KR100558212B1 - Refrigerant mixture for providing ultra-low temperature - Google Patents

Refrigerant mixture for providing ultra-low temperature Download PDF

Info

Publication number
KR100558212B1
KR100558212B1 KR1020040034085A KR20040034085A KR100558212B1 KR 100558212 B1 KR100558212 B1 KR 100558212B1 KR 1020040034085 A KR1020040034085 A KR 1020040034085A KR 20040034085 A KR20040034085 A KR 20040034085A KR 100558212 B1 KR100558212 B1 KR 100558212B1
Authority
KR
South Korea
Prior art keywords
weight
refrigerant
mixed refrigerant
temperature
isobutane
Prior art date
Application number
KR1020040034085A
Other languages
Korean (ko)
Other versions
KR20050108871A (en
Inventor
이동화
Original Assignee
일원프리저(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일원프리저(주) filed Critical 일원프리저(주)
Priority to KR1020040034085A priority Critical patent/KR100558212B1/en
Publication of KR20050108871A publication Critical patent/KR20050108871A/en
Application granted granted Critical
Publication of KR100558212B1 publication Critical patent/KR100558212B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/042Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising compounds containing carbon and hydrogen only
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/24Only one single fluoro component present

Abstract

본 발명은 지구의 오존층을 파괴하는 프레온계 냉매를 대체할 수 있는 환경친화적이며, 15kgf/㎠이하의 낮은 토출압력에서 -60℃이하의 초저온을 달성할 수 있는 혼합냉매에 관한 것이다. 본 발명은 이소부탄 50∼70중량%, 퍼플루오로에탄 15∼25중량%, 및 트리플루오로메탄 15∼25중량% 포함하는 초저온용 혼합냉매를 제공한다. 또한, 테트라플로오로메탄을 혼합냉매 전체 중량에 대해 5∼15중량% 더 포함하는 초저온용 혼합냉매를 제공한다.The present invention relates to an environment-friendly environment that can replace a freon-based refrigerant that destroys the earth's ozone layer, and to a mixed refrigerant that can achieve ultra low temperature of -60 ° C or less at a low discharge pressure of 15 kgf / cm 2 or less. The present invention provides a cryogenic mixed refrigerant containing 50 to 70% by weight of isobutane, 15 to 25% by weight of perfluoroethane, and 15 to 25% by weight of trifluoromethane. In addition, it provides a cryogenic mixed refrigerant containing tetrafluoromethane further 5 to 15% by weight based on the total weight of the mixed refrigerant.

초저온, 혼합냉매, 프레온Cryogenic, Mixed Refrigerant, Freon

Description

초저온용 혼합냉매{Refrigerant mixture for providing ultra-low temperature}Refrigerant mixture for providing ultra-low temperature

도 1은 본 발명에 사용된 단단냉동 시스템을 나타낸 개략도.1 is a schematic view showing a single stage refrigeration system used in the present invention.

<도면의 주요 부분에 대한 부호의 간단한 설명><Brief description of symbols for the main parts of the drawings>

10...압축기 20...응축기10 ... compressor 20 ... condenser

30...드라이어 40...모세관30.Dryer 40.Capillary tube

50...열교환부 60...증발기50 ... heat exchanger 60 ... evaporator

70...냉동고70 ... Freezer

본 발명은 초저온용 혼합냉매에 관한 것으로서, 보다 상세하게는 지구의 오존층을 파괴하는 프레온계 냉매를 대체할 수 있는 환경친화적이며, 15kgf/㎠이하의 낮은 토출압력에서 -60℃이하의 초저온을 달성할 수 있는 혼합냉매에 관한 것이다. The present invention relates to an ultra low temperature mixed refrigerant, and more particularly, it is environmentally friendly to replace the freon refrigerant that destroys the earth's ozone layer, and can achieve an ultra low temperature of -60 ° C. or less at a low discharge pressure of 15 kgf / cm 2 or less. It relates to a mixed refrigerant which can be.

통상 프레온으로 불리는 "클로로 플로로 카본(CFC)"은 탄소, 불소, 염소로 구성되는 화합물이다. 프레온은 저부식성, 저독성, 불연성 등 안정성이 높고, 기체·액체 변화가 쉬우며, 유기물을 용해하는 성질이 있고, 침투성과 전기절연성이 높 고, 가격이 저렴하여 오랫동안 냉매, 발포제, 분사제, 세척제 등으로 다양하게 이용되어 왔다. 그러나 대기중의 프레온이 성층권에 도달해서 단파장 자외선의 빛에너지로 인해 분해되어 여기서 나온 염소원자가 오존과 결합하여 지구의 보호막인 오존층을 파괴한다는 사실이 알려지면서 몬트리올 의정서에 의해 그 생산과 사용이 규제를 받고 있다. HCFC-22를 비롯한 HCFC 계열 화합물들도 CFC 화합물만큼 심하지는 않으나, 오존층 파괴에 상당한 영향을 미치고 있으므로 점차적으로 그 사용량을 규제하여 2020년경에는 사용금지 예정으로 있다. 따라서 전세계적으로 CFC, 및 HCFC의 규제에 대비하여 대체 냉매에 대한 연구가 계속되고 있다.Chlorofluorocarbon (CFC), commonly called Freon, is a compound composed of carbon, fluorine, and chlorine. Freon has high stability such as low corrosiveness, low toxicity, nonflammability, easy to change gas and liquid, dissolve organic matter, high permeability and electrical insulation, and low price. It has been used in various ways. However, production and use are regulated by the Montreal Protocol, as it is known that freon in the atmosphere reaches the stratosphere and decomposes due to light energy of short wavelength ultraviolet rays, and the chlorine atoms released from it combine with ozone to destroy the earth's protective ozone layer. have. HCFC-based compounds, including HCFC-22, are not as severe as CFC compounds, but they have a significant impact on the destruction of the ozone layer. Accordingly, research on alternative refrigerants continues in preparation for the regulation of CFCs and HCFCs worldwide.

이러한 대체 냉매의 연구는 새로운 냉매의 개발과 기존의 냉매를 혼합해서 규제대상 냉매와 같은 성능을 갖는 혼합냉매의 연구 등 두 가지 방향으로 진행되고 있다. 하지만, 신냉매의 개발은 많은 물적, 인적 자원이 동원되어야 하고 저가의 상품으로 상용화되기까지는 대단위 생산시설을 갖추어야 하는 어려움이 있어, 2종류 이상의 가스를 혼합하여 그 특성을 조정하는 혼합냉매에 대한 연구가 활발히 진행되고 있다. 하지만 규제가 되지 않는 냉매들 중에서 이론적으로 사용 가능한 냉매들만 가지고 혼합한다고 하여도 혼합되는 조합의 수가 100여가지가 넘는데다가 각각의 조합에 따라서 일정압력 하에서 액상과 기상간에 액화 또는 기화가 일어날 때 분수 물질과 같이 준평형상태에서 온도가 변하지 않는 것이 있는 반면에 온도가 변하는 혼합냉매도 있다. 여기서 전자를 공비혼합물(azeotropic refrigerant mixture)이라고 하고, 후자를 비공비혼합물(non-azeotropic refrigerant mixture)이라고 하는데, 공비혼합물은 특수한 성분비율에 한하여 존재하며 순수물질과 같은 열역학적 성질이 나타나며 비공비혼합냉매의 경우는 조성에 따라 증발압력과 온도가 각각 변하게 된다.The study of such alternative refrigerants has been conducted in two directions: the development of new refrigerants and the study of mixed refrigerants having the same performance as the regulated refrigerants by mixing existing refrigerants. However, the development of new refrigerants requires a lot of physical and human resources, and it is difficult to equip large-scale production facilities until commercialization of low-priced products. Is actively underway. However, even if it is mixed with only theoretically usable refrigerants out of the unregulated refrigerants, the number of combinations is over 100, and depending on each combination, the fractional substance when liquefaction or vaporization occurs between liquid and gas phase under a certain pressure. Some quasi-equilibrium temperatures do not change, while others change their temperature. The former is called an azeotropic refrigerant mixture, and the latter is a non-azeotropic refrigerant mixture. An azeotropic mixture exists only in a specific component ratio and exhibits thermodynamic properties such as pure substances. In the case of evaporation pressure and temperature are respectively changed according to the composition.

특히, 바이오테크놀러지 분야에서 이용이 확대되고 있는 -60℃이하의 초저온의 냉동고내 온도를 실현할 수 있는 냉매가스는 그 종류가 많지 않으며, 초저온도를 실현하는 냉매는 일반적으로 표준비점이 낮을 수록 임계압이 높고, 임계 온도도 낮기 때문에 실온환경 하에서는 용이하게 액화할 수 없다. 이로 인해 상온에서 액화 가능한 냉매가 보다 비점이 낮은 냉매의 액화과정의 냉각에 사용되는 이원냉동시스템이 널리 사용되고 있다. 하지만, 이러한 이원냉동시스템은 장치가 복잡하고 유지보수가 어려우며, 고온측과 저온측의 2개의 냉동사이클이 하나의 냉동시스템을 구성하고 있어 대형화되어 있으며 비용이 많이 드는 문제점이 있다.In particular, there are not many kinds of refrigerant gas capable of realizing the cryogenic freezer temperature of -60 ° C or less, which is being widely used in biotechnology, and the refrigerant which realizes ultra low temperature generally has a lower critical pressure as the standard boiling point is lower. Because of this high and low critical temperature, it cannot be easily liquefied under room temperature. For this reason, the binary refrigeration system is widely used for cooling the liquefaction process of the refrigerant having a lower boiling point than the refrigerant capable of liquefying at room temperature. However, such a dual refrigeration system is complex and difficult to maintain, and the two refrigeration cycles of the high temperature side and the low temperature side constitute a single refrigeration system, which is large and expensive.

따라서 본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 흡입관과 모세관 및 고압 액관의 열교환이 이루어지는 단단냉동사이클에서 15kgf/㎠이하의 낮은 토출압력에서 -60℃이하의 냉동고내 온도를 달성할 수 있으며, 오존을 파괴하지 않는 친환경적인 초저온용 혼합냉매를 제공하는데 그 목적이 있다.Therefore, the present invention has been made to solve the above problems, in a single stage refrigeration cycle in which the heat exchange between the suction pipe, the capillary tube and the high-pressure liquid pipe is achieved to achieve a freezer temperature of -60 ℃ or less at a low discharge pressure of less than 15kgf / ㎠ It can be, and to provide an environment-friendly cryogenic mixed refrigerant that does not destroy ozone.

상기한 목적을 달성하기 위하여, 본 발명은 이소부탄 50∼70중량%, 퍼플루오로에탄 15∼25중량%, 및 트리플루오로메탄 15∼25중량% 포함하는 혼합냉매를 제공한다.In order to achieve the above object, the present invention provides a mixed refrigerant containing 50 to 70% by weight of isobutane, 15 to 25% by weight of perfluoroethane, and 15 to 25% by weight of trifluoromethane.

본 발명의 다른 특징에 의하면, 상기 혼합냉매는 테트라플로오로메탄을 혼합 냉매 전체 중량에 대해 5∼15중량% 더 포함할 수 있다.According to another feature of the invention, the mixed refrigerant may further comprise 5 to 15% by weight of tetrafluoromethane relative to the total weight of the mixed refrigerant.

바람직하게는, 본 발명에 따른 혼합냉매는 이소부탄 60중량%, 퍼플루오로에탄 20중량%, 및 트리플루오로메탄 20중량%을 포함할 수 있다.Preferably, the mixed refrigerant according to the present invention may include 60% by weight of isobutane, 20% by weight of perfluoroethane, and 20% by weight of trifluoromethane.

바람직하게는, 본 발명에 따른 혼합냉매는 이소부탄 54중량%, 퍼플루오로에탄 18중량%, 트리플루오로메탄 18중량%, 및 테트라플루오로메탄 10중량%을 포함할 수 있다.Preferably, the mixed refrigerant according to the present invention may include 54% by weight of isobutane, 18% by weight of perfluoroethane, 18% by weight of trifluoromethane, and 10% by weight of tetrafluoromethane.

이하에서 실시예에 의하여 본 발명을 보다 구체적으로 설명하지만, 이러한 실시예들에 의해 본 발명의 범위가 한정되는 것이 아님은 당업자에게 자명한 사실이다.Hereinafter, the present invention will be described in more detail with reference to Examples, but it is obvious to those skilled in the art that the scope of the present invention is not limited by these Examples.

이소부탄은 오존층 파괴지수가 '제로' 수준으로 오존층을 파괴하지 않을 뿐만 아니라 지구온난화지수(GWP) 또한 매우 낮아 세계적으로 환경친화 냉매로 인정받고 있으며, R-600a로 명명되어 있으며, 현재 유럽에서 널리 사용되고 있고 가연성이지만 그로 인한 화재는 보고된 바 없다. HFC계 냉매인 트리플루오로메탄(CHF3: 이하 'R-23'이라 함)과, FC계 냉매인 퍼플루오로에탄(C2F6: 이하 'R-116'이라 함) 및 테트라플루오로메탄(CF4: 이하 'R-14'라 함)은 염소성분을 갖고 있지 않기 때문에 오존층에 대한 파괴의 정도가 낮다.Isobutane not only destroys the ozone layer with a zero ozone depletion index, but also has a very low global warming index (GWP), which is recognized as an environmentally friendly refrigerant worldwide, and is named R-600a. It is used and flammable, but the resulting fire has not been reported. Trifluoromethane (CHF 3 : hereinafter referred to as 'R-23') as an HFC refrigerant, perfluoroethane (C 2 F 6 : hereinafter referred to as 'R-116') and tetrafluoro as a FC refrigerant Methane (CF 4 : hereafter referred to as 'R-14') does not have a chlorine component and thus has a low degree of destruction to the ozone layer.

표 1을 참조하면, 이소부탄은 비점이 높지만 임계압력이 낮고 임계온도가 높기 때문에 실온에서 작동하는 냉동시스템의 냉매로서 취급이 용이하다. R-116, R-23, 및 R-14는 비점이 매우 낮아 초저온용 냉매로서 적합한 특성을 가지고 있으나, 실온에서 작동하는 냉동시스템에서 취급이 용이하지 않다. 따라서 이들 가스를 혼합하여, 실온에서 작동하는 냉동시스템의 냉매로서 사용 가능하며, 15kgf/㎠이하의 낮은 토출압력에서 -60℃이하의 초저온를 실현할 수 있는 혼합냉매의 특성 및 조성범위를 확인하여 본 발명을 완성하였다. Referring to Table 1, isobutane is easy to handle as a refrigerant of a refrigeration system operating at room temperature because of its high boiling point but low critical pressure and high critical temperature. R-116, R-23, and R-14 have very low boiling points and are suitable as cryogenic refrigerants, but are not easy to handle in a refrigeration system operating at room temperature. Therefore, these gases can be mixed and used as a refrigerant in a refrigeration system operating at room temperature, and the characteristics and composition ranges of mixed refrigerants that can realize ultra low temperatures of -60 ° C or less at low discharge pressures of 15 kgf / cm2 or less can be confirmed. Was completed.

이소부탄, R-116, R-23, 및 R-14의 물리적 특성Physical Properties of Isobutane, R-116, R-23, and R-14 화학식Chemical formula 비점(℃)Boiling point (℃) 임계온도(℃)Critical temperature (℃) 임계압력(MPa)Critical pressure (MPa) 이소부탄Isobutane CH(CH3)3 CH (CH 3 ) 3 -11.7-11.7 134.9134.9 3.723.72 R-116R-116 CF3CF3 CF 3 CF 3 -78.2-78.2 19.719.7 2.982.98 R-23R-23 CHF3 CHF 3 -82.2-82.2 25.625.6 4.8374.837 R-14R-14 CF4 CF 4 -128-128 -45.5-45.5 3.7433.743

도 1은 본 발명에 사용된 단단냉동시스템을 나타낸 개략도이다. 도면을 참조하면, 압축기(10)에서 압축된 냉매는 응축기(20)에서 방열되고, 드라이어(drier)(30)로 보내진다. 상기 드라이어(30)는 냉매에 함유되어 있는 산, 먼지, 왁스 등의 각종 이물질을 거르고 수분을 흡수하여 이물질로부터 냉동시스템을 보호하는 역할을 한다. 상기 드라이어(30)를 거친 냉매는 모세관(40)으로 보내져 감압되고, 냉동고(70)내의 증발기(60)에서 기화하여 상기 냉동고(70) 안을 냉각한 후, 열교환부(50)를 거쳐 다시 압축기(10)로 되돌려진다. 상기 열교환부(50)는 흡입관과 모세관 및 고압액관 사이에서 열교환이 이루어지도록 구성되어 있다. 상기 증발기(60)에서 기화한 후 압축기로 송환되는 저온의 냉매가 상기 열교환부(50)를 거치면 고압의 냉매를 냉각시킴으로써, 그 온도를 저하시켜 응축과정을 촉진하 는 한편 압력을 저하시켜 압축기의 부하를 감소시킬 수 있다. 또한, 압축기로 되돌아가는 냉매의 현열, 잠열을 이용함으로써 에너지효율을 향상시킬 수 있다.1 is a schematic view showing a single stage refrigeration system used in the present invention. Referring to the drawings, the refrigerant compressed in the compressor 10 is radiated in the condenser 20 and sent to a dryer 30. The dryer 30 filters the various foreign substances such as acid, dust, wax, etc. contained in the refrigerant and absorbs moisture to protect the refrigeration system from the foreign substances. After passing through the dryer 30, the refrigerant is sent to the capillary tube 40 to depressurize, vaporizes in the evaporator 60 in the freezer 70, cools the inside of the freezer 70, and then passes through the heat exchange unit 50 again. 10) is returned. The heat exchange part 50 is configured to exchange heat between the suction pipe and the capillary and the high pressure liquid pipe. After the low-temperature refrigerant vaporized by the evaporator 60 and returned to the compressor passes through the heat exchange unit 50, the refrigerant of high pressure cools the high-pressure refrigerant, thereby lowering the temperature to promote the condensation process and lowering the pressure. The load can be reduced. In addition, energy efficiency can be improved by using sensible heat and latent heat of the refrigerant returned to the compressor.

실시예 1 내지 7: 이소부탄/R-116/ R-23의 혼합냉매Examples 1 to 7: Mixed refrigerant of isobutane / R-116 / R-23

표 2에 나타낸 조성으로 통상의 방법을 사용하여 혼합냉매를 제조하고, 도 1의 단단냉동기를 이용하여 냉매로서의 특성을 확인하였다. 도 1의 단단냉동기에 이소부탄/R-116/R-23의 혼합냉매를 350∼437.5g 충전하고 실내온도 28℃에서 운전하여, 냉동고의 고내온도와 압축기의 토출압력과 흡입압력을 측정하였으며, 그 결과를 표 3에 나타내었다. 토출압력과 흡입압력은 게이지압력이다.The mixed refrigerant was prepared using a conventional method with the composition shown in Table 2, and the characteristics as a refrigerant were confirmed using the single stage refrigerator of FIG. The single stage freezer of FIG. 1 was charged with 350-437.5 g of mixed refrigerant of isobutane / R-116 / R-23 and operated at room temperature of 28 ° C. to measure the internal temperature of the freezer, the discharge pressure and the suction pressure of the compressor. The results are shown in Table 3. The discharge pressure and suction pressure are gauge pressures.

혼합냉매(중량%)Mixed refrigerant (wt%) 이소부탄Isobutane R-116R-116 R-23R-23 실시예 1Example 1 4444 2828 2828 실시예 2Example 2 5050 2525 2525 실시예 3Example 3 5454 2323 2323 실시예 4Example 4 6060 2020 2020 실시예 5Example 5 6464 1818 1818 실시예 6Example 6 7070 1515 1515 실시예 7Example 7 7474 1313 1313

냉동고내 온도(℃)Freezer temperature (℃) 토출압력(kgf/㎠)Discharge pressure (kgf / ㎠) 흡입압력(kgf/㎠)Suction pressure (kgf / ㎠) 실시예 1Example 1 -50-50 2020 1.21.2 실시예 2Example 2 -74.5-74.5 1111 0.20.2 실시예 3Example 3 -73-73 9.59.5 0.250.25 실시예 4Example 4 -72-72 77 0.10.1 실시예 5Example 5 -68-68 6.76.7 00 실시예 6Example 6 -63-63 66 00 실시예 7Example 7 -55-55 66 5* 5 *

*진공압력임(cmHg)* Vacuum pressure (cmHg)

혼합냉매를 단단냉동사이클에서 운전하는 경우, 냉동고내 온도를 -60℃이하, 특히 -80℃이하로 달성할 수 있으며, 이와 동시에 압축기의 부하를 줄이기 위해 토출압력은 15kgf/㎠이하의 특성을 나타내는 초저온용 혼합냉매가 바람직하다.When operating a mixed refrigerant in a single stage refrigeration cycle, the freezer temperature can be achieved below -60 ° C, especially below -80 ° C. At the same time, the discharge pressure is 15kgf / cm2 or less to reduce the load on the compressor. Cryogenic mixed refrigerants are preferred.

표 3에서 알 수 있듯이, 이소부탄의 농도가 증가함에 따라 토출압력은 감소하지만 냉동고내 온도는 증가하는 경향을 나타내었으며, R-116 및 R-23의 농도가 증가하면 냉동고내 온도는 감소하지만 토출압력이 증가하는 경향을 나타내었다.As can be seen from Table 3, as the concentration of isobutane increases, the discharge pressure decreases but the temperature in the freezer tends to increase, and as the concentration of R-116 and R-23 increases, the temperature in the freezer decreases but the discharge The pressure tended to increase.

토출압력은 이소부탄과 R-116과 R-23의 혼합비율이 70:15:15 부근 영역에서 낮게 유지되지만 온도저하 효과가 떨어졌으며, 50:25:25 부근 영역에서는 토출압력이 현저하게 높아지고 온도저하 효과도 떨어졌다. 따라서 이소부탄과 R-116과 R-23의 혼합비율은 70:15:15 내지 50:25:25 범위내인 것이 바람직하다. 더욱 바람직하게는, 이소부탄 60중량%, R-116 20중량%, 및 R-23 20중량% 포함하는 혼합냉매는 토출압력 7kgf/㎠에서 -72℃의 초저온을 달성할 수 있다.The discharge pressure is kept low in the region where the mixing ratio of isobutane, R-116 and R-23 is around 70:15:15, but the temperature lowering effect is lowered. In the region around 50:25:25, the discharge pressure is significantly higher and the temperature is The deterioration effect also fell. Therefore, the mixing ratio of isobutane, R-116, and R-23 is preferably in the range of 70:15:15 to 50:25:25. More preferably, the mixed refrigerant including 60% by weight of isobutane, 20% by weight of R-116, and 20% by weight of R-23 may achieve ultra low temperature of −72 ° C. at a discharge pressure of 7 kgf / cm 2.

실시예 8 내지 5: 이소부탄/R-116/ R-23/R-14의 혼합냉매Examples 8 to 5: Mixed refrigerant of isobutane / R-116 / R-23 / R-14

표 4에 나타낸 조성으로 통상의 방법을 사용하여 혼합냉매를 제조하고, 도 1의 단단냉동기를 이용하여 냉매로서의 특성을 확인하였다. 도 1의 단단냉동기에 이소부탄/R-116/R-23/R-14의 혼합냉매를 350∼437.5g 충전하고 실내온도 28℃에서 운전하여, 냉동고의 고내온도와 압축기의 토출압력과 흡입압력을 측정하였으며, 그 결과를 표 5에 나타내었다. 토출압력과 흡입압력은 게이지압력이다.The mixed refrigerant was prepared using a conventional method with the composition shown in Table 4, and the characteristics as the refrigerant were confirmed using the single stage refrigerator of FIG. The single stage refrigerator of FIG. 1 was charged with 350-437.5 g of a mixed refrigerant of isobutane / R-116 / R-23 / R-14 and operated at room temperature of 28 ° C. Was measured, and the results are shown in Table 5. The discharge pressure and suction pressure are gauge pressures.

혼합냉매(중량%)Mixed refrigerant (wt%) 이소부탄Isobutane R-116R-116 R-23R-23 R-14R-14 실시예 8Example 8 58.858.8 19.619.6 19.619.6 22 실시예 9Example 9 5757 1919 1919 55 실시예 10Example 10 5454 1818 1818 1010 실시예 11Example 11 5151 1717 1717 1515 실시예 12Example 12 4848 1616 1616 2020

냉동고내 온도(℃)Freezer temperature (℃) 토출압력(kgf/㎠)Discharge pressure (kgf / ㎠) 흡입압력(kgf/㎠)Suction pressure (kgf / ㎠) 실시예 8Example 8 -74-74 7.37.3 0.150.15 실시예 9Example 9 -76-76 8.58.5 0.250.25 실시예 10Example 10 -89-89 11.511.5 0.330.33 실시예 11Example 11 -92-92 17.517.5 0.40.4 실시예 12Example 12 -78-78 2020 0.450.45

표 5에 나타나 있듯이, 이소부탄 50∼70중량%, R-116 15∼25중량%, 및 R-23 15∼25중량% 이루어진 혼합냉매에 R-14의 첨가량을 달리하여 시험한 결과, R-14의 농도가 증가함에 따라 냉동고내 온도 저하 효과는 증가하지만 토출압력도 증가하는 경향을 나타내었다. R-14의 농도가 15중량%을 초과하면 냉동고내 온도 저하 효과가 현저하게 떨어지며 토출압력도 증가한다. 따라서 -80℃의 초저온도를 낮은 토출압력에서 달성하기 위해서는 R-14를 혼합냉매 전체 중량에 대해 5∼15중량% 포함하는 것이 바람직하다. 더욱 바람직하게는, 이소부탄 54중량%, R-116 18중량%, R-23 18중량%, 및 R-14 10중량% 포함하는 혼합용매는 토출압력 11.5kgf/㎠에서 -89℃의 냉동고내 온도를 구현할 수 있다.As shown in Table 5, the mixed refrigerant consisting of 50 to 70% by weight of isobutane, 15 to 25% by weight of R-116, and 15 to 25% by weight of R-23 was tested with different amounts of R-14. As the concentration of 14 increased, the effect of lowering the temperature in the freezer increased, but the discharge pressure also increased. When the concentration of R-14 exceeds 15% by weight, the effect of lowering the temperature in the freezer is remarkably reduced and the discharge pressure is also increased. Therefore, in order to achieve an ultra-low temperature of -80 ° C at a low discharge pressure, it is preferable to include 5 to 15% by weight of R-14 based on the total weight of the mixed refrigerant. More preferably, the mixed solvent containing 54% by weight of isobutane, 18% by weight of R-116, 18% by weight of R-23, and 10% by weight of R-14 is in a freezer at -89 ° C at a discharge pressure of 11.5 kgf / cm 2. Temperature can be achieved.

상술한 바와 같이, 본 발명에 따른 초저온용 혼합냉매는 흡입관과 모세관 및 고압 액관의 열교환이 이루어지는 단단냉동사이클에서 15kgf/㎠이하의 낮은 토출압력에서 -60℃이하, 특히 -80℃의 냉동고내 온도를 달성할 수 있으며, 오존층 파괴의 위험성이 없는 친환경적인 냉매를 제공할 수 있다. As described above, the cryogenic mixed refrigerant according to the present invention has a temperature in the freezer of -60 ° C. or less, especially -80 ° C., at a low discharge pressure of 15 kgf / cm 2 or less in a single stage refrigeration cycle in which heat exchange between the suction tube, the capillary tube and the high pressure liquid tube is performed. It can achieve and can provide an environmentally friendly refrigerant without the risk of ozone layer destruction.

본 발명에 대해 상기 실시예를 참고하여 설명하였으나, 이는 예시적인 것에 불과하며, 본 발명에 속하는 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.
Although the present invention has been described with reference to the above embodiments, it is merely illustrative, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom. . Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.

Claims (4)

이소부탄 50∼70중량%, 퍼플루오로에탄 15∼25중량%, 및 트리플루오로메탄 15∼25중량% 포함하는 초저온용 혼합냉매.A cryogenic mixed refrigerant containing 50 to 70% by weight of isobutane, 15 to 25% by weight of perfluoroethane, and 15 to 25% by weight of trifluoromethane. 제 1 항에 있어서, 이소부탄 60중량%, 퍼플루오로에탄 20중량%, 및 트리플루오로메탄 20중량% 포함하는 초저온용 혼합냉매.The cryogenic mixed refrigerant according to claim 1, comprising 60% by weight of isobutane, 20% by weight of perfluoroethane, and 20% by weight of trifluoromethane. 제 1 항 또는 제2항에 있어서, 테트라플로오로메탄을 혼합냉매 전체 중량에 대해 5∼15중량% 더 포함하는 초저온용 혼합냉매.The cryogenic mixed refrigerant according to claim 1 or 2, further comprising 5 to 15% by weight of tetrafluoromethane based on the total weight of the mixed refrigerant. 제 3 항에 있어서, 이소부탄 54중량%, 퍼플루오로에탄 18중량%, 트리플루오로메탄 18중량%, 및 테트라플루오로메탄 10중량% 포함하는 초저온용 혼합냉매.The cryogenic mixed refrigerant according to claim 3, comprising 54% by weight of isobutane, 18% by weight of perfluoroethane, 18% by weight of trifluoromethane, and 10% by weight of tetrafluoromethane.
KR1020040034085A 2004-05-14 2004-05-14 Refrigerant mixture for providing ultra-low temperature KR100558212B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040034085A KR100558212B1 (en) 2004-05-14 2004-05-14 Refrigerant mixture for providing ultra-low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040034085A KR100558212B1 (en) 2004-05-14 2004-05-14 Refrigerant mixture for providing ultra-low temperature

Publications (2)

Publication Number Publication Date
KR20050108871A KR20050108871A (en) 2005-11-17
KR100558212B1 true KR100558212B1 (en) 2006-03-14

Family

ID=37284902

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040034085A KR100558212B1 (en) 2004-05-14 2004-05-14 Refrigerant mixture for providing ultra-low temperature

Country Status (1)

Country Link
KR (1) KR100558212B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000036953A (en) * 2000-04-03 2000-07-05 은병선 Composition of hydrocarbon refrigerant mixtures for alternating of refrigerant R-12 and R-22
KR20020001630A (en) * 2000-06-28 2002-01-09 조안 엠. 젤사 ; 로버트 지. 호헨스타인 ; 도로시 엠. 보어 Food freezing method using a multicomponent refrigerant
KR20020019681A (en) * 2000-09-06 2002-03-13 권오석 The composition of refrigerant mixtures for low back pressure condition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000036953A (en) * 2000-04-03 2000-07-05 은병선 Composition of hydrocarbon refrigerant mixtures for alternating of refrigerant R-12 and R-22
KR20020001630A (en) * 2000-06-28 2002-01-09 조안 엠. 젤사 ; 로버트 지. 호헨스타인 ; 도로시 엠. 보어 Food freezing method using a multicomponent refrigerant
KR20020019681A (en) * 2000-09-06 2002-03-13 권오석 The composition of refrigerant mixtures for low back pressure condition

Also Published As

Publication number Publication date
KR20050108871A (en) 2005-11-17

Similar Documents

Publication Publication Date Title
EP0615538B1 (en) Refrigerant compositions and processes for using same
KR100190185B1 (en) Non-azeotropic refrigerant compositions comprising difluoromethane; 1,1 1-trifluoroethane; or propane
ES2594182T3 (en) Compositions comprising tetrafluoropropene and carbon dioxide
KR100652080B1 (en) Refrigeration apparatus
KR100208112B1 (en) Constant boiling point compositions of fluorinated hydrocarbons
US5744052A (en) Azeotrope-like compositions containing difluoromethane, pentafluoroethane, and carbon dioxide
WO2014156190A1 (en) Dual refrigeration device
Bolaji Selection of environment-friendly refrigerants and the current alternatives in vapour compression refrigeration systems
US10150901B2 (en) Compositions containing 1,1,1,4,4,4-hexafluorobut-2-ene and 3,3,4,4,4-petrafluorobut-1-ene
JP2009024152A (en) Nonflammable composition of low global warming factor comprising trifluoroiodomethane and difluoromethane
JP2003013051A (en) Composition of difluoromethane and tetrafluoroethane
JP2001509180A (en) Mixtures of pentafluoropropane with hydrofluorocarbons having 3 to 6 carbon atoms
WO2019022138A1 (en) Working medium for heat cycle, composition for heat cycle system, and heat cycle system
JP2017096503A (en) Binary refrigeration device
KR20120102812A (en) Azeotropic and azeotrope-like compositions of z-1,1,1,4,4,4-hexafluoro-2-butene, trans-1,2-dichloroethylene, and 1,1,1,3,3-pentafluorobutane
JPH07503741A (en) Compositions useful as refrigerants
US8679363B2 (en) Refrigerant for high-temperature heat transfer
KR100558212B1 (en) Refrigerant mixture for providing ultra-low temperature
EP0558763A1 (en) Refrigerant and refrigerator
EP0598907B1 (en) Azeotropic flouroalkane mixtures
JPH07502774A (en) Compositions useful as refrigerants
EP0922077B1 (en) Refrigerant compositions
EP0564653A1 (en) Fluoroalkane mixture
JP2014196869A (en) Cascade refrigeration system
CA3167828A1 (en) Compositions

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130125

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20131219

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160218

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170420

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180321

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190320

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20191231

Year of fee payment: 15