KR100558895B1 - Adsorbents for organic sulfur compounds, Method for manufacturing them and Method for desulfurizing of town gas using them - Google Patents
Adsorbents for organic sulfur compounds, Method for manufacturing them and Method for desulfurizing of town gas using them Download PDFInfo
- Publication number
- KR100558895B1 KR100558895B1 KR1020040061831A KR20040061831A KR100558895B1 KR 100558895 B1 KR100558895 B1 KR 100558895B1 KR 1020040061831 A KR1020040061831 A KR 1020040061831A KR 20040061831 A KR20040061831 A KR 20040061831A KR 100558895 B1 KR100558895 B1 KR 100558895B1
- Authority
- KR
- South Korea
- Prior art keywords
- activated carbon
- adsorbent
- organic sulfur
- desulfurization
- acid treatment
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/48—Sulfur compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/102—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/25—Coated, impregnated or composite adsorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/30—Sulfur compounds
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
본 발명은 유기황화합물 제거용 흡착제 및 그 제조방법과 그것을 이용한 도시가스의 탈황방법에 관한 것으로, 도시가스를 개질하여 연료 전지용 연료로 활용할 수 있도록 함을 목적으로 한다.The present invention relates to an adsorbent for removing organic sulfur compounds, a method for manufacturing the same, and a method for desulfurizing a city gas using the same, and an object of the present invention is to reform a city gas and use it as a fuel for a fuel cell.
개시된 본 발명에 따른 유기황화합물 제거용 흡착제 제조방법은, 흡착제로서 활성탄(activated carbon)을 기본재료로 하며, 산성수용액으로 처리하고 증류수로 세척한 활성탄에 Fe, Co, Ni, Cu, Zn, Ag로부터 선택되는 1종류 또는 2종 이상의 전이금속을 담지하여 제조한다. 본 발명에 의해 제조된 흡착제에 연료가스를 통과시키면 연료가스 내의 유기 화합물을 0.1 ppm 이하 수준으로 제거할 수 있다.The method for preparing an adsorbent for removing organic sulfur compounds according to the present invention is based on activated carbon as an adsorbent, and treated with acidic aqueous solution and washed with distilled water from Fe, Co, Ni, Cu, Zn, Ag. It is prepared by supporting one or two or more selected transition metals. Passing the fuel gas through the adsorbent prepared by the present invention can remove the organic compound in the fuel gas to a level of 0.1 ppm or less.
도시가스, 산처리, 유기황화합물, 전이금속, 탈황, 활성탄, 흡착제City gas, acid treatment, organic sulfur compound, transition metal, desulfurization, activated carbon, adsorbent
Description
도 1은 본 발명에 따른 유기황화합물 제거용 흡착제 제조방법의 공정도.1 is a process chart of the manufacturing method of the adsorbent for removing organic sulfur compounds according to the present invention.
본 발명은 유기황화합물 제거용 흡착제 및 그 제조방법과 그것을 이용한 도시가스의 탈황방법에 관한 것으로, 도시가스와 같은 연료가스를 연료 전지용 연료로 활용하기 위하여 연료가스 내 포함된 유기 황화합물 부취제를 효과적으로 흡착 제거할 수 있도록 한 유기황화합물 제거용 흡착제 및 그 제조방법과 그것을 이용한 도시가스의 탈황방법에 관한 것이다.The present invention relates to an adsorbent for removing organic sulfur compounds, a method of manufacturing the same, and a desulfurization method of city gas using the same, and effectively adsorbs organic sulfur compound odorants contained in fuel gas to utilize fuel gas such as city gas as fuel for fuel cell. The present invention relates to an adsorbent for removing organic sulfur compounds, a method for preparing the same, and a method for desulfurizing city gas using the same.
연료가스로 사용되는 도시가스는 사용 중 누출 시 발생할 수 있는 위험을 예방하고자 t-부틸머맵탄(t-Butylmercaptan, TBM), 테트라하이드로티오펜(Tetrahydrothiophene, THT), 이소프로필 머캡탄(Isopropyl mercaptan, IPM) 등의 유기 황화합물이 부취제로서 미량 포함되어 있다. 현재, 국내에서 공급되는 도시 가스로서 액화천연가스(LNG)에는 TBM과 THT의 유기화합물 부취제가 약 3:7의 비율로 혼합되어 있으며, 부취제의 농도는 약 4ppm(15mg/m3)인 것으로 알려져 있다. 상기 유기 화합물의 부취제는 가스 누출에 따른 사고의 사전 예방차원에서 필요하나, 도시가스를 개질하여 수소나 합성가스를 만드는 목적으로 사용할 경우 개질촉매에 피독되어 촉매의 효율을 저하시키는 원인이 되기 때문에 도시가스를 개질하여 연료전지용 연료가스를 제조할 때 개질 공정 중에 탈황제를 이용한 탈황 공정이 필요하다.The city gas used as fuel gas is t-Butylmercaptan (TBM), Tetrahydrothiophene (THT), Isopropyl mercaptan (Isopropyl mercaptan) A trace amount of organic sulfur compounds, such as IPM), is contained as an odorant. Currently, liquefied natural gas (LNG), which is supplied from Korea, is mixed with organic compound odorants of TBM and THT at a ratio of about 3: 7, and the concentration of odorants is about 4 ppm (15 mg / m 3 ). Known. The odorant of the organic compound is necessary in order to prevent accidents caused by gas leakage, but when used for the purpose of reforming city gas to produce hydrogen or syngas, it is poisoned by the reforming catalyst and causes the efficiency of the catalyst to be lowered. When the fuel gas for the fuel cell is manufactured by reforming the city gas, a desulfurization process using a desulfurization agent is required during the reforming process.
상기 연료 전지(fuel cell)는 화학적 산화-환원 반응을 통해 전기를 제공하며, 청결함과 효율성 측면에서 다른 형태의 동력 발생보다 현저한 이점을 갖기 때문에 미국, 일본 및 유럽 등의 선진국에서 많은 연구가 진행되고 있다. 연료전지에는 인산형 연료전지, 고분자전해질 연료전지, 용융탄산염 연료전지, 고체산화물 연료전지 등 여러 가지가 있으나 대부분이 수소만을 연료로 사용할 수 있거나, 그렇지 않다고 하더라도 수소가 발전 효율상 가장 유리한 연료로 사용되고 있다. 보통 도시가스를 1차적인 연료가스로 사용하는 연료전지 시스템에 있어서 수소를 제조하기 위한 연료 개질 공정이 차지하는 비중은 전체의 약 1/3이라 할 수 있다. The fuel cell provides electricity through a chemical oxidation-reduction reaction, and much research has been conducted in developed countries such as the US, Japan, and Europe because it has a significant advantage over other forms of power generation in terms of cleanliness and efficiency. It is becoming. There are many kinds of fuel cells such as phosphoric acid fuel cell, polymer electrolyte fuel cell, molten carbonate fuel cell, solid oxide fuel cell, but most of them can use only hydrogen as fuel or even if not, hydrogen is used as the most advantageous fuel for power generation efficiency. have. In a fuel cell system using city gas as a primary fuel gas, the fuel reforming process for producing hydrogen is about one third of the total.
연료 개질 공정은 연료가스인 도시가스에서 수소를 제조하는 공정으로서 도시가스 중에 포함되어 있는 유기황화합물인 부취제를 제거하는 탈황 공정과 탄화수소를 수소(H2)와 일산화탄소(CO)로 전환시키는 개질 공정, CO를 CO2로 전환시키는 수성가스 전환(WGS) 공정, 경우에 따라서 잔여 CO를 ppm 단위로 낮추는 선택적 산화(PROX) 공정으로 구성된다. The fuel reforming process is a process for producing hydrogen from a city gas, which is a fuel gas, and a desulfurization process for removing an odorant, an organic sulfur compound contained in the city gas, and a reforming process for converting hydrocarbons into hydrogen (H 2 ) and carbon monoxide (CO). This process consists of a water gas shift (WGS) process that converts CO into CO 2, and optionally a selective oxidation (PROX) process that lowers the residual CO in ppm.
연료가스로서 도시가스 중에 미량 포함되어 있는 유기황화합물 부취제를 제거하지 않을 경우 연료 개질 공정의 피독현상에 의한 개질 촉매의 수명 단축과 개질 공정 이후에 있는 WGS 공정, PROX 공정, 그리고 연료전지의 전극 촉매 비활성화로 인한 촉매 수명단축으로 연료전지의 비용을 증가시키게 된다. 따라서, 도시가스를 이용한 수소와 합성가스를 제조하는 연료개질공정에서 탈황 공정은 꼭 필요하며, 탈황 후 연료가스 내 황의 농도를 0.1ppm 이하로 낮추는 것이 요구된다. If the organic sulfur compound odorants contained in trace amounts in the city gas are not removed, the life cycle of the reforming catalyst may be shortened by poisoning of the fuel reforming process, and the WGS process, the PROX process, and the electrode catalyst of the fuel cell after the reforming process. Shortening the catalyst life due to deactivation increases the cost of the fuel cell. Therefore, the desulfurization process is necessary in the fuel reforming process for producing hydrogen and syngas using city gas, and it is required to lower the concentration of sulfur in the fuel gas after desulfurization to 0.1 ppm or less.
도시가스와 같은 연료가스에 포함된 부취제인 유기 황화합물의 제거 방법으로서 수첨 탈황법이나, 흡착제에 의한 방법이 알려져 있다. 수첨 탈황법에서는 연료가스에 수소를 첨가하고, Co-Mo계 촉매 등의 촉매를 사용하여 유기 황화합물을 황화 수소로 분해하고, 분해 생성된 황화 수소를 산화 아연, 산화철 등의 탈황제에 흡착시켜 황의 농도를 0.1ppm까지 낮출 수 있지만, 0.1ppm 농도의 황화합물 역시 연료개질 공정에 악영향을 끼치기 때문에 황 농도를 0.1ppm 이하로 탈황하기 위해 심도탈황(deep sulfurization)이 필요하다. 또한, 연료전지용으로 사용될 경우 탈황 반응기를 350℃까지 온도를 올려야 하기 때문에 시동(start-up) 시간을 단축시킬 수 없고, 개질기를 통해 제조된 수소 일부를 환류시켜 탈황 반응기로 공급해야 하는 등 탈황 조작이 복잡하다.Hydrogen desulfurization and a method using an adsorbent are known as methods for removing organic sulfur compounds which are odorants contained in fuel gases such as city gas. Hydrogen desulfurization method adds hydrogen to the fuel gas, decomposes the organic sulfur compound into hydrogen sulfide using a catalyst such as a Co-Mo catalyst, and decomposes the produced hydrogen sulfide with a desulfurization agent such as zinc oxide or iron oxide to give a sulfur concentration. Although it can be lowered to 0.1ppm, sulfur compounds of 0.1ppm concentration also adversely affect the fuel reforming process, so deep sulfurization is required to desulfurize the sulfur concentration below 0.1ppm. In addition, when used for a fuel cell, the desulfurization reactor cannot raise the start-up time because the temperature of the desulfurization reactor must be raised to 350 ° C., and a part of hydrogen produced through the reformer must be refluxed and fed to the desulfurization reactor. This is complicated.
한편, 흡착제에 의한 방법은, 활성탄, 금속 산화물, 또는 제올라이트(zeolite) 등을 주성분으로 하는 흡착제에 연료 가스를 통과시키는 것에 의해 유기 황화합물을 흡착 제거하는 방법이다. 흡착제에 의한 방법에는, 가열하는 것으로 흡착 능력을 증가시키는 방법도 있지만, 상온으로 흡착시키는 방법이 보다 간단하고 바람직하다. 상온에서 흡착제를 이용한 탈황 방법은 수첨 탈황법이나, 가열 흡착법처럼 열이나 수소 등을 필요로 하지 않기 때문에 연료전지용으로 적합한 장점을 가지고 있다. 현재, 외국에서는 이 기술의 중요성으로 인식하여 미국, 일본, 유럽 등에서 폭넓게 연구되고 있으며, 그 결과를 지적재산권으로 보호하고 있다. 일본의 Osaka Gas Ltd.에서는 10년이 넘도록 이 분야를 연구하고 있으며, 그들은 공침법으로 제조한 Cu-Zn를 탈황 흡착제로 발명하였다(US 6,042,798). 일본의 Tokyo Gas에서는 연료 가스 내에 포함된 부취제의 흡착 탈황능력이 현격하게 개선된 활성탄소 섬유 흡착제와 일본 도시 가스 중의 부취제인 디메틸 황화물(dimethyl sulfide, DMS)의 흡착 능력이 좋은 Ag, Fe, Cu, Ni, Cu, Zn 등의 1종 또는 2종의 전이금속을 소수성 제올라이트에 이온교환 시킨 흡착제를 발명하였다(일본 공개 특허 공보 2001-19984, 2001-286753). Phillips Petroleum Company에서는 ZnO, SiO2, Al2O3, Ni 등으로 구성된 탈황 흡착제를 발명하여 가솔린 또는 디젤의 탈황에 적용하였다(US 6,254,766). On the other hand, a method using an adsorbent is a method of adsorbing and removing an organic sulfur compound by passing a fuel gas through an adsorbent containing activated carbon, a metal oxide, zeolite, or the like as a main component. Although the method with an adsorbent also raises an adsorption capacity by heating, the method of making it adsorb | suck at normal temperature is simpler and more preferable. The desulfurization method using an adsorbent at room temperature has the advantage of being suitable for fuel cells because it does not require heat or hydrogen, such as hydrodesulfurization or heat adsorption. At present, foreign countries recognize the importance of this technology and are widely studied in the United States, Japan, and Europe, and the result is protected by intellectual property rights. Osaka Gas Ltd. of Japan has been researching this field for more than 10 years, and they invented Cu-Zn manufactured by coprecipitation as a desulfurization adsorbent (US 6,042,798). In Tokyo Gas of Japan, Ag, Fe, Cu, which has good adsorption capacity of dimethyl sulfide (DMS), an activated carbon fiber adsorbent, which has greatly improved the adsorption and desulfurization ability of odorants contained in fuel gas, and odorants in Japanese city gas. An adsorbent obtained by ion-exchanging one or two transition metals, such as, Ni, Cu, and Zn, with a hydrophobic zeolite was disclosed (Japanese Patent Laid-Open No. 2001-19984, 2001-286753). Phillips Petroleum Company invented a desulfurization adsorbent consisting of ZnO, SiO 2 , Al 2 O 3 , Ni, etc. and applied it to the desulfurization of gasoline or diesel (US 6,254,766).
일본에서 개발된 탈황 흡착제들은 일본 도시가스 내 포함된 DMS 황화합물 부취제에 대한 흡착 탈황에 초점이 맞춰져 있어 국내 도시가스에서 사용하고 있는 TBM과 THT의 흡착 탈황에 효율적이지 못한 문제점이 있다. 또한 Fe, Cu, Zn 보다 상대적으로 고가인 Ag를 사용했을 때 가장 우수한 탈황 흡착성능을 보이지만 2wt%(gs/gads.)이하의 황 흡착능을 갖고 있으며, 제올라이트(zolite) 흡착제를 이용함으로서 탈황제의 가격이 고가인 문제점이 있다. Desulfurization adsorbents developed in Japan are focused on adsorptive desulfurization of DMS sulfur compound odorants contained in Japanese city gas, so there is a problem in that it is not efficient for adsorption desulfurization of TBM and THT used in domestic city gas. Also, when Ag, which is relatively expensive than Fe, Cu, and Zn, is used, it shows the best desulfurization adsorption performance, but it has a sulfur adsorption capacity of less than 2wt% (g s / g ads. ) And desulfurization agent by using a zeolite adsorbent. There is a problem that the price is high.
활성탄(activated carbon)은 원료물질에 따라 식물질, 석탄질, 석유질 등으로 구분되며, 미세세공이 잘 발달된 무정형 탄소의 집합체로서 활성화 과정을 통해 분자 크기 정도의 미세세공이 형성되어 큰 내부표면적을 갖기 때문에 흡착제로 사용되고 있다. 그러나 활성탄은 원료물질과 활성화 방법에 따라 가격, 물리적 특성에 많은 차이가 있다. 상업적으로 많이 사용되는 활성탄은 식물질 원료로 제조되는 것으로 특히 야자각으로 제조되는 활성탄이 많이 사용되고 있다. 식물질 원료물질에 포함되어 있는 다양한 금속 성분이 제조되는 활성탄에 포함되는데 특히 알칼리 금속 성분이 다량 포함되어 있어, 제올라이트에서의 알칼리 금속 특성과 유사하게 약한 루이스 염기성 물질인 유기황화합물의 흡착을 방해하는 작용을 한다. 또한 카본을 가스활성화법으로 제조된 활성탄을 물에 분산시키면 용액이 강 염기를 나타내기 때문에 활성탄에 금속염 수용액을 넣으면 금속-하이드록사이드[Fe-(OH)n, Cu-(OH)n]과 같은 침전물이 형성되어 활성탄에 금속 이온을 균일하게 분산 시키는데 어려움이 있다. 또한 금속-하이드록사이드 형태의 침전물은 활성탄에 존재하는 미세세공을 막아 활성탄의 비표면적을 크게 감소시켜 활성탄의 흡착능을 저하시키는 문제점이 있다. Activated carbon is classified into vegetable, coal and petroleum according to the raw materials, and is a collection of amorphous carbon with fine micropores. It is used as an adsorbent because it has a. However, activated carbon has many differences in price and physical properties depending on raw materials and activation methods. Commercially used activated carbon is manufactured from vegetable raw materials, and especially activated carbon produced by coconut shell is used. Activated charcoal contains various metal components contained in the plant raw material. Especially, it contains a large amount of alkali metal component, which prevents the adsorption of organic sulfur compounds, which are weak Lewis basic substances, similar to alkali metal characteristics in zeolite. Do it. In addition, since carbon disperses activated carbon prepared by gas activation in water, the solution shows a strong base. Therefore, when an aqueous solution of metal salt is added to activated carbon, metal-hydroxide [Fe- (OH) n, Cu- (OH) n] and The same precipitate is formed, which makes it difficult to uniformly disperse metal ions in activated carbon. In addition, the precipitate in the form of metal-hydroxide has a problem of reducing the specific surface area of the activated carbon by blocking the micropores present in the activated carbon, thereby lowering the adsorption capacity of the activated carbon.
이와 같은 문제점을 해결하기 위한 본 발명은, 흡착능력을 개선하여 TBM, THT와 같은 유기황화합물 부취제를 효과적으로 흡착제거할 수 있도록 한 유기황화합물 제거용 흡착제 및 이를 이용한 도시가스의 탈황방법을 제공하려는데 그 목적이 있다.
The present invention for solving the above problems, to improve the adsorption capacity of the organic sulfur compound sorbents such as TBM, THT to effectively remove the sorbent for organic sulfur compound removal and city gas desulfurization method using the same. There is a purpose.
상술한 바와 같은 목적을 달성하기 위한 본 발명에 따른 유기황화합물 제거용 흡착제 제조방법은, 흡착제로서 활성탄(activated carbon)을 기본재료로 하며, 산성수용액으로 처리하고 증류수로 세척한 활성탄에 Fe, Co, Ni, Cu, Zn, Ag로부터 선택되는 1종류 또는 2종 이상의 전이금속을 담지하여 제조하는 것을 특징으로 한다.In order to achieve the object as described above, the method for preparing the adsorbent for removing organic sulfur compounds according to the present invention includes activated carbon as an adsorbent as a base material, Fe, Co, treated with activated carbon treated with an acidic aqueous solution and washed with distilled water. It is characterized by manufacturing by supporting one or two or more kinds of transition metals selected from Ni, Cu, Zn and Ag.
그리고, 본 발명에 따른 유기황화합물 제거용 흡착제를 이용한 도시가스 탈황방법은, 흡착제를 탈황기의 흡착관에 충진하고, 도시가스를 -20 ∼ 200℃, 게이지 압력 0.01 ∼ 10 기압, 공간속도 100 ∼ 50,000 h-1의 조건하에서 상기 흡착제에 통과시켜 도시가스 내의 유기황화합물을 제거하는 것을 특징으로 한다.In the city gas desulfurization method using the adsorbent for removing the organic sulfur compound according to the present invention, the adsorbent is filled in the adsorption tube of the desulfurizer, the city gas is -20 to 200 ° C, the gauge pressure is 0.01 to 10 atm, and the space velocity is 100 to The organic sulfur compound in the city gas is removed by passing through the adsorbent under a condition of 50,000 h −1 .
본 발명의 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적 절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The features and advantages of the present invention will become more apparent from the following detailed description based on the accompanying drawings. Prior to this, the terms or words used in the present specification and claims are based on the principle that the inventor can appropriately define the concept of the term in order to explain the invention in the best way. It should be interpreted as meanings and concepts corresponding to
본 발명에 의한 유기황화합물 제거용 흡착제 제조방법은, 흡착제를 산 수용액으로 처리하고, 이를 pH가 4이상 되도록 증류수로 세척하며, 세척된 활성탄에 Fe, Cu 등과 같은 전이금속을 담지시켜 제조된 탈황흡착제 제조방법에 관한 것이다. In the method for preparing an adsorbent for removing organic sulfur compounds according to the present invention, a desulfurized adsorbent prepared by treating an adsorbent with an aqueous acid solution, washing it with distilled water so as to have a pH of 4 or more, and supporting a transition metal such as Fe and Cu in the washed activated carbon It relates to a manufacturing method.
이하, 본 발명에 의한 도시가스 내 포함된 유기 황화합물 부취제 제거용 흡착제 제조방법을 도 1을 참조하여 상세히 설명하면 다음과 같다.Hereinafter, a method for preparing an adsorbent for removing organic sulfur compound odorants included in city gas according to the present invention will be described in detail with reference to FIG. 1.
(S10) 활성탄 산처리. 본 발명에 의한 흡착제는 식물질 원료인 야자각으로 제조된 상용 활성탄을 기본재료로 한다. 활성탄에는 활성탄 원료물질인 야자각에 다양한 금속성분들이 포함되어 있기 때문에 원료물질로부터 오는 금속성분들이 포함되고, 제조공정상에서 다양한 금속성분들이 포함될 수 있다. 이러한 문제점 때문에 균일한 탈황 흡착제를 제조하기 위해 상용 활성탄에 포함된 다양한 금속 성분과 미분 활성탄 입자를 제거하기 위한 세척과정이 필요하다. 세척용기에 활성탄을 넣고 증류수를 이용하여 미분 활성탄과 밀도가 상대적으로 작은 활성탄을 제거한 후 산 수용액으로 처리한다. 산 수용액은 질산, 염산, 황산 수용액이 사용될 수 있다. 산 수용액으로서 질산 수용액으로 활성탄을 처리하면 활성탄에 존재하는 금속 성분이 제거되며, 또한 활성탄표면에 카르복실 그룹(-COOH)과 같은 작용기가 형성된다. 활성탄 표면에 카르복실 그룹과 같은 작용기가 형성되면 Fe, Cu 등과 같은 전이금속을 이온교환법, 함침법으로 담지시킬 때 활성탄 표면에 균일하게 분산시킬 수 있 는 장점이 있다.(S10) Activated carbon acid treatment. The adsorbent according to the present invention is based on commercial activated carbon produced from coconut shell, which is a vegetable raw material. Since activated carbon contains various metal components in palm shell, which is a raw material of activated carbon, metal components from raw materials may be included, and various metal components may be included in the manufacturing process. Due to this problem, a washing process for removing various metal components and finely activated carbon particles contained in commercial activated carbon is necessary to prepare a uniform desulfurized adsorbent. Activated charcoal is placed in a washing container and distilled water is used to remove finely divided activated carbon and activated carbon having a relatively low density, and then treated with an aqueous acid solution. As the aqueous acid solution, nitric acid, hydrochloric acid, and sulfuric acid aqueous solutions may be used. Treatment of activated carbon with an aqueous solution of nitric acid as an aqueous acid solution removes metal components present in the activated carbon, and also forms functional groups such as carboxyl groups (-COOH) on the surface of the activated carbon. When functional groups such as carboxyl groups are formed on the surface of activated carbon, transition metals such as Fe and Cu may be uniformly dispersed on the surface of activated carbon when supported by ion exchange or impregnation.
(S20) 활성탄 세척. 산 수용액으로 처리된 활성탄을 세척용액의 pH가 4이상 되도록 증류수로 세척한다. (S20) activated carbon wash. The activated carbon treated with an aqueous acid solution is washed with distilled water so that the pH of the washing solution is 4 or more.
(S30) 담지. 산 수용액으로 처리된 활성탄에 함침법, 이온교환법으로 Fe, Cu 등과 같은 전이금속을 담지하여 탈황흡착제를 제조한다. (S30) supported. A desulfurized adsorbent is prepared by supporting a transition metal such as Fe and Cu by impregnation and ion exchange in an activated carbon treated with an aqueous acid solution.
이때, 금속 물질로서 질산염, 초산염, 황산염, 탄산염 등의 수용성 염을 사용하며, 활성탄에 함침법으로 금속을 담지 하는 경우 실온에서 금속 염 수용액에 처리된 활성탄을 넣고 12 ~ 24시간 숙성한다. 전이금속을 담지시키는 방법은 함침법 또는 이온 교환법 등이 가능하다.At this time, water-soluble salts such as nitrates, acetates, sulfates, carbonates, etc. are used as metal materials, and when activated metals are impregnated with activated carbon, put activated carbon treated in aqueous metal salt solution at room temperature and then aged for 12 to 24 hours. The method of supporting the transition metal may be an impregnation method or an ion exchange method.
함침법에 사용하는 금속염 수용액은 활성탄 1그램(g)당 1mL 사용하는 것이 적당하다.The aqueous metal salt solution used for the impregnation method is suitably used in 1 mL per 1 gram (g) of activated carbon.
(S40) 건조. 담지단계를 거쳐 숙성된 활성탄을 100~200℃ 바람직하게 150℃ 건조 오븐에서 12 ~ 24시간동안 건조하여 제조한다. pH가 4이상이 되도록 증류수로 세척된 상용활성탄은 100~200℃ 바람직하게 150℃의 건조오븐에서 12 ~ 24시간 건조시키고 밀봉된 용기에 보관하여 사용한다. 건조과정 중에 활성탄이 다른 물질들을 흡착하기 때문에 건조 및 보관상에 주위가 필요하다.(S40) dry. Activated carbon aged through a supporting step is prepared by drying in a 100 ~ 200 ℃ preferably 150 ℃ drying oven for 12 to 24 hours. Commercial activated carbon washed with distilled water to have a pH of 4 or more is dried in a drying oven at 100-200 ° C., preferably 150 ° C. for 12-24 hours, and stored in a sealed container for use. During the drying process, the activated carbon adsorbs other materials, so it needs to be kept dry and stored.
이온교환법을 이용할 경우 실온(RT) ~ 80℃ 온도 범위에서 12 ~ 24 시간동안 이온교환, 세척, 여과(filter) 후 150℃에서 12 ~ 24시간 건조시킨다.In the case of using the ion exchange method, the mixture is dried at 150 ° C. for 12 to 24 hours after ion exchange, washing and filtering for 12 to 24 hours at room temperature (RT) to 80 ° C. temperature range.
(S50) 소성. 건조된 활성탄을 200~700℃의 온도조건하에서 소성한다.(S50) firing. The dried activated carbon is calcined under a temperature condition of 200 to 700 ° C.
(S60) 유기황화합물 제거용 흡착제 완성. (S10) ~ (S50)의 과정을 거치면서 유기황화합물 제거용 흡착제를 완성한다.(S60) Completed adsorbent for removing organic sulfur compounds. Through the process of (S10) ~ (S50) to complete the adsorbent for removing organic sulfur compounds.
이상에서 설명한 상용 활성탄을 이용한 탈황 흡착제 제조방법으로 본 발명이 한정되는 것은 아니며, 상기에서 예시한 방법이외에도 필요에 따라 또 다른 공지 제조방법을 적절히 응용할 수도 있다. The present invention is not limited to the method for producing a desulfurized adsorbent using commercially available activated carbon as described above, and other known production methods may be appropriately applied, if necessary, in addition to the above-described methods.
본 발명에 따른 유기황화합물 제거용 흡착제는 활성탄을 기본재료로 하며, 산성수용액으로 처리하고 증류수로 세척한 활성탄에 Fe, Co, Ni, Cu, Zn, Ag로부터 선택되는 1종류 또는 2종 이상의 전이금속을 담지하여 제조된 물질을 특징으로 하고 있다. 기존의 활성탄에는 각각 0.3-0.5wt% 수준의 알루미늄(Al), 마그네슘(Mg), 칼슘(Ca), 인(P)과 약 2wt%의 칼륨(K)이 함유되어 있다. 기존의 활성탄에서의 염기성 금속 성분은 루이스 염기인 유기황화물의 흡착을 저해할 뿐만 아니라 금속의 담지 과정에서 활성탄을 물에 분산시키면 용액이 강 염기를 나타내기 때문에 활성탄에 금속염 수용액을 넣으면 금속-하이드록사이드[Fe-(OH)n, Cu-(OH)n]과 같은 침전물이 형성되어 활성탄에 금속 이온을 균일하게 분산 시키는데 어려움이 있다. 또한 금속-하이드록사이드 형태의 침전물은 활성탄에 존재하는 미세세공을 막아 활성탄의 비표면적을 크게 감소시켜 활성탄의 흡착능을 저하시키는 문제점이 있다. 그러나 산 수용액으로 처리된 활성탄 흡착제에서는 탄소(C)와 산소(O) 성분만이 남게 되어 이러한 문제점을 해결하게 된다. 뿐만 아니라, 질산처리 후에는 활성탄 표면에 새로운 카르복시기(-COOH)가 형성되기 때문에 산소(O) 함량이 증가 된다. 질산처리로 생성된 카르복시기와 같은 작용기들은 그 자체에 의하여 유기황화합물의 흡착능력을 증가시켜줄 뿐만 아니라 활성탄에 금속이 이온교환으로 담지될 수 있는 자리(site)를 제공한다. 또한, 함침법으로 금속을 담지할 때도 활성탄 표면에 생성된 작용기들은 금속의 분산성을 증가시키는 작용하여 금속염에 의한 활성탄에 존재하는 마이크로세공(< 2nm)의 감소를 완화시킬 수 있는 효과가 있다. 이러한 효과에 의해 유기황 화합물의 흡착 능력이 기존의 일반적인 활성탄보다 3~4배 향상되게 된다.The adsorbent for removing organic sulfur compounds according to the present invention is activated carbon as a base material, and one or two or more transition metals selected from Fe, Co, Ni, Cu, Zn and Ag in activated carbon treated with an acidic aqueous solution and washed with distilled water. Characterized by the material produced by carrying. Existing activated carbon contains 0.3-0.5wt% aluminum (Al), magnesium (Mg), calcium (Ca), phosphorus (P) and about 2wt% potassium (K). The basic metal component of the existing activated carbon not only inhibits the adsorption of the organic sulfide, which is a Lewis base, but also disperses the activated carbon in water in the process of supporting the metal, so that the solution shows a strong base. Precipitates such as side [Fe- (OH) n, Cu- (OH) n] are formed, which makes it difficult to uniformly disperse metal ions in activated carbon. In addition, the precipitate in the form of metal-hydroxide has a problem of reducing the specific surface area of the activated carbon by blocking the micropores present in the activated carbon, thereby lowering the adsorption capacity of the activated carbon. However, in the activated carbon adsorbent treated with an aqueous acid solution, only carbon (C) and oxygen (O) components remain to solve this problem. In addition, oxygen (O) content is increased after nitric acid treatment because new carboxyl groups (-COOH) are formed on the surface of activated carbon. The functional groups such as carboxyl groups produced by nitric acid treatment not only increase the adsorption capacity of the organic sulfur compound but also provide a site on which activated metal can be supported by ion exchange. In addition, even when the metal is supported by the impregnation method, the functional groups generated on the surface of the activated carbon have an effect of increasing the dispersibility of the metal to mitigate the reduction of micropores (<2 nm) present in the activated carbon by the metal salt. By this effect, the adsorption capacity of the organosulfur compound is improved by 3 to 4 times that of conventional activated carbon.
본 발명에 따른 유기황화합물 제거용 흡착제 제조방법에 의해 제조된 유기황화합물 제거용 흡착제를 이용하여 도시가스에 포함된 유기황화합물을 제거하여 연료 전지용 연료로 활용할 수 있으며, 이러한 본 발명에 따른 도시가스의 탈황방법은, 본 발명에 따른 흡착제를 탈황기의 흡착관 내부에 충진하고, 탈황기의 내부를 -20 ~ 200℃ 온도, 0.01 ~ 10 기압, 공간속도 100 ~ 50,0000h-1의 조건하에서 도시가스를 흡착제에 통과시켜 유기황화합물 부취제(예컨대 TBM과 THT)를 흡착 제거하도록 하는 것이다.By using the organic sulfur compound removal adsorbent prepared by the method for preparing the organic sulfur compound removal adsorbent according to the present invention can remove the organic sulfur compound contained in the city gas can be used as a fuel for fuel cells, desulfurization of the city gas according to the present invention In the method, the adsorbent according to the present invention is filled into an adsorption tube inside a desulfurizer, and the inside of the desulfurizer is subjected to city gas under conditions of a temperature of -20 to 200 ° C., 0.01 to 10 atm, and a space velocity of 100 to 50,0000 h −1 . Is passed through an adsorbent to adsorb and remove organic sulfur compound odorants (such as TBM and THT).
탈황실험에는 통상적인 고정층 흡착 탈황장치를 사용하였으며, 흡착제의 입자는 산 수용액으로 처리한 후 금속을 담지시킨 활성탄(입도: 8*30 mesh)을 흡착관에 충진하여 탈황기를 제작한다. In the desulfurization experiment, a conventional fixed bed adsorption desulfurization apparatus was used, and the particles of the adsorbent were treated with an aqueous acid solution and filled with activated carbon (particle size: 8 * 30 mesh) loaded with metal into an adsorption tube to prepare a desulfurizer.
고정층 탈황기를 이용하여 도시가스 중에 포함되는 유기황화합물 부취제 제거 시험을 실시했다. 시험 조건은 탈황제의 양을 1mL, 압력을 상압(1 기압정도: 1013.25hPa(헥토파스칼)정도), 반응관 입구 온도를 상온(15-30℃), GHSV(Gas Hourly Space Velocity: 1시간당 촉매 단위 체적당의 처리 가스 용적(m3/m3.h))을 100 ~ 50,000h-1, 사용 가스는 22.3-22.9ppm의 TBM, 55.6-55.9ppm의 THT 부취제가 함유된 CH4 가스 이다. 시험 중, 반응관 출구로부터 배출되는 가스(gas)의 황(S) 농도를 PFPD(Pulsed Flame Photometric Detector)가 장착된 on-line 가스크로마토그래프(gas chromatograph)를 이용하여 유출가스 중 유기황화합물의 농도를 측정하고 파과곡선(breakthrough curve)을 얻어 유기황화합물 부취제가 포함된 가스를 탈황기로 흘러주기 시작한 시점으로부터 황화합물 농도가 0.1ppm 이상이 되는 시점까지의 시간을 측정하여 이를 포화시간으로 하였다. 유기황화합물 종류에 따라 흡착제에 흡착되는 정도가 다르기 때문에 부취제로 사용된 TBM 또는 THT 성분 중 먼저 0.1ppm 이상의 농도로 검출되는 시간까지 TBM과 THT의 흡착양을 계산하고 TBM과 THT 유기황화물의 황 성분만의 농도를 계산하여 탈황 흡착제의 탈황성능(wt% gs/gads.)이라 하였다.The organic sulfur compound odor removal test contained in the city gas was implemented using the fixed bed desulfurizer. The test conditions were 1 mL of desulfurization agent, pressure at normal pressure (about 1 atm pressure: about 1013.25 hPa (hectopascal)), reaction tube inlet temperature at room temperature (15-30 ° C), gas hourly space velocity: catalyst unit per hour. Process gas volume per volume (m 3 / m 3 .h)) is 100 to 50,000 h −1 , and the gas used is a CH 4 gas containing 22.3-22.9 ppm TBM and 55.6-55.9 ppm THT odorant. During the test, the sulfur (S) concentration of the gas discharged from the reaction tube outlet was measured using the on-line gas chromatograph equipped with a pulsed flame photometric detector (PFPD). The breakthrough curve was obtained, and the time from the time when the gas containing the organic sulfur compound odorant was started to flow to the desulfurization unit was measured to determine the saturation time. Since the degree of adsorption to the adsorbent varies depending on the type of organic sulfur compound, the amount of adsorption of TBM and THT is calculated until the time when the concentration is first detected at a concentration of 0.1 ppm or higher among the TBM or THT components used as odorants. The concentration of was calculated as the desulfurization performance (wt% g s / g ads. ) Of the desulfurization adsorbent.
본 발명은 다음의 실시예에 의하여 더욱 상세히 설명되며, 본 발명이 이에 한정되는 것은 아니다. The invention is explained in more detail by the following examples, which are not intended to limit the invention.
< 실시예 1 ><Example 1>
야자각으로 제조된 상용활성탄(입도: 8*30mesh)을 세척용기에 2/3정도 넣고 증류수로 미분 활성탄 입자와 상대적으로 밀도가 작은 활성탄 입자를 제거한 후 5M 질산수용액을 이용하여 80℃ 온도에서 12시간동안 산 처리하였다. 질산 수용액으로 처리한 활성탄을 세척용액의 pH가 4이상 되도록 증류수로 세척하고, 여과 후 150 ℃에서 12시간 진공건조 시켰다. 건조된 활성탄에 함침법으로 5wt% 구리(Cu)-활성 탄 흡착제를 제조하였다. 1.97g 질산구리삼수화물(Cu(NO3)2 · 3H2O)을 증류수 10mL에 녹여 맑은 구리염 수용액을 제조하고, 제조된 구리염 수용액에 건조된 활성탄 10g을 넣은 후 실온에서 24시간 숙성(aging) 시키고, 150℃ 온도에서 12 시간 진공건조 시켜 구리(Cu(II))가 5wt% 담지된 Cu-활성탄을 제조하였다. Put about 2/3 of commercial activated carbon (particle size: 8 * 30mesh) into a washing container in distilled water, remove finely divided activated carbon particles and relatively dense activated carbon particles, and then use 12M water at 80 ℃ using 5M nitric acid solution. Acid treatment for time. The activated carbon treated with nitric acid solution was washed with distilled water so that the pH of the washing solution was 4 or higher, and then filtered and dried under vacuum at 150 ° C for 12 hours. 5 wt% copper (Cu) -activated carbon adsorbent was prepared by impregnating the dried activated carbon. 1.97 g of copper nitrate trihydrate (Cu (NO 3 ) 2 · 3H 2 O) was dissolved in 10 mL of distilled water to prepare a clear copper salt solution, and 10 g of dried activated carbon was added to the prepared copper salt solution, followed by aging at room temperature for 24 hours ( aging) and vacuum drying at 150 ° C. for 12 hours to prepare Cu-activated carbon having 5 wt% of copper (Cu (II)).
구리가 5wt% 담지된 Cu-활성탄 흡착제의 충전밀도(bulk density)를 측정하여 내경 1cm 석영관에 흡착제를 1mL 충전하고, 질소를 분당 30mL(30mL/min) 흘려주면서 200℃에서 3시간 동안 전처리 후 실온으로 냉각 시켰다. 그리고, 상온, 상압 조건에서 부취제인 TBM과 THT가 각각 23.4ppm, 55.6ppm 포함된 메탄(CH4)가스를 GHSV 6,000h-1의 공간속도로 상기 흡착관에 통과시켜 유출되는 메탄가스 내 황화합물을 PFPD-GC를 이용하여 측정하였다. 탈황 흡착 성능은 TBM 또는 THT 중 먼저 0.1ppm 이상의 농도로 검출되는 시간까지를 유기황화합물의 흡착 시간으로 하였다. 황화합물 흡착 시간동안 TBM과 THT 유기황화합물의 흡착량 중에서 황 성분만의 흡착량을 계산하여 탈황흡착제의 흡착성능(wt% gs/gads.)이라 하고 그 결과를 다음 표 1 나타내었다.After measuring the bulk density of Cu-activated carbon adsorbent loaded with 5wt% of copper, 1mL of adsorbent was filled into a 1cm inner diameter quartz tube and pretreated for 3 hours at 200 ° C while flowing 30mL (30mL / min) of nitrogen per minute. Cooled to room temperature. And, methane (CH 4 ) gas containing 23.4ppm and 55.6ppm of odorant TBM and THT at room temperature and atmospheric pressure, respectively, is passed through the adsorption tube at a space velocity of GHSV 6,000h −1 to discharge sulfur compounds in methane gas. It was measured using PFPD-GC. The desulfurization adsorption performance was the adsorption time of the organosulfur compound up to the time when the concentration was first detected at a concentration of 0.1 ppm or more in TBM or THT. During the adsorption time of sulfur compounds, the adsorption capacity of sulfur components was calculated from the adsorption amount of TBM and THT organic sulfur compounds. The adsorption performance of the desulfurization adsorbent (wt% g s / g ads. ) Was shown in Table 1 below.
< 실시예 2 ><Example 2>
상기 실시예 1과 같이 흡착제를 제조하되 구리염 수용액에 건조된 활성탄 10g을 넣은 후 실온에서 24시간 숙성(aging) 시킨 후 증류수 약 100 mL로 세척하여 이온교환되지 않은 구리이온을 제거하였다. 제조된 탈황 흡착제의 탈황 흡착 성능을 상기 실시예 1과 동일한 방법으로 시험하여 그 결과를 다음 표 1에 나타내었다.An adsorbent was prepared as in Example 1, but 10 g of dried activated carbon was added to an aqueous copper salt solution, and then aged at room temperature for 24 hours, followed by washing with distilled water at about 100 mL to remove unionized copper ions. The desulfurization adsorption performance of the prepared desulfurization adsorbent was tested in the same manner as in Example 1, and the results are shown in Table 1 below.
< 실시예 3 ><Example 3>
상기 실시예 1과 같이 산처리된 활성탄에 함침법으로 Fe(III) 금속을 5wt% 담지시켰다. 3.88g 질산철구수화물(Fe(NO3)3 · 9H2O)을 증류수 10mL에 녹여 맑은 철염 수용액을 제조하고, 제조된 철염 수용액에 상기 실시예 1과 같이 산처리하여 제조된 활성탄 10g 넣고 상온에서 24시간 숙성시킨 후 150℃ 진공건조 오븐에서 12시간 건조 시켜 철이 5wt% 담지된 Fe-활성탄 흡착제를 제조하였다. 제조된 탈황 흡착제의 탈황 흡착 성능을 상기 실시예 1과 동일한 방법으로 시험하여 그 결과를 다음 표 1에 나타내었다.5 wt% of Fe (III) metal was impregnated on the acid treated activated carbon as in Example 1. 3.88g iron nitrate hydrate (Fe (NO 3 ) 3 · 9H 2 O) was dissolved in 10 mL of distilled water to prepare a clear iron salt solution, and 10 g of activated carbon prepared by acid treatment in the prepared iron salt solution as in Example 1 was added at room temperature. After aging for 24 hours and dried for 12 hours in a vacuum drying oven at 150 ℃ to prepare a Fe-activated carbon adsorbent with 5wt% iron. The desulfurization adsorption performance of the prepared desulfurization adsorbent was tested in the same manner as in Example 1, and the results are shown in Table 1 below.
< 실시예 4 ><Example 4>
상기 실시예 3과 같은 방법으로 흡착제를 제조하고 탈황 흡착 성능을 측정하되 흡착제 1 mL의 충전 후 소성시 5% H2/N2를 30mL/min의 유속으로 흘려주면서 400℃에서 3시간 동안 소성 후 냉각시켜 탈황 흡착 성능을 시험하여 그 결과를 다음 표 1에 나타내었다.The adsorbent was prepared in the same manner as in Example 3, and the desulfurization adsorption performance was measured, but after firing the adsorbent 1 mL and calcining at 400 ° C. for 5 hours while flowing 5% H 2 / N 2 at a flow rate of 30 mL / min. The desulfurization adsorption performance was tested by cooling and the results are shown in Table 1 below.
< 실시예 5 ><Example 5>
야자각으로 제조된 상용활성탄(입도: 8*30mesh)을 세척용기에 2/3정도 넣고 증류수로 미분 활성탄 입자와 상대적으로 밀도가 작은 활성탄 입자를 제거한 후 0.1M 염산수용액을 이용하여 상온에서 12시간동안 산 처리하였다. 염산 수용액으로 처리한 활성탄을 세척용액의 pH가 4이상 되도록 증류수로 세척하고, 여과 후 150℃에서 12시간 진공건조 시켰다. 건조된 활성탄에 실시예 1과 동일한 방법으로 함침 법으로 5wt% 구리(Cu)-활성탄 흡착제를 제조하였다. Put commercial activated carbon (particle size: 8 * 30mesh) made of coconut shell into a washing container about 2/3, remove finely divided activated carbon particles and relatively small activated carbon particles with distilled water, and then use 0.1M aqueous hydrochloric acid solution for 12 hours at room temperature. Acid treatment. The activated carbon treated with an aqueous hydrochloric acid solution was washed with distilled water so that the pH of the washing solution was 4 or higher, and then filtered and dried under vacuum at 150 ° C. for 12 hours. 5 wt% copper (Cu) -activated carbon adsorbent was prepared by the same method as in Example 1 in the dried activated carbon.
제조된 탈황 흡착제의 탈황 흡착 성능을 상기 실시예 1과 동일한 방법으로 시험하되 소성시 5% H2/N2를 30mL/min의 유속으로 흘려주면서 400℃에서 3시간 동안 소성 후 냉각시켜 탈황 흡착 성능을 시험하여 그 결과를 다음 표 1에 나타내었다.The desulfurization adsorption performance of the prepared desulfurization adsorbent was tested in the same manner as in Example 1, but during the firing, 5% H 2 / N 2 was flowed at a flow rate of 30 mL / min, followed by calcination at 400 ° C. for 3 hours, followed by desulfurization adsorption performance. Was tested and the results are shown in Table 1 below.
< 실시예 6 ><Example 6>
야자각으로 제조된 상용활성탄(입도: 8*30mesh)을 세척용기에 2/3정도 넣고 증류수로 미분 활성탄 입자와 상대적으로 밀도가 작은 활성탄 입자를 제거한 후 1M 질산수용액을 이용하여 상온에서 6시간동안 산 처리하였다. 질산 수용액으로 처리한 활성탄을 세척용액의 pH가 4이상 되도록 증류수로 세척하고, 여과 후 150℃에서 12시간 진공건조 시켰다. 건조된 활성탄에 함침법으로 1wt% 은(Ag)-활성탄 흡착제를 제조하였다. 0.157g 질산은(AgNO3)을 증류수 10mL에 녹여 질산은 수용액을 제조하고, 제조된 질산은 수용액에 건조된 활성탄 10g을 넣은 후 실온에서 24시간 숙성(aging) 시키고, 150℃ 온도에서 12 시간 진공건조 시켜 구리(Cu(II))가 5wt% 담지된 Cu-활성탄을 제조하였다. 2/3 of commercial activated carbon (particle size: 8 * 30mesh) made of coconut shell is placed in a washing container, and fine powder of activated carbon and particles of relatively small density of activated carbon are removed with distilled water, followed by 1M nitric acid solution for 6 hours at room temperature. Acid treatment. The activated carbon treated with nitric acid solution was washed with distilled water so that the pH of the washing solution was 4 or higher, and then filtered and dried under vacuum at 150 ° C. for 12 hours. 1 wt% silver (Ag) -activated carbon adsorbent was prepared by impregnating the dried activated carbon. 0.157 g silver nitrate (AgNO 3 ) was dissolved in 10 mL of distilled water to prepare an aqueous solution of silver nitrate. 10 g of dried activated carbon was added to the prepared aqueous solution of silver nitrate, and aged at room temperature for 24 hours. Cu-activated carbon having 5 wt% of (Cu (II)) was prepared.
제조된 탈황 흡착제의 탈황 흡착 성능을 상기 실시예 1과 동일한 방법으로 시험하되 소성시 질소를 30mL/min의 유속으로 흘려주면서 300℃에서 3시간 동안 소성 후 냉각시켜 탈황 흡착 성능을 시험하여 그 결과를 다음 표 1에 나타내었다.The desulfurization adsorption performance of the prepared desulfurization adsorbent was tested in the same manner as in Example 1, but after firing and cooling at 300 ° C. for 3 hours while flowing nitrogen at a flow rate of 30 mL / min, the desulfurization adsorption performance was tested. It is shown in Table 1 below.
< 비교예 1 ><Comparative Example 1>
야자각으로 제조된 상용활성탄(8*30mesh)을 산 처리와 금속담지 과정 없이 탈황 흡착 시험을 하였다. 상기 실시예 1과 동일한 방법으로 탈황 흡착 시험을 하여 그 결과를 다음 표 1에 나타내었다.Commercial activated carbon (8 * 30mesh) made of coconut shell was subjected to desulfurization adsorption test without acid treatment and metal support. Desulfurization adsorption test was carried out in the same manner as in Example 1, and the results are shown in Table 1 below.
< 비교예 2 ><Comparative Example 2>
야자각으로 제조된 상용활성탄(8*30mesh)에 산처리 과정이 없이 바로 함침법으로 5wt% 구리(Cu)를 담지하여 구리(Cu(II))-활성탄 흡착제를 제조하였다. 1.97g 질산구리삼수화물(Cu(NO3)2 · 3H2O)을 증류수 10mL에 녹여 맑은 구리염 수용액을 제조하고, 제조된 구리염 수용액에 활성탄 10g을 넣은 후 실온에서 12 ~ 24시간 숙성(aging) 시키고, 150℃ 온도에서 12 시간 진공건조 시켜 구리(Cu(II))가 5wt% 담지된 Cu-활성탄 흡착제를 제조하였다. 상기 실시예 1과 동일한 방법으로 탈황 흡착 시험을 하여 그 결과를 다음 표 1에 나타내었다.Copper (Cu (II))-activated carbon adsorbent was prepared by supporting 5wt% copper (Cu) by impregnation without commercially treating the activated activated carbon (8 * 30mesh). 1.97 g of copper nitrate trihydrate (Cu (NO 3 ) 2 · 3H 2 O) was dissolved in 10 mL of distilled water to prepare a clear copper salt solution, 10 g of activated carbon was added to the prepared copper salt solution, and aged at room temperature for 12 to 24 hours. aging) and vacuum drying at 150 ° C. for 12 hours to prepare Cu-activated carbon adsorbent having 5 wt% of copper (Cu (II)). Desulfurization adsorption test was carried out in the same manner as in Example 1, and the results are shown in Table 1 below.
< 표 1 ><Table 1>
본 발명에서 사용한 메탄(CH4)가스는 국내에서 사용하고 있는 도시가스의 주성분이며, 유기황화합물 TBM과 THT 부취제 또한 국내 도시가스에서 사용하고 있는 부취제 성분이다. 도시가스에는 부취제가 약 4ppm 포함되어 있어 탈황 흡착제의 제조, 평가 실험에서 직접 도시가스를 적용할 경우 많은 시간이 요구되기 때문에 높 은 부취제 농도를 갖는 메탄가스를 이용한 탈황 흡착제를 시험 평가한 것이다.Methane (CH 4 ) gas used in the present invention is the main component of the city gas used in Korea, and the organic sulfur compound TBM and THT odorant are also odorant components used in domestic city gas. Since the city gas contains about 4 ppm of deodorant, it takes much time to apply the city gas directly in the manufacture and evaluation experiment of the desulfurization adsorbent. Therefore, the desulfurization adsorbent using methane gas having a high deodorant concentration was tested.
상기 표 1에서 나타낸 바와 같이 실시예 1~6에서 활성탄을 산 처리하고, 세척용액의 pH가 4이상 되게 세척한 활성탄에 금속을 담지하면 흡착 탈황성능이 비교예 1과 비교예 2보다 크게 증가되는 것을 확인 할 수 있다. 활성탄 흡착제를 질산과 같은 산 수용액으로 처리하면 알카리 금속과 같은 불순물이 제거되는데, EDS(energy dispersive X-ray spectrometer) 분석결과 야작각으로 제조된 상용활성탄에 각각 0.3-0.5wt% 수준의 알루미늄(Al), 마그네슘(Mg), 칼슘(Ca), 인(P)과 약 2wt%의 칼륨(K)이 함유되어 있지만 산 수용액으로 처리된 활성탄 흡착제에서는 탄소(C)와 산소(O) 성분만 분석되었다. 또한, 질산처리 전의 활성탄에서 94wt% 이상의 탄소(C)와 약 4wt% 산소(O) 성분이 분석되지만 질산처리 후 활성탄에서는 약 92wt% 탄소(C)와 8wt% 산소(O) 성분이 분석된다. 질산처리 후 활성탄에서 상대적으로 산소(O) 성분 함량이 증가되는 것은 무정형의 활성탄 표면의 탄소-탄소 결합이 끊어져 새로운 카르복시기(-COOH)가 형성되기 때문에 산소(O) 함량이 증가 되는 것으로 생각된다. 질산처리로 생성된 카르복시기와 같은 작용기들은 활성탄에 금속이 이온교환으로 담지될 수 있는 자리(site)를 제공한다. 또한, 상기 실시예 처럼 함침법으로 금속을 담지할 때도 활성탄 표면에 생성된 작용기들은 금속의 분산성을 증가시키는 작용하여 금속염에 의한 활성탄에 존재하는 마이크로세공(< 2nm)의 감소를 완화시킬 수 있는 효과가 있다. 이러한 효과에 의해 실시예의 탈황 흡착 성능이 비교예 2보다 크게 증가 되는 것이다. 상기 표 1에서 나타낸 바와 같이 실시예 1~6에서 활성탄에 전이 금속을 담지하면, 담지된 금속에 유기황화합물이 화학적 결합에 의한 흡착력이 강화되어 금속이 담지된 흡착제가 우수한 흡착 성능을 갖게 되는 것이다. As shown in Table 1, when the activated carbon was treated in Examples 1 to 6 and the metal was supported on the activated carbon washed to have a pH of 4 or more, the adsorption desulfurization performance was greatly increased than that of Comparative Example 1 and Comparative Example 2. You can check. When activated carbon adsorbent is treated with an acid solution such as nitric acid, impurities such as alkali metals are removed. As a result of energy dispersive X-ray spectrometer (EDS) analysis, 0.3 to 0.5 wt% of aluminum (Al ), Magnesium (Mg), calcium (Ca), phosphorus (P) and about 2wt% potassium (K), but only carbon (C) and oxygen (O) components were analyzed in activated carbon adsorbents treated with an acid solution. . In addition, at least 94 wt% of carbon (C) and about 4 wt% of oxygen (O) were analyzed in the activated carbon before nitric acid treatment, but about 92 wt% of carbon (C) and 8 wt% of oxygen (O) were analyzed in the activated carbon after nitric acid treatment. The increase in the content of oxygen (O) in the activated carbon after nitric acid treatment is thought to increase the content of oxygen (O) because the carbon-carbon bond on the surface of the amorphous activated carbon is broken to form a new carboxyl group (-COOH). Functional groups, such as carboxyl groups produced by nitric acid treatment, provide the activated carbon with sites on which metals can be supported by ion exchange. In addition, even when the metal is supported by the impregnation method as in the above embodiment, the functional groups generated on the surface of the activated carbon may increase the dispersibility of the metal to mitigate the reduction of micropores (<2 nm) present in the activated carbon by the metal salt. It works. By this effect, the desulfurization adsorption performance of the example is greatly increased than that of Comparative Example 2. As shown in Table 1, when the transition metal is supported on the activated carbon in Examples 1 to 6, the adsorption power of the organic sulfur compound is enhanced by chemical bonding to the supported metal, so that the metal-supported adsorbent has excellent adsorption performance.
이상에서 설명한 바와 같이, 본 발명에 따른 유기황화합물 제거용 흡착제 및 그 제조방법과 그것을 이용한 도시가스의 탈황방법에 의하면, 도시 가스 내에 포함된 유기 황화합물 TBM과 THT 부취제 성분을 효과적으로 흡착 탈황 시킬 수 있으며, 저가의 활성탄 흡착제를 이용함으로서 저가의 탈황흡착제를 개발 할 수 있다. 활성탄을 산 수용액 처리하여 활성탄 표면에 작용기들을 증가시키고, 증가된 작용기들은 담지되는 금속들의 분산성을 증가시켜 우수한 탈황흡착능을 갖게 한다. 우수한 탈황 흡착제는 탈황 흡착제의 교환 주기를 증가 시켜 연료개질 촉매와 연료전지 촉매 등의 수명을 연장 시킬 수 있다. As described above, according to the present invention, the adsorbent for removing organic sulfur compounds, a method for preparing the same, and a desulfurization method for city gas using the same can effectively adsorb and desulfurize the organic sulfur compound TBM and THT odorant components contained in the city gas. By using a low cost activated carbon adsorbent, a low cost desulfurized adsorbent can be developed. The activated carbon is treated with an aqueous acid solution to increase the functional groups on the surface of the activated carbon, and the increased functional groups increase the dispersibility of the metals supported to have excellent desulfurization adsorption capacity. A good desulfurization adsorbent can extend the exchange cycle of desulfurization adsorbent to prolong the life of fuel reforming catalyst and fuel cell catalyst.
이상, 본 발명을 본 발명의 원리를 예시하기 위한 바람직한 실시예와 관련하여 설명하고 도시하였지만, 본 발명은 그와 같이 도시되고 설명된 그대로의 구성 및 작용으로 한정되는 것이 아니다. 오히려, 첨부된 청구범위의 사상 및 범주를 일탈함이 없이 본 발명에 대한 다수의 변경 및 수정이 가능함을 당업자들은 잘 이해할 수 있을 것이다. 따라서, 그러한 모든 적절한 변경 및 수정과 균등물들도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다.While the invention has been described and illustrated in connection with a preferred embodiment for illustrating the principles of the invention, the invention is not limited to the configuration and operation as such is shown and described. Rather, it will be apparent to those skilled in the art that many changes and modifications to the present invention are possible without departing from the spirit and scope of the appended claims. Accordingly, all such suitable changes and modifications and equivalents should be considered to be within the scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040061831A KR100558895B1 (en) | 2004-08-05 | 2004-08-05 | Adsorbents for organic sulfur compounds, Method for manufacturing them and Method for desulfurizing of town gas using them |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040061831A KR100558895B1 (en) | 2004-08-05 | 2004-08-05 | Adsorbents for organic sulfur compounds, Method for manufacturing them and Method for desulfurizing of town gas using them |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20060013055A KR20060013055A (en) | 2006-02-09 |
KR100558895B1 true KR100558895B1 (en) | 2006-03-10 |
Family
ID=37122534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020040061831A KR100558895B1 (en) | 2004-08-05 | 2004-08-05 | Adsorbents for organic sulfur compounds, Method for manufacturing them and Method for desulfurizing of town gas using them |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100558895B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100925491B1 (en) | 2007-12-17 | 2009-11-05 | 한양대학교 산학협력단 | Organic-inorganic complex for removing sulfur complex materials, method of preparation thereof, and the use of the same |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100865974B1 (en) * | 2007-03-20 | 2008-10-30 | 주식회사 한일그린텍 | Ag impregnated porous antibiosis adsorbent and a process of preparing the same |
KR100885191B1 (en) * | 2007-08-28 | 2009-03-12 | 충북대학교 산학협력단 | Preaparation of mesoporosity in activated carbons using Fe-exchange |
KR101303972B1 (en) * | 2011-03-23 | 2013-09-09 | (주)비엠지테크 | Desulfurizer in hydrogen generator for fuel cell system and fabrication method thereof |
KR101340114B1 (en) * | 2011-07-29 | 2013-12-10 | 주식회사 세원공업 | The Adsorbent for Removing Organic Sulfur Compounds, The Method for Preparing The Same, and The Desulfurization System for Fuel Gas Using The Adsorbent |
CN104209092B (en) * | 2014-09-26 | 2016-11-02 | 镇江华域环保设备制造有限公司 | A kind of plant air adsorbent and preparation method thereof |
CN114042434A (en) * | 2021-10-12 | 2022-02-15 | 佛山市天禄智能装备科技有限公司 | Tail gas desulfurizer for rotary kiln and preparation method thereof |
CN116272904A (en) * | 2023-03-27 | 2023-06-23 | 江苏雨田环境工程有限公司 | MOFs composite VOCs adsorbent and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR960028970A (en) * | 1995-01-12 | 1996-08-17 | 박효가 | Method for preparing and using catalyst for selective reduction reaction for recovering elemental sulfur from sulfurous acid gas |
KR980000568A (en) * | 1998-01-21 | 1998-03-30 | 정영무 | Impregnated activated carbon for removing sulfide gas and its manufacturing method |
JPH1085759A (en) | 1996-09-13 | 1998-04-07 | Ichiro Arai | Preparation of purifying agent for sterilization |
KR20010016595A (en) * | 2000-12-23 | 2001-03-05 | 유승곤 | Preparation method and use of Metal(Cu, Zn, Cr, v, Mo, Ti, Fe etc)-Impregnated activated carbon fiber for removal of toxicity, noxious gas |
KR20020026332A (en) * | 2002-03-12 | 2002-04-09 | 장현태 | Adsorbent for the removal of odor using silerlite and perlite |
-
2004
- 2004-08-05 KR KR1020040061831A patent/KR100558895B1/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR960028970A (en) * | 1995-01-12 | 1996-08-17 | 박효가 | Method for preparing and using catalyst for selective reduction reaction for recovering elemental sulfur from sulfurous acid gas |
JPH1085759A (en) | 1996-09-13 | 1998-04-07 | Ichiro Arai | Preparation of purifying agent for sterilization |
KR980000568A (en) * | 1998-01-21 | 1998-03-30 | 정영무 | Impregnated activated carbon for removing sulfide gas and its manufacturing method |
KR20010016595A (en) * | 2000-12-23 | 2001-03-05 | 유승곤 | Preparation method and use of Metal(Cu, Zn, Cr, v, Mo, Ti, Fe etc)-Impregnated activated carbon fiber for removal of toxicity, noxious gas |
KR20020026332A (en) * | 2002-03-12 | 2002-04-09 | 장현태 | Adsorbent for the removal of odor using silerlite and perlite |
Non-Patent Citations (1)
Title |
---|
논문 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100925491B1 (en) | 2007-12-17 | 2009-11-05 | 한양대학교 산학협력단 | Organic-inorganic complex for removing sulfur complex materials, method of preparation thereof, and the use of the same |
Also Published As
Publication number | Publication date |
---|---|
KR20060013055A (en) | 2006-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101623611B1 (en) | Multiple fixed-fluidized beds for contaminant removal | |
US7625429B2 (en) | Zeolite adsorbent for desulfurization and method of preparing the same | |
Wang et al. | Adsorption/desorption of low concentration of carbonyl sulfide by impregnated activated carbon under micro-oxygen conditions | |
KR101332047B1 (en) | Sulphur-detecting indicators for determining life time of adsorbents, sulfur-removal canister and system composed of the same | |
US20080197051A1 (en) | Desulfurizing Agent for Removing Organic Sulfur Compounds, Preparation Method thereof and Method for Removing Organic Sulfur Compounds Using the Same | |
EP1047495A1 (en) | An adsorbent for a hydrocarbon stream and process | |
KR20070115991A (en) | Desulfurizing agent and method of desulfurization with the same | |
US8858691B2 (en) | Adsorbents for removing contaminants from gas flows containing water | |
US6579347B1 (en) | Method for removing sulfur compound present in city gas | |
KR100558895B1 (en) | Adsorbents for organic sulfur compounds, Method for manufacturing them and Method for desulfurizing of town gas using them | |
KR20100033961A (en) | Methods, systems, and devices for deep desulfurization of fuel gases | |
US9097678B2 (en) | Method for removing sulfur-comprising compounds from a hydrocarbonaceous gas mixture | |
Li et al. | Alkali-induced metal-based coconut shell biochar for efficient catalytic removal of H2S at a medium–high temperature in blast furnace gas with significantly enhanced S selectivity | |
JP2012206060A (en) | Sulfur compound adsorbent | |
RU2361668C2 (en) | Method of producing catalyst for desulphuration of hydrocarbon streams | |
CN102773075A (en) | Preparation method of mesoporous/microporous carbon material for adsorbing hydrogen sulfide | |
Zhao et al. | Modification of ferrite–manganese oxide sorbent by doping with cerium oxide | |
JP2688749B2 (en) | Method for producing high temperature resistant high-order desulfurizing agent | |
KR20140088890A (en) | Method for removing sulfur-comprising compounds from a hydrocarbonaceous gas mixture | |
CN110354809B (en) | By SiO2Method for removing thiophene sulfides in fuel oil by using-APTES-Ag composite aerogel as adsorbent | |
Graul et al. | NOx decomposition using Ni-and Fe-loaded biocarbon catalysts | |
KR100530954B1 (en) | Adsorbent and method for desulfurization of city gas | |
CN113083282B (en) | Composite metal desulfurization catalyst with double functions of conversion and absorption and preparation method thereof | |
JP6574078B1 (en) | Desulfurization agent for fuel gas | |
JP2013199533A (en) | Method for producing desulfurized gaseous fuel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120305 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20130305 Year of fee payment: 8 |
|
LAPS | Lapse due to unpaid annual fee |