KR100555418B1 - Micro Channel Heat Exchanger - Google Patents

Micro Channel Heat Exchanger Download PDF

Info

Publication number
KR100555418B1
KR100555418B1 KR1020020080195A KR20020080195A KR100555418B1 KR 100555418 B1 KR100555418 B1 KR 100555418B1 KR 1020020080195 A KR1020020080195 A KR 1020020080195A KR 20020080195 A KR20020080195 A KR 20020080195A KR 100555418 B1 KR100555418 B1 KR 100555418B1
Authority
KR
South Korea
Prior art keywords
refrigerant
heat exchanger
vertical
sectional area
cross
Prior art date
Application number
KR1020020080195A
Other languages
Korean (ko)
Other versions
KR20040052331A (en
Inventor
오세기
오세윤
고철수
사용철
장동연
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020020080195A priority Critical patent/KR100555418B1/en
Publication of KR20040052331A publication Critical patent/KR20040052331A/en
Application granted granted Critical
Publication of KR100555418B1 publication Critical patent/KR100555418B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0209Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures
    • F28F2260/02Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

본 발명에 따른 마이크로채널 열교환기의 냉매분지 구조는, 냉매가 흐르도록 중공된 한 쌍의 수평헤더와, 상기 수평헤더 사이에 수직으로 연결되어 수평헤더를 흐르는 냉매가 분배되는 다수개의 수직 냉매관 군 및 상기 수직 냉매관 군의 내부에 형성된 다수의 마이크로채널과, 상기 수직 냉매관 군을 흐르는 냉매가 수직방향으로만 흐르도록 유도하는 상기 수평헤더 내부에 구비된 격벽이 포함되고, 냉매의 흐름 방향에 따라 상기 수직 냉매관 군의 단면적을 달리하는 것을 특징으로 한다.The refrigerant branch structure of the microchannel heat exchanger according to the present invention includes a plurality of vertical refrigerant pipe groups in which a pair of horizontal headers hollowed out to allow a refrigerant to flow and a refrigerant flowing through the horizontal header are vertically connected between the horizontal headers are distributed. And a plurality of microchannels formed in the vertical coolant pipe group, and a partition wall provided in the horizontal header to guide the coolant flowing in the vertical coolant pipe group to flow only in the vertical direction, and in the flow direction of the coolant. Therefore, it is characterized in that the cross-sectional area of the vertical refrigerant pipe group.

본 발명에 따른 마이크로채널 열교환기의 냉매분지 구조는, 냉매의 흐름 방향에 따라 그 냉매관 군의 단면적을 달리하도록 하므로써 열교환기내에서 균일하게 냉매가 흐르도록 하는 효과가 있다.The refrigerant branch structure of the microchannel heat exchanger according to the present invention has the effect of allowing the refrigerant to flow uniformly in the heat exchanger by varying the cross-sectional area of the refrigerant pipe group according to the flow direction of the refrigerant.

본 발명에 따른 또 다른 효과는 열교환기의 효율을 극대화할 수 있는 효과가 있다.Another effect according to the invention has the effect of maximizing the efficiency of the heat exchanger.

열교환기, 헤더, 튜브, 격벽, 간격Heat exchanger, header, tube, bulkhead, gap

Description

마이크로채널 열교환기의 냉매분지 구조{Micro Channel Heat Exchanger}Refrigerant branch structure of micro channel heat exchanger {Micro Channel Heat Exchanger}

도 1은 열교환기의 외형을 간략히 나타낸 사시도.Figure 1 is a perspective view briefly showing the appearance of the heat exchanger.

도 2는 열교환기의 구성요소의 결합관계를 나타내는 분해도.Figure 2 is an exploded view showing the coupling relationship of the components of the heat exchanger.

도 3은 도 2에 있어서 튜브의 단면을 나타내는 도면.3 is a view showing a cross section of the tube in FIG.

도 4는 종래의 기술에 따른 격벽이 등간격으로 설치되는 것을 나타내는 절개도면.Figure 4 is a cutaway view showing that the partition wall according to the prior art is installed at equal intervals.

도 5는 종래 기술에 따른 냉매관 군의 단면적을 동일하게 한 것을 나타내는 개략도.5 is a schematic view showing the same cross-sectional area of the refrigerant pipe group according to the prior art.

도 6a는 본 발명에 따른 냉매관 군의 단면적을 동일하게 한 증발기를 나타내는 개략도.6A is a schematic view showing an evaporator having the same cross-sectional area of a refrigerant pipe group according to the present invention.

도 6b는 본 발명에 따른 냉매관 군의 단면적을 동일하게 한 응축기를 나타내는 개략도.6B is a schematic view showing a condenser having the same cross-sectional area of a refrigerant pipe group according to the present invention.

< 도면의 주요 부분에 대한 부호의 설명 ><Description of Symbols for Main Parts of Drawings>

1 : 하부헤더 2 : 상부헤더 3 : 튜브1: lower header 2: upper header 3: tube

4 : 헤더홀 5 : 채널 6 : 핀4: header hole 5: channel 6: pin

7 : 격벽7: bulkhead

본 발명은 마이크로채널 열교환기에 있어서, 특히, 냉매의 유동 방향에 따라 격벽의 간격을 조절하고 냉매관 군의 단면적을 달리하므로써 냉매 분배를 조절하도록 하는 냉매분지 구조에 관한 것으로서, 일반적으로 열교환기는 실내의 온도를 높이거나 낮추는 냉방기 및 난방기의 공기조화기에 사용된다.
도 1은 열교환기의 외형을 간략히 나타낸 사시도이고, 도 2는 열교환기의 구성요소의 결합관계를 나타내는 분해도이며, 도 3은 도 2에 있어서 튜브의 단면을 나타내는 도면이다.
BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a refrigerant branch structure for controlling the distribution of refrigerant by adjusting the spacing of partition walls according to the flow direction of the refrigerant, and by varying the cross-sectional area of the refrigerant pipe group. It is used in air conditioners of air conditioners and heaters to raise or lower the temperature.
FIG. 1 is a perspective view briefly illustrating an external shape of a heat exchanger, FIG. 2 is an exploded view showing a coupling relationship between components of a heat exchanger, and FIG. 3 is a view showing a cross section of a tube in FIG.

삭제delete

이들 도면을 참조하면, 종래 열교환기는 하부헤더(1)의 상부에 대응되도록 위치하는 상부헤더(2)와, 상기 상부헤더(2)와 하부헤더(1) 사이에 위치하는 다수개의 튜브(3)와, 상기 각 튜브(3) 사이에 위치하는 핀(6)으로 구성된다. 상기 하부헤더(1)는 원통형으로 형성되어 내부에 중공이 형성되고, 그 외형을 이루는 외주부의 일측부에는 튜브(3)를 삽입하여 고정하도록 다수개의 헤더홀(4)이 하부헤더(1)의 길이방향을 따라 등간격으로 형성되어 있다.Referring to these drawings, a conventional heat exchanger includes an upper header 2 positioned to correspond to an upper portion of a lower header 1, and a plurality of tubes 3 positioned between the upper header 2 and the lower header 1. And a pin 6 positioned between the respective tubes 3. The lower header 1 is formed in a cylindrical shape and a hollow is formed therein, and a plurality of header holes 4 are inserted into and fixed to one side of the outer circumferential part forming the outer shape of the lower header 1. It is formed at equal intervals along the longitudinal direction.

여기서, 상기 하부헤더(1)와 대응되도록 상부에 위치하는 상부헤더(2)는 상기 하부헤더(1)와 동일한 형상을 갖는다. 상기 각 튜브(3)는 각 헤더홀(4)에 튜브 (3)의 길이방향으로 양단부가 고정되어 헤더(1,2)의 길이방향으로 나란하게 배열된다.Here, the upper header (2) located in the upper portion so as to correspond to the lower header (1) has the same shape as the lower header (1). Each tube 3 is fixed to both header holes 4 in the longitudinal direction of the tube 3 and arranged side by side in the longitudinal direction of the headers 1, 2.

한편, 유동공기는 두 헤더(1,2)의 길이방향의 축을 잇는 면을 향해 일정한 경사를 가지도록 유동하여 각 튜브(3)와 두 헤더(1,2) 사이를 통과한다. 상기 튜브(3)는 두 헤더(1,2)에 고정된 양끝단부 사이의 거리인 길이와, 유동공기의 방향에 수직한 거리인 두께를 갖고, 유동공기의 흐름방향과 평행한 거리인 폭을 갖는다. 상기 튜브(3)는 두 헤더(1,2)에 수용될 수 있는 정도의 폭과 얇은 두께를 갖는 직사각형 형상의 판형으로서, 내부에는 중공인 다수개의 채널(5)이 형성되어 있다. On the other hand, the flow air flows so as to have a constant inclination toward the plane connecting the longitudinal axes of the two headers 1, 2 and passes between each tube 3 and the two headers (1, 2). The tube 3 has a length that is a distance between both ends fixed to the two headers 1 and 2 and a thickness that is a distance perpendicular to the direction of flow air, and a width that is a distance parallel to the flow direction of the flow air. Have The tube 3 is a rectangular plate having a width and a thin thickness that can be accommodated in the two headers 1 and 2, and a plurality of hollow channels 5 are formed therein.

또한, 상기 각 튜브(3)의 폭이 유동공기의 흐름방향에 평행하도록 각 튜브(3)가 두 헤더(1,2)에 고정되고, 튜브(3)의 길이방향에 대해 수직하도록 미세한 단면적을 가짐과 함께 튜브(3)의 길이방향으로 길게 형성되는 다수개의 채널(5)은 유동공기의 흐름방향을 따라 순차적으로 배열되도록 형성된다.Further, each tube 3 is fixed to the two headers 1 and 2 so that the width of each tube 3 is parallel to the flow direction of the flow air, and the fine cross-sectional area is perpendicular to the longitudinal direction of the tube 3. In addition, the plurality of channels 5 which are formed long in the longitudinal direction of the tube 3 are formed to be sequentially arranged along the flow direction of the flow air.

이와 같이 형성된 튜브(3)는 두 헤더(1,2)에 양끝단부가 고정되어 헤더(1,2)에 형성된 중공과 연통되어 있고, 상기 각 튜브(3) 사이에는 유동공기가 통과할 수 있는 공간을 형성하도록 각 핀(6)이 설치된다. 즉, 각 핀(6)은 얇은 두께를 가진 판형으로서 여러번 지그재그로 절곡되어 각 튜브(4) 사이에 설치된다. 상기 핀(6)은 여러 가지 형상을 가지며 고정될 수 있지만, 일반적으로 유동공기의 흐름저항이 최소화 되도록 공간을 형성하는 것이 바람직하다.The tube 3 formed as described above is fixed at both ends of the two headers 1 and 2 so as to communicate with a hollow formed in the headers 1 and 2, and flow air can pass between the tubes 3. Each pin 6 is provided to form a space. That is, each pin 6 is a plate-shaped with a thin thickness, bent in a zigzag several times and installed between each tube (4). The fins 6 may have various shapes and may be fixed, but it is generally desirable to form a space to minimize flow resistance of the flow air.

도 4는 종래의 기술에 따른 격벽이 등간격으로 설치되는 것을 나타내는 절개도면이고, 도 5는 종래 기술에 따른 냉매관 군의 단면적을 동일하게 한 것을 나타내는 개략도.Figure 4 is a cutaway view showing that the partition wall according to the prior art is installed at equal intervals, Figure 5 is a schematic view showing the same cross-sectional area of the refrigerant pipe group according to the prior art.

이들 도면에 따르면, 다수개의 튜브(3)들은 다수개의 튜브군(群)으로 구분되어 상기 각각의 튜브군을 기본 단위로 하여 각 튜브군의 전후에는 교번하여 하부 헤더 (1)와 상부 헤더(2)로의 냉매의 흐르는 방향을 변경시키기 위한 격벽이 설치 되는데, 즉, 첫번째 튜브군의 하측방향의 끝지점에 첫번째 격벽이 설치되고, 두번째 튜브군의 상측방향 끝지점에 두번째 격벽이 설치되며, 세번째 튜브군의 하측방향의 끝지점에 세번째 격벽이 설치되고, 네번째 튜브군의 상측방향 끝지점에 네번째 격벽이 설치된다.According to these drawings, the plurality of tubes 3 are divided into a plurality of tube groups, and the lower header 1 and the upper header 2 are alternately arranged before and after each tube group with each tube group as a basic unit. The bulkhead is installed to change the flow direction of the refrigerant to the bottom, that is, the first bulkhead is installed at the lower end of the first tube group, the second bulkhead is installed at the upper end of the second tube group, the third tube The third partition is installed at the lower end of the group, and the fourth partition is installed at the upper end of the fourth tube group.

이와 같은 격벽구조를 갖는 열교환기에 있어서, 처음 하부 헤더(1)로 유입된 냉매는 첫번째 튜브군을 통하여 상승하고, 상승된 냉매는 상부 헤더(2)를 따라서 수평으로 이동하다가, 두번째 격벽에 의하여 간섭되어 두번째 튜브군을 타고 하측 방향으로 하강하게 된다. 이후에도 이와같은 방식으로 튜브군을 타고 상승과 하강을 반복하게 된다. 그리고 이렇게 튜브(3)를 따라 이동하는 과장에서 상기 튜브(3)에 고정된 핀(6)으로 열 전달이 이루어 지고, 최종적으로는 상기 핀(6)의 표면을 통하여 유동공기와 열교환이 이루어지게 된다.In the heat exchanger having such a partition structure, the refrigerant introduced into the lower header 1 first rises through the first tube group, and the elevated refrigerant moves horizontally along the upper header 2 and interferes with the second partition wall. As a result, the second tube group descends downward. After this, the tube group is repeated in the same way ascending and descending. Then, heat is transferred from the exaggerated moving along the tube 3 to the fin 6 fixed to the tube 3, and finally heat exchange with the flow air through the surface of the fin 6 do.

그러나, 기상과 액상이 혼합된 2상 유동에 있어서는 헤더에서 냉매관으로 냉매가 분배될 때, 냉매의 유동 방향(아래 -> 위, 혹은 위 -> 아래)에 따라 그 분배 특성이 달라지게 되므로, 격벽간의 간격이 균등하고 격벽사이에 포함되는 냉매관도 냉매의 유동 방향에 무관하게 동일한 단면적으로 형성되는 구조를 갖는 종래의 열교환기에 있어서는, 기액이 균일하게 분지되지 못하므로 증발기의 효율이 저하되는 문제점이 있다.However, in the two-phase flow in which the gas phase and the liquid phase are mixed, when the refrigerant is distributed from the header to the refrigerant pipe, the distribution characteristic thereof varies depending on the flow direction of the refrigerant (down-> up, or up-> down), In a conventional heat exchanger having a structure in which the spacing between the partition walls is equal and the refrigerant pipe included between the partition walls is formed in the same cross-sectional area regardless of the flow direction of the refrigerant, the gas liquid is not uniformly branched, so that the efficiency of the evaporator is reduced. have.

본 발명은 이러한 문제점을 감안하여 창출된 것으로, 냉매의 유동 방향에 따라 격벽의 간격을 조절하고 냉매관 군의 단면적을 달리하므로써 상기 헤더내에 흐르는 냉매가 고르게 분배되도록 하므로써, 열교환기의 효율을 획기적으로 증대시키는데 그 목적이 있다.The present invention has been made in view of the above problems, and by adjusting the spacing of the partition wall according to the flow direction of the refrigerant and by varying the cross-sectional area of the refrigerant pipe group, the refrigerant flowing in the header is evenly distributed, thereby dramatically improving the efficiency of the heat exchanger. The purpose is to increase.

삭제delete

본 발명에 따른 마이크로채널 열교환기의 냉매분지 구조는, 냉매가 흐르도록 중공된 한 쌍의 수평헤더와, 상기 수평헤더 사이에 수직으로 연결되어 수평헤더를 흐르는 냉매가 분배되는 다수개의 수직 냉매관 군 및 상기 수직 냉매관 군의 내부에 형성된 다수의 마이크로채널과, 상기 수직 냉매관 군을 흐르는 냉매가 수직방향으로만 흐르도록 유도하는 상기 수평헤더 내부에 구비된 격벽이 포함되고, 냉매의 흐름 방향에 따라 상기 수직 냉매관 군의 단면적을 달리하는 것을 특징으로 한다.The refrigerant branch structure of the microchannel heat exchanger according to the present invention includes a plurality of vertical refrigerant pipe groups in which a pair of horizontal headers hollowed out to allow a refrigerant to flow and a refrigerant flowing through the horizontal header are vertically connected between the horizontal headers are distributed. And a plurality of microchannels formed in the vertical coolant pipe group, and a partition wall provided in the horizontal header to guide the coolant flowing in the vertical coolant pipe group to flow only in the vertical direction, and in the flow direction of the coolant. Therefore, it is characterized in that the cross-sectional area of the vertical refrigerant pipe group.

이하 본 발명에 따른 마이크로채널 열교환기의 냉매분지 구조의 바람직한 실시예에 대하여 첨부된 도면에 의거하여 설명하면 다음과 같다. Hereinafter, a preferred embodiment of a refrigerant branch structure of a microchannel heat exchanger according to the present invention will be described with reference to the accompanying drawings.

도 6a는 본 발명에 따른 냉매관 군의 단면적을 동일하게 한 증발기를 나타내 는 개략도이다.6A is a schematic view showing an evaporator having the same cross-sectional area of a refrigerant pipe group according to the present invention.

도 6a를 참조하면, 본 발명에 따른 열교환기가 증발기에 적용된 것으로서, 하부 헤더를 통하여 유입된 냉매는 첫번째 냉매관 군(A)을 통하여 분지되어 상승하게 되고 상부 헤더에 다다른 냉매는 두번째 냉매관 군(B)을 통하여 다시 하강하게 되고, 이와 같은 방식으로 상기의 냉매는 상승과 하강을 반복하게 된다. 이때 상기의 첫번째 냉매관 군(A)의 단면적은 두번째 냉매관 군(B)의 단면적에 비하여 넓고, 세번째 냉매관 군(C)의 단면적은 두번째 냉매관 군(B)의 단면적에 비하여 넓다. 이와 같이 냉매의 흐름 방향에 따라 그 냉매관 군의 단면적을 달리하되, 냉매가 상승하는 냉매관 군의 단면적을 냉매가 하강하는 냉매관 군의 단면적에 비하여 넓게 하므로써 냉매가 열교환기에서 균일하게 흐르게 된다. Referring to Figure 6a, the heat exchanger according to the present invention is applied to the evaporator, the refrigerant introduced through the lower header is branched through the first refrigerant pipe group (A) to rise and the refrigerant reaching the upper header is the second refrigerant pipe group It is lowered again through (B), and in this way, the refrigerant is repeatedly raised and lowered. At this time, the cross-sectional area of the first refrigerant pipe group (A) is wider than that of the second refrigerant pipe group (B), and the cross-sectional area of the third refrigerant pipe group (C) is larger than the cross-sectional area of the second refrigerant pipe group (B). In this way, the cross-sectional area of the coolant pipe group varies depending on the flow direction of the coolant, but the cross-sectional area of the coolant pipe group in which the coolant rises is wider than the cross-sectional area of the coolant pipe group in which the coolant falls, so that the coolant flows uniformly in the heat exchanger. .

이때 냉매가 상승하는 냉매관 군과 냉매가 하강하는 냉매관 군의 단면적비는, 10 ~ 60%가 되도록 하는 것이 바람직하다.At this time, it is preferable that the ratio of the cross-sectional area of the coolant tube group in which the coolant rises and the coolant tube group in which the coolant falls is 10 to 60%.

도 6b는 본 발명에 따른 냉매관 군의 단면적을 동일하게 한 응축기를 나타내는 개략도.6B is a schematic view showing a condenser having the same cross-sectional area of a refrigerant pipe group according to the present invention.

도 6b를 참조하면, 본 발명에 따른 열교환기가 응축기에 적용된 것으로서, 상부 헤더를 통하여 유입된 냉매는 첫번째 냉매관 군(A)을 통하여 분지되어 하강하게 되고 하부 헤더에 다다른 냉매는 두번째 냉매관 군(B)을 통하여 다시 상승하게 되고, 이와 같은 방식으로 상기의 냉매는 하강과 상승을 반복하게 된다. 이때 상기의 첫번째 냉매관 군(C)의 단면적은 두번째 냉매관 군(B)의 단면적에 비하여 넓고, 세번째 냉매관 군(A)의 단면적은 두번째 냉매관 군(B)의 단면적에 비하여 넓다. 이 와 같이 냉매의 흐름 방향에 따라 그 냉매관 군의 단면적을 달리하되, 냉매가 하강하는 냉매관 군의 단면적을 냉매가 상승하는 냉매관 군의 단면적에 비하여 넓게 하므로써 냉매가 열교환기에서 균일하게 흐르게 된다.Referring to Figure 6b, the heat exchanger according to the present invention is applied to the condenser, the refrigerant introduced through the upper header is branched and lowered through the first refrigerant pipe group (A) and the refrigerant reaching the lower header is the second refrigerant pipe group It rises again through (B), and in this way, the coolant is repeatedly lowered and raised. At this time, the cross-sectional area of the first refrigerant pipe group (C) is wider than that of the second refrigerant pipe group (B), and the cross-sectional area of the third refrigerant pipe group (A) is larger than the cross-sectional area of the second refrigerant pipe group (B). As such, the cross-sectional area of the coolant tube group varies depending on the flow direction of the coolant, but the cross-sectional area of the coolant tube group in which the coolant descends is wider than the cross-sectional area of the coolant tube group in which the coolant rises so that the coolant flows uniformly in the heat exchanger. do.

여기서, 냉매가 상승하는 냉매관 군과 냉매가 하강하는 냉매관 군의 단면적비는, 10 ~ 60%가 되도록 하는 것이 바람직하다.Here, it is preferable that the cross-sectional area ratio of the coolant tube group in which the coolant rises and the coolant tube group in which the coolant falls is 10 to 60%.

본 발명에 따른 마이크로채널 열교환기의 냉매분지 구조는, 냉매의 흐름 방향에 따라 그 냉매관 군의 단면적을 달리하도록 하므로써 열교환기내에서 균일하게 냉매가 흐르도록 하는 효과가 있다.The refrigerant branch structure of the microchannel heat exchanger according to the present invention has the effect of allowing the refrigerant to flow uniformly in the heat exchanger by varying the cross-sectional area of the refrigerant pipe group according to the flow direction of the refrigerant.

본 발명에 따른 또 다른 효과는 열교환기의 효율을 극대화할 수 있는 효과가 있다.Another effect according to the invention has the effect of maximizing the efficiency of the heat exchanger.

Claims (3)

냉매가 흐르도록 중공된 한 쌍의 수평헤더;A pair of horizontal headers hollowed out so that the refrigerant flows; 상기 수평헤더 사이에 수직으로 연결되어 수평헤더를 흐르는 냉매가 분배되는 다수개의 수직 냉매관 군; 및A plurality of vertical refrigerant pipe groups vertically connected between the horizontal headers to distribute refrigerant flowing through the horizontal headers; And 상기 수직 냉매관 군의 내부에 형성된 다수의 마이크로채널;A plurality of microchannels formed in the vertical refrigerant pipe group; 상기 수직 냉매관 군을 흐르는 냉매가 수직방향으로만 흐르도록 유도하는 상기 수평헤더 내부에 구비된 격벽이 포함되고,A partition wall is provided in the horizontal header to guide the refrigerant flowing in the vertical refrigerant pipe group to flow only in the vertical direction. 냉매의 흐름 방향에 따라 연속적으로 형성된 상기 수직 냉매관 군 중 단면적이 상대적으로 넓은 군과 단면적이 상대적으로 좁은 군이 복수 번 교대로 배치된 것을 특징으로 하는 마이크로채널 열교환기의 냉매분지 구조.A refrigerant branch structure of a microchannel heat exchanger, characterized in that a plurality of groups having a relatively large cross-sectional area and a group having a relatively narrow cross-sectional area are alternately arranged a plurality of times among the vertical refrigerant pipe groups continuously formed according to the flow direction of the refrigerant. 제 1항에 있어서, The method of claim 1, 상기 수직 냉매관 군의 단면적은, 열교환기가 증발기에 적용되는 경우 냉매가 상승하는 수직 냉매관 군의 단면적을, 냉매가 하강하는 수직 냉매관 군의 단면적보다 넓게 형성시키는 것을 특징으로 하는 마이크로채널 열교환기의 냉매분지 구조.The cross-sectional area of the vertical coolant tube group is a microchannel heat exchanger characterized in that when the heat exchanger is applied to the evaporator, the cross-sectional area of the vertical coolant tube group in which the refrigerant rises is wider than the cross-sectional area of the vertical coolant tube group in which the coolant falls. Refrigerant basin structure. 제 1항에 있어서, The method of claim 1, 상기 수직 냉매관 군의 단면적은, 열교환기가 응축기에 적용되는 경우 냉매가 하강하는 수직 냉매관 군의 단면적을, 냉매가 상승하는 수직 냉매관 군의 단면적보다 넓게 형성시키는 것을 특징으로 하는 마이크로채널 열교환기의 냉매분지 구조.The cross-sectional area of the vertical coolant tube group is a microchannel heat exchanger characterized in that when the heat exchanger is applied to the condenser, the cross-sectional area of the vertical coolant tube group in which the coolant falls is wider than the cross-sectional area of the vertical coolant tube group in which the coolant rises. Refrigerant basin structure.
KR1020020080195A 2002-12-16 2002-12-16 Micro Channel Heat Exchanger KR100555418B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020080195A KR100555418B1 (en) 2002-12-16 2002-12-16 Micro Channel Heat Exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020080195A KR100555418B1 (en) 2002-12-16 2002-12-16 Micro Channel Heat Exchanger

Publications (2)

Publication Number Publication Date
KR20040052331A KR20040052331A (en) 2004-06-23
KR100555418B1 true KR100555418B1 (en) 2006-02-24

Family

ID=37346006

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020080195A KR100555418B1 (en) 2002-12-16 2002-12-16 Micro Channel Heat Exchanger

Country Status (1)

Country Link
KR (1) KR100555418B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100772381B1 (en) 2005-09-29 2007-11-01 삼성전자주식회사 Heat sink
CN102016484A (en) 2008-05-05 2011-04-13 开利公司 Microchannel heat exchanger including multiple fluid circuits

Also Published As

Publication number Publication date
KR20040052331A (en) 2004-06-23

Similar Documents

Publication Publication Date Title
KR100382523B1 (en) a tube structure of a micro-multi channel heat exchanger
EP2447659A2 (en) Heat exchanger and fin for the same
KR20170012878A (en) Heat exchanger
US20080296008A1 (en) Heat Transfer Fin for Heat Exchanger
CN102748903B (en) Heat exchanger and flat heat exchange tube thereof
KR100547320B1 (en) Micro Channel Heat Exchanger
JPH04177091A (en) Heat exchanger
JP2009068742A (en) Heat exchanger
KR20120044848A (en) Heat exchanger and micro-channel tube for the same
KR100493694B1 (en) Micro Channel Heat Exchanger
KR100555418B1 (en) Micro Channel Heat Exchanger
WO2021018126A1 (en) Heat exchanger and heat exchange system
CN101504259B (en) Oil cooler
JP4143955B2 (en) Heat exchanger
JPH11201685A (en) Heat-exchanger device
CN102748977A (en) Flat heat exchange tube of heat exchanger and heat exchanger of flat heat exchange tube
KR100939844B1 (en) Micro Channel Heat Exchanger
JP4164146B2 (en) Heat exchanger and car air conditioner using the same
KR100493689B1 (en) Micro Channel Heat Exchanger
KR100540810B1 (en) Micro Channel Heat Exchanger
CN110736378A (en) Micro-channel heat exchanger flat tube, micro-channel heat exchanger and heat exchange equipment
KR100473982B1 (en) Fluid guide structure for header pipe
KR100473983B1 (en) Fluid guide structure for header pipe
JPH11230693A (en) Heat exchanger
KR101996059B1 (en) Heat exchanger for air conditioner

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130128

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140124

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150213

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160122

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170113

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee