KR100557836B1 - Acrylic dicyclopentadiene monomer and the preparation the same, and the hardener using the same - Google Patents

Acrylic dicyclopentadiene monomer and the preparation the same, and the hardener using the same Download PDF

Info

Publication number
KR100557836B1
KR100557836B1 KR1020030030079A KR20030030079A KR100557836B1 KR 100557836 B1 KR100557836 B1 KR 100557836B1 KR 1020030030079 A KR1020030030079 A KR 1020030030079A KR 20030030079 A KR20030030079 A KR 20030030079A KR 100557836 B1 KR100557836 B1 KR 100557836B1
Authority
KR
South Korea
Prior art keywords
dcpd
acid
acrylated
group
dicyclopentadiene
Prior art date
Application number
KR1020030030079A
Other languages
Korean (ko)
Other versions
KR20040097709A (en
Inventor
정한철
송인표
손창호
최광식
이영철
Original Assignee
애경화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 애경화학 주식회사 filed Critical 애경화학 주식회사
Priority to KR1020030030079A priority Critical patent/KR100557836B1/en
Publication of KR20040097709A publication Critical patent/KR20040097709A/en
Application granted granted Critical
Publication of KR100557836B1 publication Critical patent/KR100557836B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/30Wind motors specially adapted for installation in particular locations
    • F03D9/32Wind motors specially adapted for installation in particular locations on moving objects, e.g. vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • B60L8/006Converting flow of air into electric energy, e.g. by using wind turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/11Combinations of wind motors with apparatus storing energy storing electrical energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/221Rotors for wind turbines with horizontal axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Abstract

본 발명은 아크릴화 디시클로펜타디엔(Dicyclopentadiene, 이하 DCPD라 함) 모노머, 이의 제조방법 및 이를 이용한 경화물에 관한 것이다. 보다 상세하게는 시클로펜타디엔 이합체인 디시클로펜타디엔(DCPD)에 아크릴기를 도입하여 상온에서 라디칼 중합이 가능한 DCPD 모노머를 합성하고, 이를 이용하여 상온에서도 중합가능한 경화물을 제공한다. The present invention relates to an acrylated dicyclopentadiene (hereinafter referred to as DCPD) monomer, a preparation method thereof and a cured product using the same. More specifically, by introducing an acryl group into a cyclopentadiene dimer dicyclopentadiene (DCPD) to synthesize a DCPD monomer capable of radical polymerization at room temperature, using this to provide a cured product that can be polymerized at room temperature.

아크릴기 * 디시클로펜타디엔(DCPD) * 경화물 * 라디칼 중합Acrylic group * Dicyclopentadiene (DCPD) * Cured product * Radical polymerization

Description

아크릴화 디시클로펜타디엔 모노머, 이의 제조방법 및 이를 이용한 경화물{Acrylic dicyclopentadiene monomer and the preparation the same, and the hardener using the same} Acrylic dicyclopentadiene monomer and the preparation the same, and the hardener using the same

본 발명은 아크릴화 디시클로펜타디엔(Dicyclopentadiene, 이하 DCPD라 함) 모노머, 이의 제조방법 및 이를 이용한 경화물에 관한 것이다. 보다 상세하게는 시클로펜타디엔 이합체인 디시클로펜타디엔(DCPD)에 아크릴기를 도입하여 상온에서 라디칼 중합이 가능한 DCPD 모노머를 합성하고, 이를 이용하여 상온에서도 중합가능한 경화물을 제공한다. The present invention relates to an acrylated dicyclopentadiene (hereinafter referred to as DCPD) monomer, a preparation method thereof and a cured product using the same. More specifically, by introducing an acryl group into a cyclopentadiene dimer dicyclopentadiene (DCPD) to synthesize a DCPD monomer capable of radical polymerization at room temperature, using this to provide a cured product that can be polymerized at room temperature.

일반적으로 나프타 크래커에서 분리된 C5에는 18-22% 정도의 시클로펜타디엔을 함유하고 있으며, 상기의 시클로펜타디엔은 상온 상압에서 이합체로 존재한다. 시클로펜타디엔 이합체인 디시클로펜타디엔(Dicyclopentadiene, 이하 DCPD라 함)은 순도에 따라 여러 가지 용도로 이용되고 있다. 구체적으로, 저순도(70~85%) DCPD는 석유수지, 불포화폴리에스테르 수지 등에 이용되며, 90~95% DCPD는 EPDM 탄성재료로, 그리고 고순도(95~99%) DCPD는 COC(Cyclo Olefin Copolymer)와 개환중합반응(Ring Open Metathesis Polymerization, 이하 ROMP라 함)을 통한 반응 사출성형(Reaction Injection Molding, 이하 RIM이라 함) 분야 등에 다양하게 이용되고 있다. 그러나, 현재 나프타 크래커에서 분리되는 C5 중 대부분의 DCPD는 화석연료로 이용되고 있으며, 여러 가지 용도로 사용되는 DCPD의 양은 매우 미미한 편이다. In general, C5 separated from the naphtha cracker contains about 18-22% of cyclopentadiene, and the cyclopentadiene is present as a dimer at normal temperature and pressure. Dicyclopentadiene (Dicyclopentadiene, hereinafter referred to as DCPD), a cyclopentadiene dimer, is used for various purposes depending on the purity. Specifically, low purity (70 ~ 85%) DCPD is used for petroleum resin, unsaturated polyester resin, etc., 90 ~ 95% DCPD is EPDM elastic material, and high purity (95 ~ 99%) DCPD is COC (Cyclo Olefin Copolymer) And Reaction Injection Molding (hereinafter referred to as RIM) through Ring Open Metathesis Polymerization (ROMP). However, most DCPD among C5 separated from naphtha crackers is used as fossil fuel, and the amount of DCPD used for various purposes is very small.

상기 DCPD에 관한 구체적인 종래기술은 다음과 같다. Specific prior arts related to the DCPD are as follows.

미국특허 제3,074,918호(1963년)에서 Eleuterio에 의해 처음 보고된 환형올레핀의 개환중합반응은 이중결합을 갖는 다양한 환형 모노머를 이용한 고분자 중합체를 가능하게 했다. 그 중에서도 고순도 DCPD를 모노머로 이용한 개환중합반응은 DCPD를 이용한 RIM 성형이 가능하다는 큰 장점을 갖는다. 그러나, 상기의 RIM 성형은 고순도의 DCPD를 사용해야만 하며, 반응 촉매 또한 수분이나 공기에 매우 민감하여 설비비가 매우 높은 단점을 갖는다. 이에 1990년대 초반부터 수분이나 공기에 덜 민감한 루테늄계 ROMP 촉매가 개발되어 보다 쉽게 RIM 성형이 가능하게 되었다(Grubbs,R.H.외 J.Am.Chem.Soc., 1992, 114, 3974). 상기 루테늄계 ROMP 촉매에 관한 기술도 발전하여 Robert H. Grubbs는 미국특허 제 6,020443호(2000년)에서 저순도(81~86%) DCPD에서도 활성을 갖는 루테늄계 개환중합촉매를 보고하였다. 그러나, 상기 발명의 경우에는 저순도의 DCPD에서 과량의 루테늄계 ROMP촉매를 사용하여야 하며, 고순도 DCPD의 경우와 비교하여 활성이 현저히 낮아 반응온도를 50℃ 이상 높여야만 하는 문제점이 있다. 뿐만 아니라, 루테늄계 ROMP 촉매의 가격이 대단히 높아 사용량에 있어 많은 제약을 받게 되는 문제점이 있다. The ring-opening polymerization of cyclic olefins, first reported by Eleuterio in US Pat. No. 3,074,918 (1963), enabled polymer polymers using various cyclic monomers with double bonds. Among them, the ring-opening polymerization reaction using high purity DCPD as a monomer has the great advantage that RIM molding using DCPD is possible. However, the above-mentioned RIM molding must use high purity DCPD, and the reaction catalyst is also very sensitive to moisture or air, and thus has a high equipment cost. Since the early 1990s, ruthenium-based ROMP catalysts, which are less sensitive to moisture or air, have been developed, making RIM molding easier (Grubbs, RH et al . J. Am. Chem. Soc. , 1992, 114, 3974). The development of the ruthenium-based ROMP catalyst has also been developed and Robert H. Grubbs reported a ruthenium-based ring-opening polymerization catalyst having activity even at low purity (81-86%) DCPD in US Patent No. 6,020443 (2000). However, in the case of the present invention, an excess ruthenium-based ROMP catalyst should be used in the low purity DCPD, and there is a problem in that the reaction temperature is significantly lower than that of the high purity DCPD, thereby increasing the reaction temperature by 50 ° C or more. In addition, the price of the ruthenium-based ROMP catalyst is very high, there is a problem that a lot of restrictions on the usage.

따라서, 효과적으로 DCPD를 이용하기 위하여 ROMP 반응의 활성도가 큰 촉매 의 개발과 더불어 DCPD 모노머 자체의 활성을 높이기 위하여 DCPD에 반응성기가 도입된 유도체 합성에 대한 연구가 진행되어 왔다. 미국특허 제 3,642,750호(1972년)에서는 코팅용으로 사용하기 위하여 처음으로 DCPD-diol에 에스테르화 반응으로 아크릴기를 도입하였으며, 그 후에도 광경화형 모노머로 이용하기 위하여 아크릴이 도입된 환형올레핀에 대한 연구가 진행되었다. 또한, 최근 들어서는 보다 활성을 높이기 위하여 DCPD에 에폭시기가 도입된 광경화형 모노머에 대한 보고도 있다(Crivello, J.V.외, Chem.Mater., 2000, 12, 3674). 그러나, 상기와 같이 다양한 반응성기가 도입된 DCPD의 경우, 제조 공정에서 알콜화 또는 알콕시화된 DCPD 유도체를 사용하였으며, 반응 공정 또한 여러 단계일 뿐만 아니라 합성된 모노머의 용도는 코팅이나 광경화형 모노머 등으로 제한되는 문제점이 있다. Therefore, research has been conducted on the synthesis of derivatives having reactive groups introduced into DCPD in order to increase the activity of DCPD monomers as well as the development of a catalyst having high activity of ROMP reaction in order to effectively utilize DCPD. U. S. Patent No. 3,642, 750 (1972) first introduced an acrylic group in an esterification reaction to DCPD-diol for use as a coating, and thereafter, studies on cyclic olefins in which acrylic was introduced for use as a photocurable monomer Progressed. In addition, recently, there is a report on a photocurable monomer in which an epoxy group is introduced into DCPD to enhance activity (Crivello, JV et al . , Chem. Mater. , 2000, 12, 3674). However, in the case of DCPD in which various reactive groups are introduced as described above, alcoholic or alkoxylated DCPD derivatives were used in the manufacturing process, and the reaction process is not only in several stages but also the use of the synthesized monomers is applied to coating or photocurable monomers. There is a problem that is limited.

이에, 본 발명자들은 상기의 개환중합 반응의 문제점을 해결하기 위해 상온에서도 보다 쉽게 라디칼 중합반응이 가능한 DCPD 유도체를 연구한 결과, DCPD에 아크릴기를 도입하여 DCPD 유도체를 합성할 경우 상온에서 라디칼 중합이 가능하고, 상기 DCPD 유도체를 이용하여 경화물을 상온에서 중합하여 제조할 수 있음을 발견하고 본 발명을 완성하였다. Thus, the present inventors have studied the DCPD derivative which can be radically polymerized more easily even at room temperature in order to solve the problem of the ring-opening polymerization reaction, when radical polymerization is possible at room temperature when synthesizing the DCPD derivative by introducing an acrylic group into DCPD In addition, the present invention was completed by finding that the cured product may be polymerized at room temperature using the DCPD derivative.

따라서, 본 발명의 목적은 디시클로펜타디엔에 아크릴기를 도입한 아크릴화 디시클로펜타디엔 모노머를 제공하는 것이다. Accordingly, an object of the present invention is to provide an acrylated dicyclopentadiene monomer in which an acryl group is introduced into dicyclopentadiene.

또한, 본 발명의 다른 목적은 상기 아크릴화 디시클로펜타디엔 모노머의 제 조방법을 제공하는 것이다. Another object of the present invention is to provide a method for preparing the acrylated dicyclopentadiene monomer.

또한, 본 발명의 다른 목적은 상기 아크릴화 디시클로펜타디엔 모노머를 이용하여 제조한 경화물을 제공하는 것이다.
In addition, another object of the present invention is to provide a cured product prepared using the acrylated dicyclopentadiene monomer.

상기한 목적을 달성하기 위하여, 본 발명은 디시클로펜타디엔에 아크릴기를 도입하여 라디칼 중합이 가능한 아크릴화 디시클로펜타디엔 모노머를 제공한다. In order to achieve the above object, the present invention provides an acrylated dicyclopentadiene monomer capable of radical polymerization by introducing an acrylic group into dicyclopentadiene.

이하, 본 발명을 보다 상세히 설명한다. Hereinafter, the present invention will be described in more detail.

본 발명의 아크릴화 디시클로펜타디엔은 디시클로펜타디엔(DCPD)에 활성이 큰 관능기인 아크릴기를 도입한 것이다. 구체적인 예로는 하기 화학식 1~3을 표시되는 모노머이다. The acrylated dicyclopentadiene of this invention introduce | transduces the acryl group which is a high functional group to dicyclopentadiene (DCPD). Specific examples thereof are monomers represented by the following Chemical Formulas 1 to 3.

(a) DCPD+아크릴산 (b) DCPD+히이디록시아크릴레이트(a) DCPD + Acrylic Acid (b) DCPD + Hydroxyacrylate

Figure 112003016841007-pat00001
Figure 112003016841007-pat00002
Figure 112003016841007-pat00001
Figure 112003016841007-pat00002

(상기 식중, R은 H 또는 알킬기, n은 0∼5인 정수이다.) (Wherein R is H or an alkyl group and n is an integer of 0 to 5)

DCPD+다가염기산+하이드록시아크릴레이트DCPD + Polybasic Acid + Hydroxyacrylate

Figure 112003016841007-pat00003
Figure 112003016841007-pat00003

(상기 식중, R은 H 또는 알킬기, n은 0∼5인 정수이며, A는 디카르복시산 또는 디카르복시무수산이다.)(Wherein R is H or an alkyl group, n is an integer of 0 to 5, and A is dicarboxylic acid or dicarboxylic anhydride.)

DCPD+다가염기산+에폭시아크릴레이트DCPD + Polybasic Acid + Epoxyacrylate

Figure 112003016841007-pat00004
Figure 112003016841007-pat00004

(상기 식중, A는 디카르복시산 또는 디카르복시무수산이며, E는 에폭시아크릴레이트이다.) (Wherein, A is dicarboxylic acid or dicarboxy anhydride, E is epoxy acrylate.)

상기 화학식 1~3으로 표시되는 아크릴화 디시클로펜타디엔 모노머는 일반적인 라디칼 중합 촉매에 의해 쉽게 고분자화가 가능하며, 분자량이나 Tg(유리전이온도) 또한 기존의 폴리머보다 월등히 우수하다. 예를 들면, Poly-DCPD의 경우는 Tg = 110~140℃이며, PMMA의 경우는 Tg = 110℃이다. The acrylated dicyclopentadiene monomer represented by Chemical Formulas 1 to 3 can be easily polymerized by a general radical polymerization catalyst, and molecular weight and Tg (glass transition temperature) are also superior to conventional polymers. For example, Tg = 110-140 ° C. for Poly-DCPD, and Tg = 110 ° C. for PMMA.

본 발명의 아크릴화 DCPC의 제조방법으로는 DCPD에 카르복시기 또는 알콜기를 플로로보릭산과 트리플릭산과 같은 비산화산(Non-Oxidizing Acid), 산(Acid) 또 는 산화제(Acid acting agent)를 이용하여 부가반응법으로 아크릴화 DCPD를 합성(화학식 1)하는 방법; 디카르복시무수산과 같은 다염기산의 개환반응을 통하여 하이드록시아크릴레이트의 알콜기와의 에스테르화 반응을 거친 다음, 상기 화학식 1과 같은 방법으로 부가반응을 통하여 아크릴화 DCPD를 합성(화학식 2)하는 방법; 또는 디카르복시산 또는 디카르복시무수산과 같은 다염기산의 관능기 하나를 부가반응을 통하여 DCPD와 결합시킨 후, 나머지 카르복시산을 에폭시아크릴레이트의 에폭시기 개환반응을 이용하여 아크릴기를 도입하는 방법으로 합성(화학식 3)하는 방법이 있다. 특히, 상기 화학식 3에서 다염기산으로 말레익산을 사용할 경우, 아크릴기 뿐만 아니라 모노머내에 올레핀기까지 도입되어 보다 반응성이 높은 아크릴화 DCPD를 합성할 수 있는 유용한 방법이다.In the preparation method of the acrylated DCPC of the present invention, a carboxyl group or an alcohol group is added to the DCPD using a non-oxidizing acid such as florolic acid and triflic acid, an acid, or an oxidizing agent. A method of synthesizing acrylated DCPD by the method (Formula 1); A method of synthesizing acrylated DCPD through an addition reaction in the same manner as in Formula 1, after esterification of hydroxyacrylate with an alcohol group through a ring-opening reaction of a polybasic acid such as dicarboxylic anhydride; Alternatively, after combining one functional group of a polybasic acid such as dicarboxylic acid or dicarboxylic anhydride with DCPD through an addition reaction, the remaining carboxylic acid is synthesized by introducing an acrylic group using an epoxy group ring-opening reaction of epoxy acrylate (Formula 3). There is this. In particular, when maleic acid is used as the polybasic acid in Chemical Formula 3, not only an acryl group but also an olefin group is introduced into the monomer, and thus, a highly reactive acrylated DCPD may be synthesized.

본 발명의 제조방법으로 아크릴화 DCPD는 종래의 하이드록시화 DCPD[HO-(CH2)n-DCPD]에 에스테르화 반응을 통하여 아크릴산을 도입한 방법(미국 특허 제3,642,750호)과는 달리, 부가반응을 통하여 DCPD에 도입함으로써 보다 다양한 아크릴기를 도입한 DCPD 모노머가 가능하다. 특히, 종래의 에스테르화 반응을 위해서는 DCPD에 에틸렌옥사이드를 반응시킨 하이드록시화 DCPD가 반응물로 사용될 경우, 이 또한 쉬운 반응이 아니며 가격 또한 비싸다. 따라서, 본 발명의 제조방법은 다양한 아크릴기를 부가반응을 통하여 DCPD에 도입하는 방법으로 보다 간편하고 경제적인 방법으로 매우 유용하다.In the preparation method of the present invention, the acrylated DCPD is an addition reaction, unlike the method of introducing acrylic acid through esterification to a conventional hydroxylated DCPD [HO- (CH 2 ) n -DCPD] (US Pat. No. 3,642,750). By introducing into DCPD through it is possible to introduce a DCPD monomer more various acrylic groups. In particular, when the hydroxylated DCPD in which ethylene oxide is reacted with DCPD is used as a reactant for the conventional esterification reaction, this also is not an easy reaction and is expensive. Therefore, the preparation method of the present invention is very useful as a simpler and more economical way to introduce various acrylic groups into the DCPD through the addition reaction.

한편, 상기에서 합성된 아크릴화 DCPD 모노머는 비닐기를 갖고 있어 보다 쉽 게 상온에서 비닐기 라디칼 중합(free radical vinyl polymerization)이 가능하게 된다. 따라서, 합성된 아크릴화 DCPD 모노머에 BPO(Dibenzoyl peroxide, C6H5CO-OO-COC6H5)분말 또는 페이스트와 3차 아민류 구체적으로 DMA(Dimetyl Aniline), DEA(Diethyl Aniline), DMPT(Dimethyl-para- toluidine), EPT(Ethoxylated-para-toluidine), 또는 MHPT(methyl hydroxylethyl-para-toluidine) 등을 사용하여 중합을 개시하면 경화물을 얻을 수 있다. On the other hand, since the acrylated DCPD monomer synthesized above has a vinyl group, free radical vinyl polymerization is possible at room temperature more easily. Therefore, BPO (Dibenzoyl peroxide, C 6 H 5 CO-OO-COC 6 H 5 ) powder or paste and tertiary amines in the synthesized acrylated DCPD monomer are specifically DMA (Dimetyl Aniline), DEA (Diethyl Aniline), DMPT (Dimethyl) A cured product can be obtained by initiating polymerization using -para- toluidine (Ethoxylated-para-toluidine), EPT (methyl hydroxylethyl-para-toluidine), or the like.

이하, 실시예를 들어 본 발명을 보다 상세히 설명하지만, 본 발명이 하기 예로만 한정되는 것은 아니다. Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited only to the following example.

[실시예 1] DCPD 아크릴레이트 합성Example 1 DCPD Acrylate Synthesis

온도계, 질소가스 도입관, 교반기 및 콘덴서가 장착된 플라스크에 85% DCPD(LG석유화학사제) 1몰(155.54g)과 톨루하이드로퀴논 200ppm을 투입한 후, 100℃까지 승온하였다. 다음, 100℃를 유지하면서 아크릴산 1몰(72.1g)과 트리플릭산(CF3SO3H)을 아크릴산 대비 0.1wt%(0.072g)를 섞은 용액을 2시간에 걸쳐 적가하였다. 적가가 끝난 후, 30분마다 산가를 측정하여 5시간 경과후 산가 20 KOH ㎖/g에서 하이드로퀴논 100ppm을 투입하고, 실온까지 냉각하여 반응을 종료하여 DCPD 아크릴레이트를 합성하였다. Into a flask equipped with a thermometer, a nitrogen gas introduction tube, a stirrer, and a condenser, 1 mole (155.54 g) of 85% DCPD (manufactured by LG Petrochemical Co., Ltd.) and 200 ppm of toluhydroquinone were added, and the temperature was raised to 100 ° C. Next, a solution containing 1 mol (72.1 g) of acrylic acid and triflic acid (CF 3 SO 3 H) in comparison with acrylic acid at 0.1 wt% (0.072 g) was added dropwise over 2 hours while maintaining 100 ° C. After the dropwise addition, the acid value was measured every 30 minutes. After 5 hours, 100 ppm of hydroquinone was added at an acid value of 20 KOH ml / g, and cooled to room temperature to terminate the reaction to synthesize DCPD acrylate.

[실시예 2] DCPD 메타아크릴레이트 합성Example 2 DCPD Methacrylate Synthesis

온도계, 질소가스 도입관, 교반기, 및 콘덴서가 장착된 플라스크에 85% DCPD(LG석유화학사제) 1몰(155.54g)과 톨루하이드로퀴논 200ppm을 투입한 후, 100℃까지 승온하였다. 다음, 100℃를 유지하면서 메타아크릴산 1몰과 아크릴산 대비 48% 테트라플로로보릭산(HBF4) 0.5wt%을 섞은 용액을 2시간에 걸쳐 적가하였다. 적가가 끝난 후, 30분마다 산가를 측정하여 5시간 경과후 산가 20 KOH ㎖/g에서 하이드로퀴논 100ppm을 투입하고 실온까지 냉각하여 반응을 종료하여 DCPD 메타아크릴레이트를 합성하였다. Into a flask equipped with a thermometer, a nitrogen gas introduction tube, a stirrer, and a condenser, 1 mole (155.54 g) of 85% DCPD (manufactured by LG Petrochemical Co., Ltd.) and 200 ppm of toluhydroquinone were added, and the temperature was raised to 100 ° C. Next, a solution of 1 mol of methacrylic acid and 0.5 wt% of 48% tetrafluorobolic acid (HBF 4 ) relative to acrylic acid was added dropwise over 2 hours while maintaining 100 ° C. After completion of the dropwise addition, the acid value was measured every 30 minutes. After 5 hours, 100 ppm of hydroquinone was added at an acid value of 20 KOH ml / g, and cooled to room temperature to terminate the reaction to synthesize DCPD methacrylate.

[실시예 3] DCPD 하이드록시에틸아크릴레이트 합성Example 3 Synthesis of DCPD Hydroxyethylacrylate

온도계, 질소가스 도입관, 교반기, 및 콘덴서가 장착된 플라스크에 85% DCPD(LG석유화학사제) 1몰(155.54g)과 톨루하이드로퀴논 200ppm을 투입한 후 60℃까지 승온하였다. 다음, 60℃를 유지하면서 2-하이드록시에틸아크릴레이트 1몰과 아크릴산 대비 48% 테트라플로로보릭산(HBF4) 0.5wt%을 섞은 용액을 2시간에 걸쳐 적가하였다. 적가가 끝나면 30분마다 산가를 측정하여 15시간 경과 후 산가 30 KOH ㎖/g에서 하이드로퀴논 100ppm을 투입하고 실온까지 냉각하여 반응을 종료하여 DCPD 하이드록시에틸아크릴레이트를 합성하였다. Into a flask equipped with a thermometer, a nitrogen gas introduction tube, a stirrer, and a condenser, 1 mole (155.54 g) of 85% DCPD (manufactured by LG Petrochemical) and 200 ppm of toluhydroquinone were added thereto, and the temperature was raised to 60 ° C. Next, a solution of 1 mol of 2-hydroxyethyl acrylate and 0.5 wt% of 48% tetrafluorobolic acid (HBF 4 ) relative to acrylic acid was added dropwise over 2 hours while maintaining 60 ° C. After the dropwise addition, the acid value was measured every 30 minutes. After 15 hours, 100 ppm of hydroquinone was added at an acid value of 30 KOH ㎖ / g, and cooled to room temperature to terminate the reaction to synthesize DCPD hydroxyethyl acrylate.

[실시예 4] DCPD 하이드록시에틸메타아크릴레이트 합성 Example 4 Synthesis of DCPD hydroxyethyl methacrylate

온도계, 질소가스 도입관, 교반기, 및 콘덴서가 장착된 플라스크에 85% DCPD(LG석유화학사제) 1몰(155.54g)과 톨루하이드로퀴논 200ppm을 투입한 후 60℃까지 승온하였다. 60℃를 유지하면서 2-하이드록시에틸메타아크릴레이트 1몰과 아 크릴산 대비 48% 테트라플로로보릭산(HBF4) 0.5wt%을 섞은 용액을 2시간에 걸쳐 적가하였다. 적가가 끝나면 30분마다 산가를 측정하여 15시간 경과 후 산가 30 KOH ㎖/g에서 하이드로퀴논 100ppm을 투입하고 실온까지 냉각하여 반응을 종료하여 DCPD 하이드록시에틸메타아크릴레이트를 합성하였다. Into a flask equipped with a thermometer, a nitrogen gas introduction tube, a stirrer, and a condenser, 1 mole (155.54 g) of 85% DCPD (manufactured by LG Petrochemical) and 200 ppm of toluhydroquinone were added thereto, and the temperature was raised to 60 ° C. A solution containing 1 mol of 2-hydroxyethyl methacrylate and 0.5 wt% of 48% tetrafluorobolic acid (HBF 4 ) relative to acrylic acid was added dropwise over 2 hours while maintaining 60 ° C. After the dropwise addition, the acid value was measured every 30 minutes. After 15 hours, 100 ppm of hydroquinone was added at an acid value of 30 KOH ㎖ / g, and cooled to room temperature to terminate the reaction to synthesize DCPD hydroxyethyl methacrylate.

[실시예 5] DCPD-말레익-하이드록시에틸아크릴레이트 합성Example 5 Synthesis of DCPD-maleic-hydroxyethyl acrylate

온도계, 질소가스 도입관, 교반기, 및 콘덴서가 장착된 플라스크에 무수말레인산 2몰과 2-하이드록시에틸아크릴레이트 1몰을 톨루하이드로퀴논 200ppm과 함께 투입한 후 100℃까지 승온하였다. 다음, 100℃에서 10분마다 산가를 측정하여 산가 262 KOH㎖/g에서 80℃로 냉각한 후, 하이드로퀴논 100ppm을 투입한 후 다시 100℃까지 승온하였다. 100℃에 도달하면 48% 테트라플로로보릭산(HBF4) 0.5wt%을 투입하고, 85% DCPD 1몰을 2시간에 걸쳐 적가하였다. 적가가 끝나면 30분마다 산가를 측정하여 적가가 끝난 뒤 5시간 경과 후 산가 20 KOH㎖/g을 확인하고 하이드로퀴논 100ppm을 투입하고 실온까지 냉각하여 반응을 종료하여 DCPD-말레익-하이드록시에틸아크릴레이트를 제조하였다. Into a flask equipped with a thermometer, a nitrogen gas introduction tube, a stirrer, and a condenser, 2 mol of maleic anhydride and 1 mol of 2-hydroxyethyl acrylate were added together with 200 ppm of toluhydroquinone, and the temperature was raised to 100 ° C. Next, the acid value was measured every 10 minutes at 100 ° C., cooled to 80 ° C. at an acid value of 262 KOHml / g, and then 100 ppm of hydroquinone was added thereto, followed by further heating to 100 ° C. When it reached 100 ° C, 0.5 wt% of 48% tetrafluorobolic acid (HBF 4 ) was added thereto, and 1 mol of 85% DCPD was added dropwise over 2 hours. After the addition, the acid value was measured every 30 minutes. After 5 hours after the addition, the acid value was confirmed by 20 KOHml / g, 100 ppm of hydroquinone was added and cooled to room temperature to terminate the reaction. The rate was prepared.

[실시예 6] DCPD-프탈익-하이드록시에틸아크릴레이트 합성Example 6 Synthesis of DCPD-phthalic-hydroxyethyl acrylate

온도계, 질소가스 도입관, 교반기, 및 콘덴서가 장착된 플라스크에 무수프탈산 2몰과 2-하이드록시에틸아크릴레이트 1몰을 톨루하이드로퀴논 200ppm과 함께 투입한 후 100℃까지 승온하였다. 다음, 100℃에서 10분마다 산가를 측정하여 산가 212 KOH ㎖/g에서 80℃로 냉각한 뒤 하이드로퀴논 100ppm을 투입한 후 다시 100℃ 까지 승온하였다. 100℃에 도달하면 트리플릭산(CF3SO3H) 0.2wt%을 투입하고 85% DCPD 1몰을 2시간에 걸쳐 적가하였다. 다음, 적가가 끝나면 30분마다 산가를 측정하여 적가가 끝난 뒤 5시간 경과후 산가 20 KOH ㎖/g을 확인하고, 하이드로퀴논 100ppm을 투입하고 실온까지 냉각하여 반응을 종료하여 DCPD-프탈익-하이드록시에틸아크릴레이트를 합성하였다. Into a flask equipped with a thermometer, a nitrogen gas introduction tube, a stirrer, and a condenser, 2 mol of phthalic anhydride and 1 mol of 2-hydroxyethyl acrylate were added together with 200 ppm of toluhydroquinone, and the temperature was raised to 100 ° C. Next, the acid value was measured every 10 minutes at 100 ° C., cooled to 80 ° C. at 212 KOH ml / g, and then charged to 100 ppm of hydroquinone, and then heated up to 100 ° C. When the temperature reached 100 ° C., 0.2 wt% of triflic acid (CF 3 SO 3 H) was added thereto, and 1 mol of 85% DCPD was added dropwise over 2 hours. Next, after the dropping, the acid value was measured every 30 minutes. After 5 hours, the acid value was measured 20 KOH ㎖ / g, 100ppm of hydroquinone was added and the reaction was completed by cooling to room temperature to terminate the DCPD-phthalic-hydride. Roxyethyl acrylate was synthesized.

[실시예 7] DCPD-테트라하이드로프탈익-하이드록시에틸메타아크릴레이트 합성 Example 7 Synthesis of DCPD-tetrahydrophthalic-hydroxyethyl methacrylate

온도계, 질소가스 도입관, 교반기, 및 콘덴서가 장착된 플라스크에 테트라하이드로무수프탈산 2몰과 2-하이드록시에틸아크릴레이트 1몰을 톨루하이드로퀴논 200ppm과 함께 투입한 후 100℃까지 승온하였다. 다음, 100℃에서 10분마다 산가를 측정하여 산가 199 KOH㎖/g에서 80℃로 냉각한 뒤 하이드로퀴논 100ppm을 투입한 후 다시 100℃까지 승온하였다. 100℃에 도달하면 48% 테트라플로로보릭산(HBF4) 0.5wt%을 투입하고, 85% DCPD 1몰을 2시간에 걸쳐 적가하였다. 적가가 끝나면 30분마다 산가를 측정하여 적가가 끝난 뒤 5시간 경과 후 산가 20 KOH㎖/g을 확인하고, 하이드로퀴논 100ppm을 투입하고 실온까지 냉각하여 반응을 종료하여 DCPD-테트라하이드로프탈익-하이드록시에틸메타아크릴레이트를 합성하였다. Into a flask equipped with a thermometer, a nitrogen gas introduction tube, a stirrer, and a condenser, 2 mol of tetrahydrophthalic anhydride and 1 mol of 2-hydroxyethyl acrylate were added together with 200 ppm of toluhydroquinone, and the temperature was raised to 100 ° C. Next, the acid value was measured every 10 minutes at 100 ° C., the acid value was cooled to 80 ° C. at 199 KOHml / g, and 100 ppm of hydroquinone was added thereto, and the temperature was again raised to 100 ° C. When it reached 100 ° C, 0.5 wt% of 48% tetrafluorobolic acid (HBF 4 ) was added thereto, and 1 mol of 85% DCPD was added dropwise over 2 hours. After the addition, the acid value was measured every 30 minutes. After 5 hours, the acid value was measured 20 KOHml / g, 100ppm of hydroquinone was added and the reaction was completed by cooling to room temperature to terminate the reaction with DCPD-tetrahydrophthalic-hydr. Roxyethyl methacrylate was synthesized.

[실시예 8] DCPD-석신익-하이드록시에틸메타아크릴레이트 합성Example 8 Synthesis of DCPD-succinic-hydroxyethyl methacrylate

온도계, 질소가스 도입관, 교반기, 및 콘덴서가 장착된 플라스크에 무수석신산 2몰과 2-하이드록시에틸메타아크릴레이트 1몰을 톨루하이드로퀴논 200ppm과 함 께 투입한 후 100℃까지 승온하였다. 다음, 100℃에서 10분마다 산가를 측정하여 산가 244 KOH㎖/g에서 80℃로 냉각한 뒤 하이드로퀴논 100ppm을 투입한 후 다시 100℃까지 승온하였다. 100℃에 도달하면 48% 테트라플로로보릭산(HBF4) 0.5wt%을 투입하고 85% DCPD 1몰을 2시간에 걸쳐 적가하였다. 적가가 끝나면 30분마다 산가를 측정하여 적가가 끝난 뒤 5시간 경과후 산가 20 KOH ㎖/g을 확인하고, 하이드로퀴논 100ppm을 투입하고 실온까지 냉각하여 반응을 종료하여 DCPD-석신익-하이드록시에틸메타아크릴레이트를 합성하였다. Into a flask equipped with a thermometer, a nitrogen gas introduction tube, a stirrer, and a condenser, 2 mol of succinic anhydride and 1 mol of 2-hydroxyethyl methacrylate were added together with 200 ppm of toluhydroquinone, and the temperature was raised to 100 ° C. Next, the acid value was measured every 10 minutes at 100 ° C., cooled to 80 ° C. at an acid value of 244 KOHml / g, and then 100 ppm of hydroquinone was added thereto, and then heated up to 100 ° C. When the temperature reached 100 ° C., 0.5 wt% of 48% tetrafluorobolic acid (HBF 4 ) was added thereto, and 1 mol of 85% DCPD was added dropwise over 2 hours. After the addition, the acid value was measured every 30 minutes. After 5 hours, the acid value was measured 20 KOH ㎖ / g, 100ppm of hydroquinone was added and cooled to room temperature to terminate the reaction. Methaacrylate was synthesized.

[실시예 9] DCPD-말레익-글리시딜메타아크릴레이트 합성Example 9 Synthesis of DCPD-maleic-glycidylmethacrylate

온도계, 질소가스 도입관, 교반기, 및 콘덴서가 장착된 플라스크에 85% DCPD 1몰과 무수말레인산 2몰을 톨루하이드로퀴논 200ppm와 함께 투입한 후 120℃까지 승온하였다. 다음, 120℃에서 증류수 1몰을 온도를 유지하면서 천천히 적가하였다. 적가가 끝난 뒤 10분마다 산가를 측정하여 산가 221 KOH㎖/g을 확인하고 100℃까지 냉각하였다. 100℃에 도달하면 BDMA 0.2wt%를 투입하고 즉시 1몰의 글리시딜메타아크릴레이트을 온도를 유지하면서 1시간 동안 적가하였다. 적가가 끝나면 10분마다 산가를 측정하여 2시간 경과 후 산가 10 KOH㎖/g을 확인하고, 하이드로퀴논 100ppm을 투입하고 실온까지 냉각하여 반응을 종료하여 DCPD-말레익-글리시딜메타아크릴레이트를 합성하였다. Into a flask equipped with a thermometer, a nitrogen gas introduction tube, a stirrer, and a condenser, 1 mol of 85% DCPD and 2 mol of maleic anhydride were added together with 200 ppm of toluhydroquinone, and the temperature was increased to 120 ° C. Next, 1 mol of distilled water was slowly added dropwise while maintaining the temperature at 120 ° C. After the addition, the acid value was measured every 10 minutes to determine the acid value 221 KOHml / g and cooled to 100 ℃. Upon reaching 100 ° C., 0.2 wt% of BDMA was added, and immediately 1 mol of glycidyl methacrylate was added dropwise for 1 hour while maintaining the temperature. After the dropping, the acid value was measured every 10 minutes, and after 2 hours, the acid value was confirmed to be 10 KOHml / g, 100 ppm of hydroquinone was added and the reaction was completed by cooling to room temperature to obtain DCPD-maleic-glycidyl methacrylate. Synthesized.

[제조예 1] DCPD 아크릴레이트의 중합Preparation Example 1 Polymerization of DCPD Acrylate

상기 실시예 1에서 합성한 DCPD 아크릴레이트를 100g을 비이커에 담고, 여기에 50% BPO(Dibenzoyl peroxide, C6H5CO-OO-COC6H5)분말 또는 페이스트를 1.0~2.0g 잘 섞어 녹인 후, DMA(Dimetyl Aniline) 0.2~1.0g을 사용하여 중합을 개시하였다. 얻어진 경화물은 THF(테트라하이드로퓨란)에 녹여 GPC 분석법으로 표준화된 폴리스티렌 기준 상대분자량을 측정하였다.100 g of the DCPD acrylate synthesized in Example 1 was placed in a beaker, and 50% BPO (Dibenzoyl peroxide, C 6 H 5 CO-OO-COC 6 H 5 ) powder or paste was dissolved well by mixing 1.0-2.0 g. Thereafter, polymerization was initiated using 0.2-1.0 g of Dimethyl Aniline (DMA). The resulting cured product was dissolved in THF (tetrahydrofuran) to measure the relative molecular weight of polystyrene standardized by GPC analysis.

[제조예 2] DCPD 메타아크릴레이트의 중합Production Example 2 Polymerization of DCPD Methacrylate

상기 실시예 2에서 합성한 DCPD 메타아크릴레이트를 100g을 비이커에 담고, 여기에 50% BPO(Dibenzoyl peroxide, C6H5CO-OO-COC6H5)분말 또는 페이스트를 1.0~2.0g 잘 섞어 녹인 후, DMA(Dimetyl Aniline) 0.2~1.0g을 사용하여 중합을 개시하였다. 얻어진 경화물은 THF에 녹여 GPC 분석법으로 표준화된 폴리스티렌 기준 상대분자량을 측정하였다.100 g of the DCPD methacrylate synthesized in Example 2 was placed in a beaker, and 50% BPO (Dibenzoyl peroxide, C 6 H 5 CO-OO-COC 6 H 5 ) powder or paste was mixed well with 1.0-2.0 g. After melting, 0.2-1.0 g of DMA (Dimetyl Aniline) was used to initiate polymerization. The obtained cured product was dissolved in THF to measure the relative molecular weight of polystyrene standardized by GPC analysis.

[제조예 3] DDCPD 하이드록시에틸아크릴레이트의 중합Preparation Example 3 Polymerization of DDCPD Hydroxyethylacrylate

상기 실시예 3에서 합성한 DCPD 하이드록시에틸아크릴레이트를 100g을 비이커에 담고, 여기에 50% BPO(Dibenzoyl peroxide, C6H5CO-OO-COC6H5 )분말 또는 페이스트를 1.0~2.0g 잘 섞어 녹인 후, DMPT(Dimethyl-para- toluidine) 0.2~1.0g을 사용하여 중합을 개시하였다. 얻어진 경화물은 THF에 녹여 GPC 분석법으로 표준화된 폴리스티렌 기준 상대분자량을 측정하였다.100 g of the DCPD hydroxyethyl acrylate synthesized in Example 3 was placed in a beaker, and 1.0 to 2.0 g of 50% BPO (Dibenzoyl peroxide, C 6 H 5 CO-OO-COC 6 H 5 ) powder or paste was used. After mixing well, the polymerization was started using 0.2-1.0 g of methyl-para- toluidine (DMPT). The obtained cured product was dissolved in THF to measure the relative molecular weight of polystyrene standardized by GPC analysis.

[제조예 4] DCPD 하이드록시에틸메타아크릴레이트의 중합Production Example 4 Polymerization of DCPD hydroxyethyl methacrylate

상기 실시예 4에서 합성한 DCPD 하이드록시에틸메타아크릴레이트를 100g을 비이커에 담고, 여기에 50% BPO(Dibenzoyl peroxide, C6H5CO-OO-COC6H5 )분말 또는 페이스트를 1.0~2.0g 잘 섞어 녹인 후, DMPT(Dimethyl-para- toluidine) 0.2~1.0g을 사용하여 중합을 개시하였다. 얻어진 경화물은 THF에 녹여 GPC 분석법으로 표준화된 폴리스티렌 기준 상대분자량을 측정하였다.100 g of the DCPD hydroxyethyl methacrylate synthesized in Example 4 was placed in a beaker, and 50% BPO (Dibenzoyl peroxide, C 6 H 5 CO-OO-COC 6 H 5 ) powder or paste was 1.0-2.0. g After mixing well, the polymerization was started using 0.2-1.0 g of methyl-para- toluidine (DMPT). The obtained cured product was dissolved in THF to measure the relative molecular weight of polystyrene standardized by GPC analysis.

[제조예 5] DCPD-말레익-하이드록시에틸아크릴레이트의 중합Production Example 5 Polymerization of DCPD-maleic-hydroxyethyl acrylate

상기 실시예 5에서 합성한 DCPD-말레익-하이드록시에틸아크릴레이트를 100g을 비이커에 담고, 여기에 50% BPO(Dibenzoyl peroxide, C6H5CO-OO-COC6H 5)분말 또는 페이스트를 1.0~2.0g 잘 섞어 녹인 후, EPT(Ethoxylated-para-toluidine) 0.2~1.0g을 사용하여 중합을 개시하였다. 얻어진 경화물은 THF에 녹여 GPC 분석법으로 표준화된 폴리스티렌 기준 상대분자량을 측정하였다.100 g of the DCPD-maleic-hydroxyethyl acrylate synthesized in Example 5 was placed in a beaker, and 50% BPO (Dibenzoyl peroxide, C 6 H 5 CO-OO-COC 6 H 5 ) powder or paste was added thereto. 1.0-2.0 g After mixing well, the mixture was dissolved, and polymerization was started using 0.2-1.0 g of Ethoxylated-para-toluidine (EPT). The obtained cured product was dissolved in THF to measure the relative molecular weight of polystyrene standardized by GPC analysis.

[제조예 6] DCPD-프탈익-하이드록시에틸아크릴레이트의 중합Production Example 6 Polymerization of DCPD-phthalic-hydroxyethyl acrylate

상기 실시예 6에서 합성한 DCPD-프탈익-하이드록시에틸아크릴레이트를 100g을 비이커에 담고, 여기에 50% BPO(Dibenzoyl peroxide, C6H5CO-OO-COC6H 5)분말 또는 페이스트를 1.0~2.0g 잘 섞어 녹인 후, EPT(Ethoxylated-para-toluidine) 0.2~1.0g을 사용하여 중합을 개시하였다. 얻어진 경화물은 THF에 녹여 GPC 분석법으로 표준화된 폴리스티렌 기준 상대분자량을 측정하였다.100 g of the DCPD-phthalic-hydroxyethyl acrylate synthesized in Example 6 was placed in a beaker, and 50% BPO (Dibenzoyl peroxide, C 6 H 5 CO-OO-COC 6 H 5 ) powder or paste was added thereto. 1.0-2.0 g After mixing well, the mixture was dissolved, and polymerization was started using 0.2-1.0 g of Ethoxylated-para-toluidine (EPT). The obtained cured product was dissolved in THF to measure the relative molecular weight of polystyrene standardized by GPC analysis.

[제조예 7] DCPD-테트라하이드로프탈익-하이드록시에틸메타아크릴레이트의 중합Production Example 7 Polymerization of DCPD-tetrahydrophthalic-hydroxyethyl methacrylate

상기 실시예 7에서 합성한 DCPD-테트라하이드로프탈익-하이드록시에틸메타아크릴레이트를 100g을 비이커에 담고, 여기에 50% BPO(Dibenzoyl peroxide, C6H5CO-OO-COC6H5)분말 또는 페이스트를 1.0~2.0g 잘 섞어 녹인 후, EPT(Ethoxylated-para-toluidine) 0.2~1.0g을 사용하여 중합을 개시하였다. 얻어진 경화물은 THF에 녹여 GPC 분석법으로 표준화된 폴리스티렌 기준 상대분자량을 측정하였다.100 g of a DCPD-tetrahydrophthalic-hydroxyethyl methacrylate synthesized in Example 7 was placed in a beaker, and 50% BPO (Dibenzoyl peroxide, C 6 H 5 CO-OO-COC 6 H 5 ) powder was added thereto. Alternatively, 1.0 to 2.0 g of the paste was mixed and dissolved, and then 0.2 to 1.0 g of EPT (Ethoxylated-para-toluidine) was used to initiate polymerization. The obtained cured product was dissolved in THF to measure the relative molecular weight of polystyrene standardized by GPC analysis.

[제조예 8] DCPD-석신익-하이드록시에틸메타아크릴레이트의 중합Production Example 8 Polymerization of DCPD-succinic-hydroxyethyl methacrylate

상기 실시예 8에서 합성한 DCPD-석신익-하이드록시에틸메타아크릴레이트를 100g을 비이커에 담고, 여기에 50% BPO(Dibenzoyl peroxide, C6H5CO-OO-COC6H 5)분말 또는 페이스트를 1.0~2.0g 잘 섞어 녹인 후, MHPT(methyl hydroxylethyl-para- toluidine) 0.2~1.0g을 사용하여 중합을 개시하였다. 얻어진 경화물은 THF에 녹여 GPC 분석법으로 표준화된 폴리스티렌 기준 상대분자량을 측정하였다.100 g of the DCPD-succinic-hydroxyethyl methacrylate synthesized in Example 8 was placed in a beaker, and 50% BPO (Dibenzoyl peroxide, C 6 H 5 CO-OO-COC 6 H 5 ) powder or paste 1.0 to 2.0 g of the mixture was dissolved well, MHPT (methyl hydroxylethyl-para- toluidine) 0.2 to 1.0 g was used to initiate the polymerization. The obtained cured product was dissolved in THF to measure the relative molecular weight of polystyrene standardized by GPC analysis.

[제조예 9] DCPD-말레익-글리시딜메타아크릴레이트 의 중합Preparation Example 9 Polymerization of DCPD-maleic-glycidyl methacrylate

상기 실시예 9에서 합성한 DCPD-말레익-글리시딜메타아크릴레이트 를 100g을 비이커에 담고, 여기에 50% BPO(Dibenzoyl peroxide, C6H5CO-OO-COC6H5 )분말 또는 페이스트를 1.0~2.0g 잘 섞어 녹인 후, MHPT(methyl hydroxylethyl-para-toluidine) 0.2~1.0g을 사용하여 중합을 개시하였다. 얻어진 경화물은 THF에 녹여 GPC 분석법으로 표준화된 폴리스티렌 기준 상대분자량을 측정하였다.100 g of a DCPD-maleic-glycidyl methacrylate synthesized in Example 9 was placed in a beaker, and 50% BPO (Dibenzoyl peroxide, C 6 H 5 CO-OO-COC 6 H 5 ) powder or paste After 1.0-2.0 g of the mixture was dissolved well, 0.2-1.0 g of methyl hydroxylethyl-para-toluidine (MHPT) was used to initiate polymerization. The obtained cured product was dissolved in THF to measure the relative molecular weight of polystyrene standardized by GPC analysis.

상기 제조예 1-9의 중합방법은 아크릴 모노머에서의 비닐기 라디칼 중합(free radical vinyl polymerization) 방법으로 일반화되어 있는 기술이지만, 종래 기술로는 DCPD와 같은 환형 구조내의 올레핀에는 적용되지 않았다. 그러나, 본 발명에서는 DCPD에 아크릴기를 도입함으로써 라디칼 중합법으로 손쉽게 상온에서도 중합 경화물을 얻을 수 있었다. The polymerization method of Preparation Example 1-9 is a technique generalized by a free radical vinyl polymerization method in an acrylic monomer, but the conventional technique has not been applied to olefins in a cyclic structure such as DCPD. However, in the present invention, the polymerization cured product can be easily obtained even at room temperature by radical polymerization method by introducing an acryl group into DCPD.

상기에서 합성한 아크릴화 디시클로펜타디엔 모노머(실시예 1~9) 및 이를 이용한 경화물(제조예 1~9)의 특성을 하기 표 1에 나타내었다. The properties of the acrylated dicyclopentadiene monomer (Examples 1 to 9) synthesized above and the cured product (Preparation Examples 1 to 9) using the same are shown in Table 1 below.

구 분(주1)Classification Note 1 경화물Cured product 유리전이온도 (℃)Glass transition temperature (℃) (주2) 분자량(Mw)(Note 2) Molecular weight (Mw) (주3) 겔화시간(분)(3) Gelation time (minutes) 실시예 1Example 1 DCPD-AADCPD-AA 325325 82000 82000 1515 실시예 2Example 2 DCPD-MAADCPD-MAA 340340 8500085000 1313 실시예 3Example 3 DCPD-HEADCPD-HEA 270270 4300043000 2020 실시예 4Example 4 DCPD-HEMADCPD-HEMA 270270 5500055000 2323 실시예 5Example 5 DCPD-MA-HEADCPD-MA-HEA 278278 8700087000 1818 실시예 6Example 6 DCPD-PA-HEADCPD-PA-HEA 310310 8600086000 2424 실시예 7Example 7 DCPD-THPA-HEMADCPD-THPA-HEMA 325325 9200092000 2525 실시예 8Example 8 DCPD-SA-HEMADCPD-SA-HEMA 295295 6200062000 2626 실시예 9Example 9 DCPD-MA-GMADCPD-MA-GMA 348348 9200092000 1414

(주1) DCPD = 디시클로펜타디엔(Dicyclopentadiene)* 1 DCPD = Dicyclopentadiene

AA = 아크릴산(Acrylic Acid)      AA = acrylic acid

MAA = 메타 아크릴산(Meta Acrylic Acid)      MAA = Meta Acrylic Acid

HEA = 2-하이드록시에틸아크릴레이트(2-HydroxyEthylAcrylate)      HEA = 2-hydroxyethyl acrylate (2-HydroxyEthylAcrylate)

HEMA = 2-하이드록시에틸메타아크릴레이트(2-HydroxyEthylMeta Acryl ate)      HEMA = 2-HydroxyEthylMeta Acrylate

MA = 무수말레인산(Maleic Anhydride)      MA = Maleic Anhydride

PA = 무수프탈산(Phthalic Anhydride)      PA = Phthalic Anhydride

THPA = 테트라하이드로 무수프탈산(TetraHydro Phthalic Anhydride)     THPA = TetraHydro Phthalic Anhydride

SA = 무수석신산(Succinic Anhydride)      SA = Succinic Anhydride

GMA = 글리시딜메타아크릴레이트(Glycidiyl MetaAcrylate)      GMA = Glycidiyl MetaAcrylate

(주2) 분자량 : 경화물을 THF에 녹여 PS 표준 GPC 분석(Note 2) Molecular weight: PS standard GPC analysis by dissolving the cured product in THF

(주3) 겔화시간 : 상온 25℃ 수조, 모노머/ BPO / 3차아민류 = 100 / 5 / 1(3) Gelation time: 25 ℃ water bath, monomer / BPO / tertiary amines = 100/5/1

이상에서 설명한 바와 같이, 디시클로펜타디엔(DCPD)에 아크릴기를 도입함으로써 상온 라디칼 중합반응이 가능한 DCPD 유도체를 합성하였으며, 이를 이용하여 상온에서도 손쉽게 저순도 DCPD를 이용한 RIM 경화물을 제공할 수 있다.As described above, a DCPD derivative capable of room temperature radical polymerization was synthesized by introducing an acryl group into dicyclopentadiene (DCPD). Using this, a RIM cured product using low purity DCPD can be easily provided at room temperature.

Claims (7)

삭제delete 디시클로펜타디엔(Dicyclopentadiene;DCPD)에 아크릴기를 도입하여 제조되는 아크릴화 디시클로펜타디엔 모노머로, An acrylated dicyclopentadiene monomer prepared by introducing an acryl group into dicyclopentadiene (DCPD), 상기 아크릴화 디시클로펜타디엔 모노머가 하기 화학식 1(b)~3으로 표시되는 화합물임을 특징으로 하는 아크릴화 디시클로펜타디엔 모노머. The acrylated dicyclopentadiene monomer is a acrylated dicyclopentadiene monomer, characterized in that the compound represented by the formula (1) -3. [화학식 1][Formula 1] (b) DCPD+히이디록시아크릴레이트(b) DCPD + Hidihydroxyacrylate
Figure 112005050537144-pat00006
Figure 112005050537144-pat00006
(상기 식중, R은 H 또는 메틸기, n은 0∼5인 정수이다.) (Wherein R is H or a methyl group and n is an integer of 0 to 5) [화학식 2] [Formula 2] DCPD+다가염기산+하이드록시아크릴레이트DCPD + Polybasic Acid + Hydroxyacrylate
Figure 112005050537144-pat00007
Figure 112005050537144-pat00007
(상기 식중, R은 H 또는 메틸기, n은 0∼5인 정수이며, A는 디카르복시산 또는 디카르복시무수산이다.)(Wherein R is H or a methyl group, n is an integer of 0 to 5, and A is dicarboxylic acid or dicarboxylic anhydride.) [화학식 3] [Formula 3] DCPD+다가염기산+에폭시아크릴레이트DCPD + Polybasic Acid + Epoxyacrylate
Figure 112005050537144-pat00008
Figure 112005050537144-pat00008
(상기 식중, A는 디카르복시산 또는 디카르복시무수산이며, E는 에폭시아크릴레이트이다.) (Wherein, A is dicarboxylic acid or dicarboxy anhydride, E is epoxy acrylate.)
DCPD에 카르복시기 또는 알콜기를 비산화산(Non-Oxidizing Acid), 산(Acid) 또는 산화제(Acid acting agent)를 이용하여 부가반응법으로 제 2항에 의한 아크릴화 DCPD를 합성하는 것을 특징으로 하는 아크릴화 DCPD의 제조방법. The carboxyl group or alcohol group in DCPD is synthesized by the addition reaction method of the acrylated DCPD according to claim 2 using a non-oxidizing acid, acid or oxidizing agent (Acid acting agent). Manufacturing method. 다염기산의 개환반응을 통하여 하이드록시아크릴레이트의 알콜기와의 에스테르화 반응을 거친 다음, 부가반응을 통하여 제 2항에 의한 아크릴화 DCPD를 합성하는 것을 특징으로 하는 아크릴화 DCPD의 제조방법. A method for producing an acrylated DCPD, characterized in that to synthesize the acrylated DCPD according to claim 2 through an esterification reaction of the hydroxyacrylate with an alcohol group through the ring opening of the polybasic acid. 다염기산의 관능기 하나를 부가반응을 통하여 DCPD와 결합시킨 후, 나머지 카르복시산을 에폭시아크릴레이트의 에폭시기 개환반응을 이용하여 아크릴기를 도입하는 방법으로 제 2항에 의한 아크릴화 DCPD를 합성하는 것을 특징으로 하는 아크릴화 DCPD의 제조방법. Acrylate DCPD, characterized in that the acrylated DCPD according to claim 2 is synthesized by combining one functional group of the polybasic acid with DCPD through an addition reaction, and then introducing the acrylic group using the epoxy group ring-opening reaction of epoxy acrylate. Manufacturing method. 삭제delete 삭제delete
KR1020030030079A 2003-05-13 2003-05-13 Acrylic dicyclopentadiene monomer and the preparation the same, and the hardener using the same KR100557836B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030030079A KR100557836B1 (en) 2003-05-13 2003-05-13 Acrylic dicyclopentadiene monomer and the preparation the same, and the hardener using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030030079A KR100557836B1 (en) 2003-05-13 2003-05-13 Acrylic dicyclopentadiene monomer and the preparation the same, and the hardener using the same

Publications (2)

Publication Number Publication Date
KR20040097709A KR20040097709A (en) 2004-11-18
KR100557836B1 true KR100557836B1 (en) 2006-03-10

Family

ID=37375847

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030030079A KR100557836B1 (en) 2003-05-13 2003-05-13 Acrylic dicyclopentadiene monomer and the preparation the same, and the hardener using the same

Country Status (1)

Country Link
KR (1) KR100557836B1 (en)

Also Published As

Publication number Publication date
KR20040097709A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
Bailey et al. Free radical ring-opening polymerization of 4, 7-dimethyl-2-methylene-1, 3-dioxepane and 5, 6-benzo-2-methylene-1, 3-dioxepane
TW200906870A (en) Norbornene monomers with epoxy group and polymer material thereof
JPS62265249A (en) Lactone acrylate having carboxyl as end group
US20090253878A1 (en) Branched polyolefin polymer tethered with polymerizable methacryloyl groups and process for preparing same
WO2023192759A1 (en) Phosphine-borane catalyst compounds and use thereof
CN113248463A (en) Preparation method of tung oil-based fatty acid modified monomer, prepared tung oil-based fatty acid modified monomer and application thereof
JP5822225B2 (en) Hydrocarbon copolymer, process for producing the same, and molded article
Ding et al. A “click” approach to facile synthesis of long-chain highly branched ROMP polymers
KR100557836B1 (en) Acrylic dicyclopentadiene monomer and the preparation the same, and the hardener using the same
JPWO2017199562A1 (en) Macromonomer copolymer and method for producing the same
US20020010227A1 (en) Synthesis of visible light curable (VLC) acid containing polymers
JPH01100145A (en) Acrylic acid ester derivative
KR20060068252A (en) Dicyclopentadiene acrylate and the method for preparing thereof, and the flame retardant composition containing the same
JP2019023319A (en) Block polymer and method for producing the same
JP3426058B2 (en) Highly unsaturated lactone polymer and method for producing the same
CN114560829B (en) Preparation method of macrocyclic monomer and ring-opening polymerization reaction thereof
JP2005126372A (en) Norbornene-based compound having crosslinkable group and polymer derived therefrom
KR20060068978A (en) Dicyclopentadien acrylate monomer, the preparation method thereof and the hardner using the same
JPH09263616A (en) Production of heat-resistant resin
JP2007302765A (en) Method for producing copolymer
JP2021080353A (en) Complex, molding, vehicular member, and bottle brush polymer
Viswanathan et al. Homo‐and copolymers of furan–maleic anhydride and furan–dimethylacetylene dicarboxylate adducts via aqueous ring‐opening metathesis polymerization
JP2001226429A (en) Molding material of methacrylic resin and its molding product
JP4123603B2 (en) NOVEL COPOLYMER AND METHOD FOR PRODUCING THE SAME
JPH10231318A (en) Production of modified copolymer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130227

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140220

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150205

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160212

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170308

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180126

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190212

Year of fee payment: 14