산업분야에 응용할 수 있고, 각종기기의 국산화, 수입대체 및 수출증대 효과를 기할 수 있다.According to the present invention, an electrode in which an electrode active material is uniformly distributed in pores of a porous three-dimensional current collector, a lithium battery using the same, and a method of manufacturing the same are provided. Electrode according to the present invention is excellent in electrode utilization, cycle life and high rate charge and discharge characteristics, can be applied to various industrial fields, such as for various small electronic devices, communication equipment and power supply of electric vehicles, localization, import replacement and export of various devices Increase effect can be achieved.

Claims (15)

양극 활물질, 결합제 및 도전재의 혼합물이 다공성 3차원 집전체의 기공 내에 균일하게 충진되어 있는 리튬전지용 양극.A positive electrode for a lithium battery, wherein a mixture of a positive electrode active material, a binder, and a conductive material is uniformly filled in pores of a porous three-dimensional current collector. 제 1 항에 있어서, 상기 양극 활물질, 결합제 및 도전재의 혼합물의 함량이 양극의 총 중량에 대하여 70 - 95 중량%인 리튬전지용 양극.The positive electrode for a lithium battery according to claim 1, wherein a content of the mixture of the positive electrode active material, the binder, and the conductive material is 70 to 95 wt% based on the total weight of the positive electrode. 제 1 항에 있어서, 상기 양극 활물질, 결합제 및 도전재의 혼합물 중의 활물질, 결합제 및 도전재의 함량이 각각 70 - 99 중량%, 0.5 - 10 중량% 및 0.5 - 20 중량%인 리튬전지용 양극.The positive electrode for a lithium battery according to claim 1, wherein the content of the active material, the binder, and the conductive material in the mixture of the positive electrode active material, the binder, and the conductive material is 70-99 wt%, 0.5-10 wt%, and 0.5-20 wt%, respectively. 제 1 항에 있어서, 상기 다공성 3차원 집전체의 형태가 발포 금속, 금속 파이버, 다공성 금속, 에칭된 금속 또는 앞뒤로 요철화된 금속인 리튬전지용 양극.The positive electrode for a lithium battery according to claim 1, wherein the porous three-dimensional current collector is in the form of a foamed metal, a metal fiber, a porous metal, an etched metal, or an uneven metal back and forth. 제 1 항에 있어서, 상기 다공성 3차원 집전체의 재질이 Ni, Cu, SUS, Ti, V, Cr, Mn, Fe, Co, Zn, Mo, W, Ag, Au, Ru, Pt, Ir, Al, Sn, Bi 및 Sb로 구성된 군에서 선택되는 것인 리튬전지용 양극.According to claim 1, wherein the material of the porous three-dimensional current collector is Ni, Cu, SUS, Ti, V, Cr, Mn, Fe, Co, Zn, Mo, W, Ag, Au, Ru, Pt, Ir, Al , Sn, Bi and Sb is selected from the group consisting of a positive electrode for a lithium battery. 제 1 항에 있어서, 상기 양극 활물질이 MnO2 및 (CF)n 으로 구성된 군에서 선택되는 리튬일차전지용 양극 활물질인 리튬전지용 양극. The positive electrode for a lithium battery according to claim 1, wherein the positive electrode active material is a positive electrode active material for a lithium primary battery selected from the group consisting of MnO 2 and (CF) n . 제 1 항에 있어서, 상기 양극 활물질이 LiCoO2, LiNiO2, LiNiCoO2, LiMn2O4, LiMnO2, S, LiFePO4, V2O5 및 V6O13로 구성된 군에서 선택되는 리튬이차전지용 양극 활물질인 리튬전지용 양극. The lithium secondary battery of claim 1, wherein the cathode active material is selected from the group consisting of LiCoO 2 , LiNiO 2 , LiNiCoO 2 , LiMn 2 O 4 , LiMnO 2 , S, LiFePO 4 , V 2 O 5, and V 6 O 13 . A lithium battery positive electrode which is a positive electrode active material. 삭제delete 양극 활물질, 도전재 및 결합제의 혼합물 또는 양극 활물질과 결합제의 혼합물을 용매를 사용하여 균일한 상태로 페이스트화하여 다공성 3차원 집전체의 기공 내에 충진한 다음, 건조 및 고온 압착하는 것으로 이루어지는 제1항 내지 제7항 중 어느 하나의 항에 의한 리튬전지용 양극 제조방법. The method of claim 1, wherein the mixture of the positive electrode active material, the conductive material and the binder, or the mixture of the positive electrode active material and the binder is pasted into a uniform state using a solvent, filled in the pores of the porous three-dimensional current collector, and then dried and hot pressed. A method for manufacturing a cathode for a lithium battery according to any one of claims 7 to 9. 제 9 항에 있어서, 상기 고온 압착을 80℃ - 150℃의 온도에서 롤 프레스나 평판 프레스를 사용하여 10 ㎏/㎠ - 100 t/㎠의 압력으로 실시하는 양극 제조방법. 10. The method of claim 9, wherein the hot pressing is performed at a pressure of 10 kg / cm 2 -100 t / cm 2 using a roll press or a flat press at a temperature of 80 ° C-150 ° C. 제 1 항 내지 제 7 항 중의 어느 한 항에 따른 양극을 포함하는 리튬전지. A lithium battery comprising the positive electrode according to any one of claims 1 to 7. 제 11 항에 있어서, PP 또는 PE 분리막을 사용하는 리튬전지, 고분자 전해질을 사용하는 리튬고분자전지 또는 고체 전해질을 사용하는 전고체형 리튬전지인 것을 특징으로 하는 리튬전지.The lithium battery according to claim 11, which is a lithium battery using a PP or PE separator, a lithium polymer battery using a polymer electrolyte, or an all-solid lithium battery using a solid electrolyte. 리튬음극, 분리막 및 제 6 항에 따른 양극을 적층하여 구성된 리튬일차전지.A lithium primary battery comprising a lithium cathode, a separator and a cathode according to claim 6 laminated. 탄소음극, 분리막 및 제 7 항에 따른 양극을 적층하여 구성된 리튬이차전지.A lithium secondary battery comprising a carbon cathode, a separator and a cathode according to claim 7 laminated. 탄소, 주석 산화물, Si, Al, Sn, Bi, Sb, 이들의 혼합물과 화합물 및 이들을 리튬화한 것로 구성된 군에서 선택되는 음극 활물질을 포함하는 음극, 분리막 및 LiCoO2, LiNiO2, LiNiCoO2, LiMn2O4, LiMnO2, S, LiFePO4, V2O5 및 V6O13 로 구성된 군에서 선택되는 양극 활물질을 포함하는 양극을 적층하여 구성된 리튬이차전지.Cathode, separator and LiCoO 2 , LiNiO 2 , LiNiCoO 2 , including a negative electrode active material selected from the group consisting of carbon, tin oxide, Si, Al, Sn, Bi, Sb, mixtures and compounds thereof and lithiated thereof LiMn 2 O 4 , LiMnO 2 , S, LiFePO 4 , V 2 O 5 And V 6 O 13 A lithium secondary battery comprising a laminated positive electrode comprising a positive electrode active material selected from the group consisting of.
KR1020030029455A 2003-05-09 2003-05-09 An electrode and lithium battery comprising a porous three-dimensional current collector and fabrication method thereof KR100559364B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030029455A KR100559364B1 (en) 2003-05-09 2003-05-09 An electrode and lithium battery comprising a porous three-dimensional current collector and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030029455A KR100559364B1 (en) 2003-05-09 2003-05-09 An electrode and lithium battery comprising a porous three-dimensional current collector and fabrication method thereof

Publications (2)

Publication Number Publication Date
KR20040096381A KR20040096381A (en) 2004-11-16
KR100559364B1 true KR100559364B1 (en) 2006-03-10

Family

ID=37375109

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030029455A KR100559364B1 (en) 2003-05-09 2003-05-09 An electrode and lithium battery comprising a porous three-dimensional current collector and fabrication method thereof

Country Status (1)

Country Link
KR (1) KR100559364B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101132957B1 (en) 2010-07-16 2012-04-13 넥스콘 테크놀러지 주식회사 electrode of battery
KR20150016897A (en) 2013-08-05 2015-02-13 주식회사 아모그린텍 Flexible current collector, manufacturing method thereof and secondary battery using the same
KR20150058957A (en) 2013-11-21 2015-05-29 주식회사 아모그린텍 Flexible electrode, manufacturing method thereof and secondary battery using the same
KR20150085278A (en) 2014-01-15 2015-07-23 한밭대학교 산학협력단 Electrode comprising metal fiber nonwoven current collector and secondary battery comprising the same
KR20170003212A (en) * 2015-06-30 2017-01-09 주식회사 엘지화학 Secondary battery, battery module having the secondary battery and method for manufacturing the secondary battery
WO2017052818A1 (en) * 2015-09-25 2017-03-30 Intel Corporation Rechargeable battery and method to suppress dendrite
KR20180035602A (en) * 2016-09-29 2018-04-06 주식회사 엘지화학 Electrode assembly for all-solid battery comprising porous current collector
US10115960B2 (en) 2014-01-15 2018-10-30 Jenax Inc. Electrode for secondary battery and manufacturing method thereof
US10305136B2 (en) 2015-06-18 2019-05-28 Samsung Sdi Co., Ltd. Electrode assembly and lithium battery including the same

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100624971B1 (en) * 2005-01-28 2006-09-19 삼성에스디아이 주식회사 Electrode Plate of Secondary Battery and Method of fabricating the same
CN101202347A (en) * 2007-11-22 2008-06-18 山东神工海特电子科技有限公司 1.5V lithium iron disulfide button cell with metal framework positive pole
US8277974B2 (en) 2008-04-25 2012-10-02 Envia Systems, Inc. High energy lithium ion batteries with particular negative electrode compositions
US9012073B2 (en) 2008-11-11 2015-04-21 Envia Systems, Inc. Composite compositions, negative electrodes with composite compositions and corresponding batteries
US8338026B2 (en) 2009-05-27 2012-12-25 Lg Chem, Ltd. Positive electrode active material, and positive electrode and lithium secondary battery including the same
KR101049826B1 (en) 2009-11-23 2011-07-15 삼성에스디아이 주식회사 A positive electrode for a lithium secondary battery, a manufacturing method thereof, and a lithium secondary battery including the same
KR101235596B1 (en) * 2010-10-14 2013-02-21 한국과학기술연구원 Lithium transition-metal phosphate nanoparticle, dispersion solution, thin film and lithium sencondary battery using them and fabrication method thereof
EP2740172B1 (en) * 2011-08-02 2018-11-07 Prieto Battery, Inc. Lithium-ion battery having interpenetrating electrodes
CN103907228B (en) * 2011-10-24 2016-07-06 住友电气工业株式会社 Electrode material and all include the battery of this material, nonaqueous electrolyte battery and capacitor
KR20130078646A (en) * 2011-12-30 2013-07-10 경상대학교산학협력단 Electrode using 3-dimensional porous current collector, battery using thereof and fabrication of the same
KR101417268B1 (en) 2012-05-02 2014-07-08 현대자동차주식회사 Lithium electrode for lithium battery and method for manufacturing the same
US10553871B2 (en) 2012-05-04 2020-02-04 Zenlabs Energy, Inc. Battery cell engineering and design to reach high energy
US9780358B2 (en) 2012-05-04 2017-10-03 Zenlabs Energy, Inc. Battery designs with high capacity anode materials and cathode materials
KR101405755B1 (en) * 2012-10-10 2014-06-10 현대자동차주식회사 Metal air battery
US10020491B2 (en) 2013-04-16 2018-07-10 Zenlabs Energy, Inc. Silicon-based active materials for lithium ion batteries and synthesis with solution processing
KR101353262B1 (en) * 2013-04-19 2014-01-23 주식회사 셀모티브 Metal foam for electrode of lithium secondary battery, preparing method thereof and lithium secondary battery including the metalfoam
US10886526B2 (en) 2013-06-13 2021-01-05 Zenlabs Energy, Inc. Silicon-silicon oxide-carbon composites for lithium battery electrodes and methods for forming the composites
WO2015020338A1 (en) * 2013-08-05 2015-02-12 주식회사 아모그린텍 Flexible current collector, method for manufacturing same, and secondary battery using same
WO2015024004A1 (en) 2013-08-16 2015-02-19 Envia Systems, Inc. Lithium ion batteries with high capacity anode active material and good cycling for consumer electronics
KR101621412B1 (en) * 2013-09-11 2016-05-16 주식회사 엘지화학 Lithium electrode and lithium secondary battery including the same
KR101621410B1 (en) * 2013-09-11 2016-05-16 주식회사 엘지화학 Lithium electrode and lithium secondary battery including the same
KR101416277B1 (en) * 2014-03-17 2014-07-09 경상대학교산학협력단 Electrode using 3-dimensional porous current collector, battery using thereof and fabrication of the same
KR20160032807A (en) * 2014-09-17 2016-03-25 (주)오렌지파워 Negative electrode and rechargeable batteries comprising the same
KR102303569B1 (en) 2014-09-23 2021-09-16 삼성에스디아이 주식회사 Positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same
KR102019474B1 (en) * 2015-05-07 2019-11-14 주식회사 엘지화학 An electrode assembly for a electrochemical device
KR20160139617A (en) * 2015-05-28 2016-12-07 주식회사 엘지화학 Metal form filter, lithium slurry redox flow battery comprising the same and method for manufacturing the same
WO2017015407A1 (en) 2015-07-20 2017-01-26 CellMotive Co. Ltd. Metallic foam anode coated with active oxide material
TWI627786B (en) * 2016-10-03 2018-06-21 財團法人工業技術研究院 Electrode and device employing the same
US11094925B2 (en) 2017-12-22 2021-08-17 Zenlabs Energy, Inc. Electrodes with silicon oxide active materials for lithium ion cells achieving high capacity, high energy density and long cycle life performance
WO2020018957A1 (en) * 2018-07-19 2020-01-23 Cellmobility, Inc. Rechargeable lithium-ion battery with metal-foam anode and cathode
CN114551787B (en) * 2022-02-18 2024-04-26 星恒电源股份有限公司 Lithium battery positive plate and preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101132957B1 (en) 2010-07-16 2012-04-13 넥스콘 테크놀러지 주식회사 electrode of battery
KR20150140619A (en) 2013-08-05 2015-12-16 주식회사 아모그린텍 Flexible current collector and secondary battery using the same
KR20150016897A (en) 2013-08-05 2015-02-13 주식회사 아모그린텍 Flexible current collector, manufacturing method thereof and secondary battery using the same
KR20150058957A (en) 2013-11-21 2015-05-29 주식회사 아모그린텍 Flexible electrode, manufacturing method thereof and secondary battery using the same
US10115960B2 (en) 2014-01-15 2018-10-30 Jenax Inc. Electrode for secondary battery and manufacturing method thereof
KR20150085278A (en) 2014-01-15 2015-07-23 한밭대학교 산학협력단 Electrode comprising metal fiber nonwoven current collector and secondary battery comprising the same
US10673058B2 (en) 2014-01-15 2020-06-02 Jenax Inc. Electrode for secondary battery and manufacturing method thereof
US10305136B2 (en) 2015-06-18 2019-05-28 Samsung Sdi Co., Ltd. Electrode assembly and lithium battery including the same
KR20170003212A (en) * 2015-06-30 2017-01-09 주식회사 엘지화학 Secondary battery, battery module having the secondary battery and method for manufacturing the secondary battery
KR102003370B1 (en) * 2015-06-30 2019-07-24 주식회사 엘지화학 Secondary battery, battery module having the secondary battery and method for manufacturing the secondary battery
WO2017052818A1 (en) * 2015-09-25 2017-03-30 Intel Corporation Rechargeable battery and method to suppress dendrite
US9735412B2 (en) 2015-09-25 2017-08-15 Intel Corporation Rechargeable battery and method to suppress dendrite
KR20180035602A (en) * 2016-09-29 2018-04-06 주식회사 엘지화학 Electrode assembly for all-solid battery comprising porous current collector

Also Published As

Publication number Publication date
KR20040096381A (en) 2004-11-16

Similar Documents

Publication Publication Date Title
KR100559364B1 (en) An electrode and lithium battery comprising a porous three-dimensional current collector and fabrication method thereof
KR101774683B1 (en) Electorde active material slurry, preparation method thereof, and all solid secondary battery comprising the same
CN102356485B (en) All-solid secondary battery with graded electrodes
US11271196B2 (en) Electrochemical cells having improved ionic conductivity
US20200303778A1 (en) Production method for all-solid-state battery
KR20170024862A (en) Organic-inorganic composite solid battery
KR102330108B1 (en) Method of Preparing Electrode for Secondary Battery
CN110838575A (en) Cathode for improving rate capability of lithium ion energy storage device and application thereof
CN114597486A (en) Solid state battery with uniformly distributed electrolyte and manufacturing method related thereto
CN113994512A (en) Lithium secondary battery and method for manufacturing the same
US11557750B2 (en) Electrode for solid-state battery and manufacturing method therefor
JP2000011991A (en) Organic electrolyte secondary battery
JP5395350B2 (en) Sheet-like negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
WO2015132845A1 (en) All-solid-state battery
CN112216876B (en) Lithium ion battery repeating unit, lithium ion battery, using method of lithium ion battery, battery module and automobile
CN109461881B (en) Negative pole piece and secondary battery
US10490872B2 (en) Magnesium-based methods, systems, and devices
JP2020080247A (en) Solid-state battery
US20190229336A1 (en) Battery electrode binder
KR20100075543A (en) Nonaqueous electrolytic secondary battery and the manufacturing method thereof
KR102280793B1 (en) Density controlled organic compounds-based lithium secondary batteries and methods of forming the same
KR20130101375A (en) Preparation method of electrode for litium rechargeable battery
WO2014128844A1 (en) Lithium ion secondary battery
CN112216877B (en) Lithium ion battery repeating unit, lithium ion battery, using method of lithium ion battery, battery module and automobile
JP2011171177A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120228

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130304

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee