KR100552583B1 - 특이점 문제를 개선한 제어 모멘트 자이로스코프 및 그구동 방법 - Google Patents

특이점 문제를 개선한 제어 모멘트 자이로스코프 및 그구동 방법 Download PDF

Info

Publication number
KR100552583B1
KR100552583B1 KR1020040093331A KR20040093331A KR100552583B1 KR 100552583 B1 KR100552583 B1 KR 100552583B1 KR 1020040093331 A KR1020040093331 A KR 1020040093331A KR 20040093331 A KR20040093331 A KR 20040093331A KR 100552583 B1 KR100552583 B1 KR 100552583B1
Authority
KR
South Korea
Prior art keywords
gimbal
cluster
cmg
angular velocity
matrix
Prior art date
Application number
KR1020040093331A
Other languages
English (en)
Inventor
이현재
방효충
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020040093331A priority Critical patent/KR100552583B1/ko
Application granted granted Critical
Publication of KR100552583B1 publication Critical patent/KR100552583B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/02Rotary gyroscopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/28Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • Computational Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

본 발명에 따르면, 특이점 문제를 해결한 제어 모멘트 자이로스코프 클러스터 및 그 구동 방법이 제공된다. 상기 구동 방법은 사용자가 원하는 제어 토크 명령(u) 신호를 입력하는 단계와, 김벌 각(
Figure 112004053028567-pat00001
)과 구동 시간 간격(T) 동안에 김벌이 구동되어 나타나는 구조적 변화를 포함하는 다음과 같은 목적 함수(V)가 최소가 되도록 하는 김벌 각 속도(
Figure 112004053028567-pat00002
)의 신호를 계산하여 생성하는 단계와
Figure 112004053028567-pat00003
,
상기 생성된 김벌 각 속도 신호에 따라 각각의 김벌을 회전시키는 단계를 포함한다.

Description

특이점 문제를 개선한 제어 모멘트 자이로스코프 및 그 구동 방법{CONTROL MOMENT GYROS HAVING IMPROVED SINGULARITY PROBLEM AND METHOD FOR STEERING THE SAME}
도 1은 제어 모멘트 자이로스코프(CMGs) 클러스터의 대표적인 배열 형태를 보여주는 도면이다.
도 2는 본 발명의 시뮬레이션 시험시 이용된 사용자가 원하는 제어 토크 명령 신호이다.
도 3은 상기 제어 토크 명령 신호에 따라, 종래의 의사 역행렬 구동 방식을 적용하였을 때 나타나는 시간에 따른 김벌 각, 김벌 각 속도 및 토크 에러를 보여주는 도면이다.
도 4는 도 3의 구동 방식을 적용하였을 때 나타나는 특이점 지수를 보여주는 도면이다.
도 5는 도 2의 제어 토크 명령 신호에 따라, 종래의 강인 구동 법칙을 적용하였을 때 나타나는 시간에 따른 김벌 각, 김벌 각 속도 및 토크 에러를 보여주는 도면이다.
도 6은 도 5의 구동 방식을 적용하였을 나타나는 특이점 지수를 보여주는 도면이다.
도 7은 도 2의 제어 토크 명령에 따라, 본 발명을 적용하였을 때 나타나는 시간에 따른 김벌 각, 김벌 각 속도 및 토크 에러를 보여주는 도면으로서, α= 8×104이다.
도 8은 도 2의 제어 토크 명령에 따라, 본 발명을 적용하였을 때 나타나는 시간에 따른 김벌 각, 김벌 각 속도 및 토크 에러를 보여주는 도면으로서, α= 8×106이다.
도 9는 본 발명의 구동 방식을 적용하였을 때 나타나는 특이점 지수 및 이 특이점 지수와 α와의 상관 관계를 보여주는 도면이다.
도 10a 및 도 10b는 각각, 제어 모멘트 자이로스코프와 제어 모멘트 자이로스코프(CMGs) 클러스터의 대표적인 배열 형태인 피라미드 형상의 3차원 형태를 보여주고 있다.
본 발명은 토크 발생 장치의 하나로서, 위성 등의 자세 제어(Attitude Control) 등에 사용될 수 있는, 소위 제어 모멘트 자이로스코프(Control Moment Gyros; 이하 'CMG'라 칭함)에 관한 것이다.
위성 등의 자세 제어시 통상적으로, 반작용 휠과 CMG가 이용되어 왔다.
반작용 휠은 사용이 용이하고 가격이 저렴하다는 장점으로 인해 많이 이용되 고 있으며, 주로 작은 위성의 자세 제어용으로 이용된다. 그러나, 휠의 속도가 제한되어 있어 모멘텀 덤핑 과정을 통해 속도를 완화시켜줘야 한다는 단점이 있다. 또한, 토크를 발생시키기 위해서 그에 해당하는 많은 에너지를 소모해야 하고, 따라서 위성의 수명에 큰 영향을 미칠 수 있는 배터리에 크게 영향을 미칠 수 있다.
한편, CMG는 간단히 2개의 모터로 구성될 수 있는데, 그 중 하나의 모터는 휠을 빠른 속도로 회전을 시키는 데에 사용된다. 그리고, 나머지 하나는 그 회전하고 있는 휠의 회전축을 변화시키는 데에 사용된다. 그러나, 일반적인 의미의 CMG는 이러한 CMG가 3개에서 4개로 구성되어 어셈블리 형태로 구성된 것을 말하며, CMG 클러스터라 명명하기도 한다. 도 10에 피라미드 형태의 CMG 클러스터가 3차원 형태로 도시되어 있다.
상기 CMG는 반작용 휠과 더불어 인공위성, 로봇 등의 자세 제어를 위한 가장 기본이 되는 토크 발생 장치로서 자리를 잡아가고 있다. 즉, CMG는 반작용 휠의 단점을 최대한으로 극복하고, 동일한 에너지를 이용하여 반작용 휠에 비해 큰 제어 토크를 발생시키며, 따라서 미래의 가장 이상적인 토크 발생 장치로 알려져 있다. 주로 작은 위성보다는 대용량 위성이나 우주 정거장의 자세 제어를 위하여 많이 이용되고 있다.
그러나, CMG는 복잡한 구동법칙에 의해 작동되고 그에 따라 특이점 문제가 발생한다. 구체적으로, CMG는 축을 중심으로 회전하는 김벌(gimbal)에 장착된 일종의 회전체인데, 토크를 발생시키기 위해서는 구동 제어부를 통해 김벌의 각도를 변화시키게 된다. 이때 김벌의 토크 벡터들이, 예컨대 동일한 평면에서 함께 정렬 되면 특이점이 발생하게 되는데, 이를 수학적으로 나타내면 다음과 같다.
도 1에는 CMG 클러스터의 대표적인 형태가 도시되어 있다. 즉, 도 1의 (a)는 도 10에 도시한 것과 같이 4개의 CMG를 피라미드 형태로 배열한 전형적인 CMG 클러스터를 나타내고 있으며, 도 1의 (b)는 3개의 CMG를 평행하게 배열한 CMG 클러스터를 나타낸다.
도 1의 (a)에 있어서, 4개의 CMG에 대한 총 각 운동량 벡터는 다음과 같이 표현된다.
Figure 112004053028567-pat00004
상기 식에서 h는 총 각 운동량 벡터이고, hi는 i번째 CMG에 의해 만들어지는 i번째 각 운동량 벡터이다. 또한,
Figure 112004053028567-pat00005
는 김벌 각 벡터이고,
Figure 112004053028567-pat00006
는 김벌 각 속도 벡터이며, β는 CMGs의 사교 각(skew angle)이다. 우주선 몸체 프레임에 대한 총 각 운동량 벡터는 다음과 같이 표현된다.
Figure 112004053028567-pat00007
상기 식에서 cosβ≡cβ이고, sinβ≡sβ이다. 우주선 몸체 프레임과 관련하여 관성 변화는 아주 작으며, 관성 변화로부터 생기는 토크는 무시할 수 있다. 따라서, h에 대한 시간 미분량은 다음과 같이 표현된다.
Figure 112004053028567-pat00008
상기 수학식 3을 좀 더 간단한 형태로 표현하면, 다음과 같이 나타낼 수 있다.
Figure 112004053028567-pat00009
상기 식에서, u는 원하는 토크 명령 벡터이고, A(γ)는 ∂h/∂γ로 정의되는 자코비안 행렬(Jacobian matrix)이다.
한편, 도 1의 (b)에 도시한 것과 같은 CMG 클러스터 구조에 있어서는, 총 각 운동량 벡터가 다음과 같이 주어진다.
Figure 112004053028567-pat00010
또한, 상기 수학식 5에 대한 자코비안 행렬은 다음과 같이 유도된다.
Figure 112004053028567-pat00011
일반적으로, 원하는 토크 명령은 김벌 각 속도를 제어함으로써 CMG 클러스터로부터 발생한다. 예컨대, CMG의 위치를 변경시키기 위하여, CMG에 대하여 토크를 발생시키고자 하는 경우, 구동 제어부는 어떤 주어진 알고리즘을 적용하여 김벌의 각 속도를 계산하고, 이 계산된 값만큼 CMG를 회전시켜서 토크를 발생시키게 된다. 즉, CMG 분야에서 가장 관심을 두고 있는 것은 바로 CMG를 회전시키기 위한 김벌 각 속도 구현 방식이다. 이러한 김벌 각 속도를 계산하는 가장 간단한 구동 법칙은 다음과 같다.
Figure 112004053028567-pat00012
(AT는 A 행렬의 전치 행렬)
상기 구동 법칙은 의사 역행렬 구동 방식(pseudo-inverse steering law)으로 알려져 있다.
상기 수학식 7로부터 쉽게 알 수 있는 바와 같이, 자코비안 행렬은 김벌 각으로 구성되어 있는 바, 역행렬이 존재하지 않을 수 있어, 김벌 각 속도가 구해지지 않는 경우가 있다. 이를 수학적으로 보다 쉽게 설명하면, 예컨대 A가 다음과 같은 2×2 행렬로 되어 있다고 하자.
Figure 112004053028567-pat00013
상기 A 행렬의 역행렬은 다음과 같은 식을 통해 구할 수 있다.
Figure 112004053028567-pat00014
이때, ad-bc는 행렬식(determinant)으로서, det(A)로 표시하는데, det(A)가 0이 되면, A 행렬의 역행렬을 구할 수 없게 된다. 이러한 경우는 예컨대, 김벌 각이 어떤 특정의 형태로 배치되는 경우(예컨대, 토크 벡터들이 함께 동일 평면에서 정렬된다든지, 모든 개개의 CMG 토크 출력 벡터가 토크 명령 방향에 수직한 경우 등)에 발생하게 되는데, 이 때는 김벌 각 속도를 구할 수 없게 되고, 이를 특이점 문제라고 한다.
지금까지, 상기 특이점 문제를 해결하기 위한 여러 가지 구동 법칙이 제안되어 왔는데, 예컨대 다음과 같은 각 속도 계산 법칙이 알려져 있다.
Figure 112004053028567-pat00015
(ρ는 상수, n은 널 벡터(null vector))
상기 구동 법칙은 널 모션(null motion) 구동 방식이라고 하는데, 널 모션은 순(net) 토크가 발생하지 않는 구동 모드로서, 간단히 설명하면 적절한 ρ, n값을 선택하여 김벌 각 속도를 구할 수 있도록 하는 것이다.
상기 널 모션 구동 법칙 외에 특이점 강인 구동 법칙(Singularity Robust-Inverse (SR))이 있다. 즉, 김벌 각 속도는
Figure 112004053028567-pat00016
과 같은 구동 법칙을 통해 구할 수 있다(상기 식에서, Q, R은 양(+)의 일정한 가중 행렬(weighting matrix)). Q=I, R=αI로 선택하면, 상기 식은 다음과 같이 단순화된다.
Figure 112004053028567-pat00017
즉, 강인 구동 법칙에서는 특이점 문제가 발생하는 것을 방지하기 위하여 최적의 α를 선택하는 것을 목적으로 한다.
전술한 법칙들을 이용하여 특이점 문제를 회피하는 방식이, 예컨대 미국 특허 제6,039,290호 및 제6,131,056호에 개시되어 있다.
그러나, 이하에서 본원 발명과 비교하여 보다 상세히 설명하겠지만, 상기 종래의 기술 모두 자코비안 행렬의 행렬식이 0으로 되는 것을 방지하기 위하여, 임의의 상수를 선택하여 김벌 각 속도의 계산에 이용하는 것일뿐, 특이점 문제를 해결하기 위한 일반적인 구동 방식을 제시하고 있지 못하고 있으며, 실제로 경우에 따라서는 특이점의 발생을 피하지도 못한다.
한편, 다음의 공지 문헌들은 그 전체 또는 일부가 본 명세서에 참고로 합체된다.
1. Cornick, D. E., "Singularity Avoidance Control Laws for Single Gimbal Control Moment Gyros," AIAA Paper 79-1698, Aug. 1979.
2. Vadali, S. R., Oh, H., and Walker, S., "Preferred Gimbal Angles for Single-Gimbal Control Moment Gyroscopes,", Journal of Guidance, Control, and Dynamics, Vol. 13, No. 6, 1990, pp. 1090-1095.
3. Junkins, J. L., and Kim. Y., Introduction to Dymamics and Control of Flexible Structures, AIAA, Washinton, DC, 1993, pp 9-64.
4. Nakamura, Y., and Hanafusa, H., "Inverse Kinematic Solutions with Singularity Robustness for Robot Manipulator Control," Journal of Dynamic Systems, Measurement, and Control, Vol. 108, Sept., 1986, pp. 163-171.
5. Wie. B., Ailey. D., and Heiberg. C., "Singularity Robust Steering Logic for Redundant Single-Gimbal Control Moment Gyros," Journal of Guidance, Control, and Dynamics, Vol. 24, No. 5, 2001, pp. 865-872.
6. Ford, K. A., and Hall, C. D., "Singular Direction Avoidance Steering for Control Moment Gyros," Journal of Guidance, Control, and Dynamics, Vol. 23, No. 4, 2000, pp. 648-656.
7. Kurokawa, H., "Constrained Steering Law for Pyramid-Type Control Moment Gyros and Ground Tests," Journal of Guidance, Control, and Dynamics, Vol. , No. 3, 1997, pp. 445-449.
8. Wie. B., Space Vehicle Dynamics and Control, AIAA, 1998, pp. 437-444.
9. Oh, H, and Valadi, S. R., "Feedback Control and Steering Laws for Spacecraft Using Single Gimbal Control Moment Gyros," The Journal of the Astronautical Sciences, Vol. 39, No. 2, 1994, pp. 183-203.
10. Wie. B., "Singularity Analysis and Visualization for Single-Gimbal Control Mment Gyro Systems," Journal of Guidance, Control, and Dynamics, Vol. 27, No. 2, 2004, pp. 271-282.
11. Bedrossian, N. S., Paradiso, J., Bergmann, E. V., and Rowell, D., "Steering Law Design for Redundant Single-Gimbal Control Moment Gyroscopes," Journal of Guidance, Control, and Dynamics, Vol. 13, No. 6, pp. 1083-1089
12. Schaub, H., and Junkins, J. L., "Singularity Avoidance Using Null Motion and Variable-Speed Control Moment Gyros," Journal of Guidance, Control, and Dynamics, Vol. 23, No. 1, 2000, pp. 11-16.
13. Schaub, H., and Junkins, Analytical Mechanics of Space Systems, AIAA, 2003, pp. 353-373.
14. Yoon, H., and Tsiotras. P., "Singularity Analysis of Variable-Speed Control Moment Gyros," Journal of Guidance, Control, and Dynamics, Vol. 27, No. 3, 2004, pp. 374-386.
15. Ford, K., and Hall, C. D., "Flexible Spacecraft Reorentations Using Gimbaled Momentum Wheels," Advances in the Astronautical Sciences, Astrodynamics, Vol. 97, San Diego, CA, 1997, pp. 1895-1914.
16. Bryson, A. E., Jr., and Ho, Y.-C., Applied Optimal Control, Hemisphere, Washington, DC, 1975.
17. U.S. Patent No. 6,039,290.
18. U.S. Patent No. 6,131,056.
본 발명은 전술한 종래 기술과는 다른 신규의 알고리즘을 적용하여 CMG를 회전시킴으로써, 위성 등의 자세 제어시 나타나는 특이점 문제를 해결하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여, 본 발명에 따르면, 단순히 CMG 구동시 나타나는 특이점 문제를 피하는 것이 아니라, 김벌 각은 물론 특이점 조건의 물리적 상태를 포함하는 신규의 목적 함수를 설정하고, 이 목적 함수가 최소가 되는 조건을 찾아내는 신규의 구동 법칙을 이용한다.
즉, 본 발명에 따르면, 김벌 각을 변화시키는 구동 제어부의 제어 하에서 회전하는 제어 모멘트 자이로스코프(CMG) 클러스터의 구동 방법이 제공되는데, 이 방법은 사용자가 원하는 제어 토크 명령(u) 신호를 입력하는 단계와; 김벌 각(
Figure 112004053028567-pat00018
)과 구동 시간 간격(T) 동안에 김벌이 구동되어 나타나는 구조적 변화를 포함하는 다음과 같은 목적 함수(V)가 최소가 되도록 하는 김벌 각 속도(
Figure 112004053028567-pat00019
)의 신호를 계산하여 생성하는 단계와
Figure 112004053028567-pat00020
;
상기 생성된 김벌 각 속도 신호에 따라 각각의 김벌을 회전시키는 단계를 포함하는 것을 특징으로 한다.
본 발명에 따르면, 상기 김벌 각 속도 신호를 계산하여 생성하는 단계는, 상기 목적 함수의 김벌 각에 대한 구배 행렬(gradient matrix)(
Figure 112004053028567-pat00021
)과 헤시안 행렬(Hessian matrix)(
Figure 112004053028567-pat00022
)을 구하고, 상기 구해진 구배 행렬과 헤시안 행렬로부터, 다음과 같은 제1 헤시안(
Figure 112004053028567-pat00023
)과 구배 벡터(g)를 구하며,
Figure 112004053028567-pat00024
상기 구해진 값들과 다음의 관계식을 이용하여 상기 목적 함수를 최소로 하는 김벌 각 속도(
Figure 112004053028567-pat00025
)를 계산하는 것을 포함하는 것을 특징으로 한다
Figure 112004053028567-pat00026
(상기 식에서
Figure 112004053028567-pat00027
이고, A는 CMG 클러스터의 자코비안 행렬).
또한, 전술한 목적을 달성하기 위하여, 본 발명에 따라 다른 형태의 제어 모멘트 자이로스코프(CMG) 클러스터의 구동 방법이 제공되는데, 이 방법은 사용자가 원하는 제어 토크 명령(u) 신호를 입력하는 단계와; 김벌 각(
Figure 112004053028567-pat00028
)과 구동 시간 간격(T) 동안에 김벌이 구동되어 나타나는 구조적 변화를 포함하는 함수 및 에너지 항목을 포함하는 다음과 같은 목적 함수(V)가 최소가 되도록 하는 김벌 각 속도(
Figure 112004053028567-pat00029
)의 신호를 계산하여 생성하는 단계와
Figure 112004053028567-pat00030
(W: 에너지 항목에 해당하는 양(+)의 가중 행렬);
상기 계산된 김벌 각 속도 신호에 따라 각각의 김벌을 회전시키는 단계를 포함하는 것을 특징으로 한다.
본 발명에 따르면, 상기 김벌 각 속도의 신호를 계산하여 생성하는 단계는, 상기 목적 함수의 김벌 각에 대한 구배 행렬(
Figure 112004053028567-pat00031
)과 헤시안 행렬(
Figure 112004053028567-pat00032
)을 구하고, 상기 구해진 구배 행렬과 헤시안 행렬로부터, 다음과 같은 제1 헤시안(
Figure 112004053028567-pat00033
)과 구배 벡터(g)를 구하며
Figure 112004053028567-pat00034
,
상기 구해진 값들과 다음의 관계식을 이용하여 상기 목적 함수를 최소로 하는 김벌 각 속도(
Figure 112004053028567-pat00035
)를 계산하는 것을 포함하는 것을 특징으로 한다
Figure 112004053028567-pat00036
(상기 식에서,
Figure 112004053028567-pat00037
이고,
Figure 112004053028567-pat00038
이며, H는 제2 헤시안이고, A는 CMG 클러스터의 자코비안 행렬).
본 발명의 바람직한 실시예에 따르면, 상기 양의 가중 행렬(W)는 다음의 관계식을 만족하는 것을 특징으로 한다
Figure 112004053028567-pat00039
(υ는 CMG 클러스터에 따라 정해지는 상한).
한편, 상기 CMG 클러스터가 3개의 CMG를 평행하게 배열한 형태인 경우, 본 발명의 바람직한 한 가지 실시예에 따르면, 상기 제1 헤시안과 구배 벡터는 다음과 같은 관계식을 통해 계산된다.
Figure 112004053028567-pat00040
,
Figure 112004053028567-pat00041
(상기 식에서,
Figure 112004053028567-pat00042
)
본 발명에 따르면, 전술한 목적을 달성하기 위하여, 김벌에 장착되어, 상기 김벌 각을 회전시키는 제어부의 제어 하에서 회전하는 제어 모멘트 자이로스코프 (CMG) 클러스터가 제공되는데, 상기 제어부는 사용자가 입력하는 제어 토크 명령(u) 신호를 수신하는 수단과; 상기 제어 토크 명령 신호에 따라, 김벌을 회전시키기 위하여, 김벌 각(
Figure 112004053028567-pat00043
)과 구동 시간 간격(T) 동안에 김벌이 구동되어 나타나는 구조적 변화를 포함하는 다음과 같은 목적 함수(V)를 이용하여, 그 목적 함수가 최소가 되도록 하는 김벌 각 속도(
Figure 112004053028567-pat00044
)의 신호를 계산하여 생성하는 수단과,
Figure 112004053028567-pat00045
;
상기 생성된 김벌 각 속도 신호에 따라 각각의 김벌을 회전시키는 수단을 포함하는 것을 특징으로 한다.
본 발명에 따르면, 상기 김벌 각 속도 신호를 계산하여 생성하는 수단은, 상기 목적 함수의 김벌 각에 대한 구배 행렬(
Figure 112004053028567-pat00046
)과 헤시안 행렬(
Figure 112004053028567-pat00047
)을 구하고, 상기 구해진 구배 행렬과 헤시안 행렬로부터, 다음과 같은 제1 헤시안(
Figure 112004053028567-pat00048
)과 구배 벡터(g)를 구하며
Figure 112004053028567-pat00049
,
상기 구해진 값들과 다음의 관계식을 이용하여 상기 목적 함수를 최소로 하는 김벌 각 속도를 계산하도록 프로그램되어 있는 것을 특징으로 한다
Figure 112004053028567-pat00050
,
(상기 식에서
Figure 112004053028567-pat00051
이고, A는 CMG 클러스터의 자코비안 행렬).
또한, 본 발명에 따르면, 김벌에 장착되어, 김벌 각을 변화시키는 구동 제어부의 제어 하에서 회전하는 제어 모멘트 자이로스코프(CMG) 클러스터가 제공되는데, 상기 제어부는, 사용자가 입력하는 제어 토크 명령(u) 신호를 입력하는 수단과; 상기 제어 토크 명령 신호에 따라, 김벌을 회전시키기 위하여, 김벌 각(
Figure 112004053028567-pat00052
)과 구동 시간 간격(T) 동안에 김벌이 구동되어 나타나는 구조적 변화를 포함하는 함수 및 에너지 항목을 포함하는 다음과 같은 목적 함수(V)를 이용하여, 상기 목적 함수가 최소가 되도록 하는 김벌 각 속도(
Figure 112004053028567-pat00053
)의 신호를 계산하여 생성하는 수단과
Figure 112004053028567-pat00054
(W: 에너지 항목에 해당하는 양(+)의 가중 행렬); 상기 생성된 김벌 각 속도 신호에 따라 각각의 김벌을 회전시키는 수단를 포함하는 것을 특징으로 한다.
본 발명에 따르면, 상기 김벌 각 속도 신호를 계산하여 생성하는 수단은, 상기 목적 함수의 김벌 각에 대한 구배 행렬(
Figure 112004053028567-pat00055
)과 헤시안 행렬(
Figure 112004053028567-pat00056
)을 구하고, 상기 구해진 구배 행렬과 헤시안 행렬로부터, 다음과 같은 제1 헤시안(
Figure 112004053028567-pat00057
)과 구배 벡터(g)를 구하며
Figure 112004053028567-pat00058
,
상기 구해진 값들과 다음의 관계식을 이용하여 상기 목적 함수를 최소로 하는 김벌 각 속도를 계산하도록 프로그램되어 있는 것을 특징으로 한다
Figure 112004053028567-pat00059
(상기 식에서,
Figure 112004053028567-pat00060
이고,
Figure 112004053028567-pat00061
이며, H는 제2 헤시안이고, A는 CMG 클러스터의 자코비안 행렬).
전술한 본 발명의 목적, 특징 및 이점은 첨부 도면을 참조로 한 이하의 본 발명의 바람직한 실시 형태의 상세한 설명을 통해 보다 명확하게 이해할 수 있을 것이다.
첨부된 도면을 참조한 이하의 설명에 있어서, 당업계에 공지되어 있는 기술적 구성에 대한 상세한 설명은 생략한다. 예컨대, CMG의 일반적인 구성 등은 이미 공지되어 있는 기술이고, 본 발명은 이러한 구성에 대한 것이 아니라, CMG를 구동시키기 위한 알고리즘, 보다 구체적으로는 이러한 알고리즘이 프로그래밍되어 있는 구동 제어부를 통해 CMG를 회전시키는 것과 관련되어 있다는 점에 유의하여야 한다.
본 발명에 따르면, CMG의 구동시 나타나는 특이점 문제를 해결하기 위한 신규의 CMG 구동 법칙이 제공된다.
본 발명자는 기존의 CMG 구동 법칙, 즉 널 벡터를 도입한다든지 혹은 적절한 상수를 도입하여, CMG 구동시 나타나는 특이점을 회피하는 것이 아니라, 특이점 조건의 물리적 상태를 포함하는 소정의 목적함수를 설정하고, 이 목적 함수에 대하여 구속 최적화 기법(Constrained Optimization Technique)을 적용하여 그 함수를 최소화하는 김벌 각 속도를 계산하는 새로운 구동 법칙을 완성하였다. 즉, 종래 기술에서 설명한 바와 같이, 특이점의 척도가 되는 행렬식인 det(AAT)를 단순히 어떤 벡터나 상수를 도입하여 피하는 것이 아니라, CMG의 구동에 따른 물리적 변화를 반영하는 변수를 포함하는 어떤 목적 함수가 최소가 되는 조건을 찾아내어, 최종적으로 김벌 각 속도를 구하는 것이다. 이러한 사상에 기초하여, 본 발명에 따르면, CMG를 구동시키는 구동 시간의 변화에 따른 김벌 각 속도를 포함하는 새로운 목적함수 V가 제안된다. 즉,
Figure 112004053028567-pat00062
본 발명에 따르면, 특이점을 나타내는 척도로서 현재의 김벌 각 벡터(
Figure 112004053028567-pat00063
)뿐만 아니라, 구동기가 구동되는 시간 간격(T) 동안에 김벌이 구동됨으로 해서 나타나는 구조적인 부분(시간에 따른 김벌 각의 변화(김벌 각 속도), 즉
Figure 112004053028567-pat00064
)을 포함하여 특이점의 척도로 삼고 있다. 가장 간단한 특이점 척도로서, 다음과 같은 형태를 가정할 수 있다.
Figure 112004053028567-pat00065
수학식 4의 요건을 충족시키면서 상기 목적 함수를 최소화하는 김벌 각 속도 를 찾아내기 위하여, 라그랑지 곱셉 벡터(Lagrange multiplier vector, λ)를 도입한다. 즉,
Figure 112004053028567-pat00066
최적화 문제는 다음의 최적 조건, 즉 수학식 12 및 수학식 13을 해결함으로써 해결된다(상기 참고 문헌 16 참조).
Figure 112004053028567-pat00067
Figure 112004053028567-pat00068
한편, 테일러 전개를 적용하면, 상기 목적 함수는 다음과 같이 표현될 수 있다.
Figure 112004053028567-pat00069
상기 수학식 14에서,
Figure 112004053028567-pat00070
으로서, 상기 목적 함수의 김벌 각에 대한 구배 행렬(gradient matrix)이고,
Figure 112004053028567-pat00071
으로서, 목적 함수의 김벌 각에 대한 헤시안 행렬(Hessian matrix)이다.
김벌 각 속도(
Figure 112004053028567-pat00072
)에 대한 목적 함수의 편미분 함수는 다음과 같이 표현될 수 있다.
Figure 112004053028567-pat00073
높은 차수의 항목은 생략하고, 본 발명에 따라 제1 헤시안(
Figure 112004053028567-pat00074
) 및 구배 벡터(gradient vector)(g)를 다음과 같이 정의하면,
Figure 112004053028567-pat00075
수학식 12의 최적화 조건으로부터 다음과 같은 최적 해가 얻어진다.
Figure 112004053028567-pat00076
따라서, 김벌 각 속도는 다음과 같이 쓸 수 있다.
Figure 112004053028567-pat00077
수학식 20을 수학식 13에 대입하면, 다음과 같은 라그랑지 곱셈 벡터를 얻을 수 있다.
Figure 112004053028567-pat00078
따라서, 김벌 각 속도는 김벌 각의 함수와, 원하는 토크 명령 벡터(u)로 표현될 수 있다. 즉,
Figure 112004053028567-pat00079
수학식 22를 좀 더 간단하게 표현하기 위해, 새로운 기호를 도입하면, CMG를 구동하기 위한 김벌 각 속도는 다음과 같은 새로운 구동 법칙을 통해 구할 수 있다.
Figure 112004053028567-pat00080
상기 식에서,
Figure 112004053028567-pat00081
이다.
즉, u는 사용자가 원하는 제어 토크 명령이고, A는 CMG의 형태에 따라 주어지는 자코비안 행렬이므로, 김벌 각과 시간에 따른 김벌 각 속도를 포함하는 목적 함수의 구배 행렬(수학식 15)과 헤시안 행렬(수학식 16)을 계산하고, 이들 각각을 수학식 18을 통해 제1 헤시안(
Figure 112004053028567-pat00082
)과 구배 벡터(g)를 구하면 상기 목적 함수를 최소로 하는 김벌 각 속도, 즉 CMG를 회전시키기 위한 김벌 각 속도를 구할 수 있고, 결국 CMG를 원하는 각도만큼 회전시킬 수 있게 된다. 다시 말하면, 김벌의 현재의 각도와 김벌이 구동됨으로써 나타나는 구조적인 변화(시간에 따른 김벌 각의 변화)를 포함하는 목적 함수를 특이점의 척도로 삼아, 그 척도를 최소화하는 김벌 각 속도를 구하여 CMG를 회전시키는 것이다.
한편, 자코비안의 특이점을 회피하기 위해서 구성된 최적의 상기 구동 방식에 있어서, 제1 헤시안으로 인해 또 다른 특이점의 가능성이 발생할 여지가 있다. 이것은 에너지에 대한 개념 없이 특이점 최소화 문제를 고려했기 때문이다. 따라서, 다음과 같이 특이점에 대한 척도와 에너지를 최소화하는 문제로서 본 발명의 구동 방식을 재구성할 수 있다. 즉,
Figure 112004053028567-pat00083
상기 식에서, W는 에너지 항목에 해당하는 양(+)의 일정한 가중 행렬이다. 상기 새로운 목적 함수를 최적화하는 것, 즉 최소화하는 전체적인 과정은 전술한 과정과 실질적으로 동일하다. 따라서, 최적 해를 구하기 위하여, 수학식 12의 최적 조건을 이용하여, 상기 수학식 24로 나타낸 목적함수를 김벌 각 속도에 대하여 편미분하면, 다음과 같은 식이 얻어진다.
Figure 112004053028567-pat00084
따라서, 김벌 각 속도는 다음과 같이 주어진다.
Figure 112004053028567-pat00085
상기 식에서 H는 제2 헤시안으로서, 다음의 관계식을 만족한다.
Figure 112004053028567-pat00086
제2 헤시안은 제1 헤시안과 성질이 유사하여, 최적화 문제를 풀기 위한 나머 지 과정은 동일하게 수행할 수 있다. 따라서, 최적의 CMG 구동 방식을 다음과 같은 단순한 형태로 표현할 수 있다.
Figure 112004053028567-pat00087
상기 식에서 각각의 행렬은 다음과 같다.
Figure 112004053028567-pat00088
상기 제2 헤시안 역시 그 행렬식으로 인해 특이점 문제가 발생할 수 있다. 그러나, CMG 클러스터의 성질(김벌 각은 그 각도 변화 범위가 제한되어 있다) 때문에, 헤시안 행렬의 각 요소는 어떤 한도 내로 정해진다. 따라서, 제2 헤시안을 양의 행렬로 구성함으로써, 즉 가중 행렬(W)을 적절히 선택함으로써 특이점 문제를 해결할 수 있다. 구체적으로, 제1 헤시안의 행렬 분산(matrix norm)의 최대값이 아래와 같이 제한될 수 있다.
Figure 112004053028567-pat00089
상기 식에서 υ는 CMG 클러스터에 따라 정해지는 상한(upper bound)이다. 그러면, 제2 헤시안의 행렬 분산의 최대값은 다음과 같이 주어진다.
Figure 112004053028567-pat00090
따라서,
Figure 112004053028567-pat00091
를 만족하는 가중 행렬을 선택하게 되면, 제2 헤시안은 항상 양(+)의 값을 갖게 되어 특이점 문제를 해결할 수 있게 된다.
당업자라면 전술한 본 발명의 상세한 설명을 통해 알 수 있는 바와 같이, 본 발명은 CMG를 구동하는 신규의 구동 법칙, 즉 CMG를 제어하는 알고리즘에 관한 것으로서, 이러한 알고리즘은 종래의 CMG를 이용하여 토크를 발생시키는 위성이나 로봇 시스템에 적용할 수 있다. 즉, 당업자라면 본 발명을 실시하기 위한 구체적인 블록도, 구성도 등을 제시하지 않더라도, 본 발명이 어떻게 적용될 수 있는지 쉽게 파악할 수 있을 것이다. 예컨대, 미국 특허 제6,039,290호 또는 제6,131,056호의 도면에 도시된 것과 같은 구성에 본 발명을 적용할 수 있다.
한편, 상기 본 발명에 따라 제공되는 신규의 CMG 제어 알고리즘을 입증하기 위하여, 도 1의 (b)에 도시한 것과 같은 3개의 CMG가 평면상에 구축되어 있는 3 평행(three-parallel) CMG 클러스터를 대상으로 헤시안과 구배 벡터를 구하여 김벌 각 속도를 구하면 다음과 같다.
먼저, 본 발명의 한 가지 실시예에 따르면, 최소화하여야 하는 목적 함수 V를 다음과 같은 형태로 선택할 수 있다.
Figure 112004053028567-pat00092
전술한 바와 같이, 에너지에 대한 개념을 고려하는 경우엔,
Figure 112004053028567-pat00093
형태가 된다는 것은 쉽게 이해할 수 있을 것이다. 상기 식에서,
Figure 112004053028567-pat00094
이고(수학식 6 참조), 이것의 역변환 행렬식은 다음과 같다.
Figure 112004053028567-pat00095
수학식 29를 이용하여, 수학식 28에서
Figure 112004053028567-pat00096
대신
Figure 112004053028567-pat00097
를 삽입하여, 먼저 에 대하여 편미분을 수행하면, 다음과 같은 식을 얻을 수 있다.
Figure 112004053028567-pat00099
상기 식에서,
Figure 112004053028567-pat00100
이다.
삼각함수 관계식을 이용하면, 수학식 30은 다음과 같이 표현할 수 있다.
Figure 112004053028567-pat00101
상기 식에서,
Figure 112004053028567-pat00102
이다. 김벌 각 변화
Figure 112004053028567-pat00103
는 구동 시간 간격(T)에 걸쳐 작다고 가정하면,
Figure 112004053028567-pat00104
,
Figure 112004053028567-pat00105
로 근사화할 수 있다. 그리고, 수학식 31에서, 높은 차수 항목 및 작은 김벌 각들의 곱은 생략하는 선형화를 수행하면, 수학식 31은 다음과 같은 단순화된다.
Figure 112004053028567-pat00106
또한,
Figure 112004053028567-pat00107
Figure 112004053028567-pat00108
로 치환하면, 최종적으로 다음의 식을 얻는다.
Figure 112004053028567-pat00109
유사하게,
Figure 112004053028567-pat00110
에 대한 상기 목적함수(V)의 편미분을 구하면, 다음과 같은 식을 얻는다.
Figure 112004053028567-pat00111
Figure 112004053028567-pat00112
정리하면, 김벌 각 속도에 대한 목적함수(V)의 미분식은 다음과 같이 단순한 형태로 표현할 수 있다.
Figure 112004053028567-pat00113
상기 식에서,
Figure 112004053028567-pat00114
이고,
Figure 112004053028567-pat00115
이다.
따라서, 제1 헤시안과 구배 벡터를 구할 수 있으므로, 김벌 각 속도를 계산할 수 있고, 이렇게 계산된 김벌 각 속도에 의해 CMG를 회전시키게 된다. 피라미드 형태의 CMG 클러스터에 대하여도, 전술한 것과 같은 과정을 통해 헤시안과 구배 벡터를 구할 수 있다.
한편, 상기한 바와 같이, 헤시안의 모든 요소는 삼각함수로 구성되기 때문에, 이들 행렬 요소는 모두 그 크기에 있어서 제한된 값을 갖는다. 상기의 경우에, 모든 요소들이 4T2보다 작음을 알 수 있다. 이처럼, 헤시안 행렬이 특정한 값으로 제한되어 있으므로, 수학식 27로 표현되는 최적의 구동 법칙 알고리즘을 적용할 때, 가중 행렬(W) 값을 조정함으로써 제2 헤시안 행렬에서 비롯되는 특이점 문제를 해결할 수 있다. 즉, 가중 행렬을 임의의 매우 큰 값으로 설정하면, 특이점 문제를 해결할 수 있는 것이다.
<시뮬레이션 실시예>
본 발명자는 본 명세서에서 새롭게 제안된 CMG 구동 법칙의 타당성을 증명하기 위하여, 3 평행 CMG 클러스터에 대하여, 종래 기술과 본 발명을 적용하는 시뮬레이션 시험을 수행하였다.
시뮬레이션을 위해 다음과 같은 제어 토크 명령을 선택하였으며, 시간에 따른 이러한 제어 토크 명령의 변화를 도 2에 나타내었다.
Figure 112004053028567-pat00116
또한, CMG 클러스터의 초기 김벌 각과 각 속도는 다음과 같이 특정하였다.
Figure 112004053028567-pat00117
구동기가 구동되는 시간 간격(T)은 0.01로 하였고, CMG에 의해 발생되는 내부 각 운동량은 모두 1로 하였다. 현실적인 시뮬레이션 환경을 제공하기 위하여, 김벌 각 속도는
Figure 112004053028567-pat00118
가 되도록 하였다.
4가지의 시뮬레이션 시나리오를 수행하였다. 즉, 종래 기술에 따라, 첫번째 시나리오는 수학식 7로 표현되는 의사 역행렬 방법에 대한 것이고, 두 번째 시나리오는 수학식 10으로 표현되는 강인 구동 방법에 대한 것이다. 나머지 두 시나리오는 본 발명에 대한 것으로서, 가중 행렬(W)의 값을 달리한 것이다.
의사 역행렬 구동 방식에 대한 도 3의 (a)에서 볼 수 있는 바와 같이, 두 운동량 벡터가 종종 동일한 평면에서 거의 정렬된다. 따라서, 행렬식(det(AAT))으로 나타내어지는 도 4의 특이점 지수(singularity index)가 거의 0으로 접근하게 되고, 원하는 제어 토크 명령을 만족시키기 위해서는 김벌 각 속도를 크게 해야 한다는 뜻이다. 결과적으로 많은 에너지를 소비하게 된다. 도 3의 (b)는 김벌 각 속도를 나타내며, 도 3의 (c)는 다음과 같은 식으로 표현되는 토크 명령 에러 벡터를 나타낸다.
Figure 112004053028567-pat00119
uc는 원하는 제어 토크 명령이고, u는 CMG 클러스터로부터 출력되는 실제 토크이다. 특이점 부근에서 토크 에러가 매우 크다는 것을 알 수 있다. 앞서 말한 바와 같이, 특이점 부근에서는 매우 큰 김벌 각 속도가 요구되기 때문이다. 일반 적으로, 매우 큰 김벌 각 속도를 구현하는 것은 불가능하기 때문에, 이것은 결국 오차 요인으로 나타나게 된다.
도 5 및 도 6은 강인 구동 방식에 대한 성능을 나타내는 것인데, α는 0.01로 하였다. 특이점 지수가 매우 작게 유지되면서 제어 토크 명령을 만족시키기 위하여 매우 큰 김벌 각 속도를 필요로 함을 알 수 있다. 패러미터(α)를 조정하여, 특이점 상황을 피할 수도 있으나, 토크 명령 에러 벡터가 매우 커지게 된다.
본 발명에 있어서, 가중 행렬 W=αI로 하였다. 비교적 큰 α를 선택하여, 제2 헤시안이 특이점 상태로 되는 것을 방지할 수 있다. α= 8×104 및 α= 8×106으로 하여 본 발명의 시뮬레이션을 수행하였고, 그 결과를 각각 도 7 및 도 8에 나타내었다. 두 경우 모두에 있어서, 김벌 각 속도는 합리적인 크기의 수준이었고, 김벌 각이 서로 정렬되지도 않았다. 또한, 토크 명령 에러도 없었다. 한편, 도 9에는 α(즉, W)와 특이점 지수의 관계가 도시되어 있는데, α가 작을수록 특이점 지수는 더 커짐을 알 수 있다.
전술한 바와 같이, 본 발명에 따라 제공되는 신규의 CMG 구동 제어 방식에 따르면, CMG를 구동시키기 위하여 선행되는 김벌 각 속도를 구할 때, 그 해를 구할 수 없는 상태, 즉 특이점 상태가 발생하는 것을 방지할 수 있다. 따라서, 본 발명을 CMG에 적용하게 되면, 사용자는 자신이 원하는 대로 CMG를 회전시켜 토크를 발생시킬 수가 있게 되고, 따라서 정확한 자세 제어를 구현할 수가 있다.

Claims (22)

  1. 김벌 각을 변화시키는 구동 제어부의 제어 하에서 회전하는 제어 모멘트 자이로스코프(CMG) 클러스터의 구동 방법에 있어서,
    사용자가 원하는 제어 토크 명령(u) 신호를 입력하는 단계와,
    김벌 각(
    Figure 112004053028567-pat00120
    )과 구동 시간 간격(T) 동안에 김벌이 구동되어 나타나는 구조적 변화를 포함하는 다음과 같은 목적 함수(V)가 최소가 되도록 하는 김벌 각 속도(
    Figure 112004053028567-pat00121
    )의 신호를 계산하여 생성하는 단계와
    Figure 112004053028567-pat00122
    상기 생성된 김벌 각 속도 신호에 따라 각각의 김벌을 회전시키는 단계
    를 포함하는 것을 특징으로 하는 제어 모멘트 자이로스코프 클러스터의 구동 방법.
  2. 청구항 1에 있어서, 상기 김벌 각 속도 신호를 계산하여 생성하는 단계는,
    상기 목적 함수의 김벌 각에 대한 구배 행렬(
    Figure 112004053028567-pat00123
    )과 헤시안 행렬(
    Figure 112004053028567-pat00124
    )을 구하고,
    상기 구해진 구배 행렬과 헤시안 행렬로부터, 다음과 같은 제1 헤시안(
    Figure 112004053028567-pat00125
    ) 과 구배 벡터(g)를 구하며,
    Figure 112004053028567-pat00126
    상기 구해진 값들과 다음의 관계식을 이용하여 상기 목적 함수를 최소로 하는 김벌 각 속도를 계산하는 것을 포함하는 것을 특징으로 하는 제어 모멘트 자이로스코프 클러스터의 구동 방법
    Figure 112004053028567-pat00127
    ,
    (상기 식에서
    Figure 112004053028567-pat00128
    이고, A는 CMG 클러스터의 자코비안 행렬).
  3. 청구항 1 또는 청구항 2에 있어서, 상기 CMG 클러스터는 4개의 CMG를 피라미드 형태로 배열한 것이거나 3개의 CMG를 평행하게 배열한 형태일 수 있는 것을 특징으로 하는 제어 모멘트 자이로스코프 클러스터의 구동 방법.
  4. 청구항 3에 있어서, 상기 CMG 클러스터가 3개의 CMG를 평행하게 배열한 형태인 경우, 상기 제1 헤시안과 구배 벡터는 다음과 같은 관계식을 통해 계산될 수도 있는 것을 특징으로 하는 제어 모멘트 자이로스코프 클러스터의 구동 방법
    Figure 112004053028567-pat00129
    ,
    Figure 112004053028567-pat00130
    (상기 식에서,
    Figure 112004053028567-pat00131
    )
  5. 김벌 각을 변화시키는 구동 제어부의 제어 하에서 회전하는 제어 모멘트 자이로스코프(CMG) 클러스터의 구동 방법에 있어서,
    사용자가 원하는 제어 토크 명령(u) 신호를 입력하는 단계와,
    김벌 각(
    Figure 112004053028567-pat00132
    )과 구동 시간 간격(T) 동안에 김벌이 구동되어 나타나는 구조적 변화를 포함하는 함수 및 에너지 항목을 포함하는 다음과 같은 목적 함수(V)가 최소가 되도록 하는 김벌 각 속도(
    Figure 112004053028567-pat00133
    )의 신호를 계산하여 생성하는 단계와
    Figure 112004053028567-pat00134
    (W: 에너지 항목에 해당하는 양(+)의 가중 행렬),
    상기 계산된 김벌 각 속도 신호에 따라 각각의 김벌을 회전시키는 단계
    를 포함하는 것을 특징으로 하는 제어 모멘트 자이로스코프 클러스터의 구동 방법.
  6. 청구항 5에 있어서, 상기 김벌 각 속도의 신호를 계산하여 생성하는 단계는,
    상기 목적 함수의 김벌 각에 대한 구배 행렬(
    Figure 112004053028567-pat00135
    )과 헤시안 행렬(
    Figure 112004053028567-pat00136
    )을 구하고,
    상기 구해진 구배 행렬과 헤시안 행렬로부터, 다음과 같은 제1 헤시안(
    Figure 112004053028567-pat00137
    )과 구배 벡터(g)를 구하며,
    Figure 112004053028567-pat00138
    상기 구해진 값들과 다음의 관계식을 이용하여 상기 목적 함수를 최소로 하는 김벌 각 속도를 계산하는 것을 포함하는 것을 특징으로 하는 제어 모멘트 자이로스코프 클러스터의 구동 방법
    Figure 112004053028567-pat00139
    (상기 식에서,
    Figure 112004053028567-pat00140
    이고,
    Figure 112004053028567-pat00141
    이며, H는 제2 헤시안이고, A는 CMG 클러스터의 자코비안 행렬).
  7. 청구항 5 또는 청구항 6에 있어서, 상기 양의 가중 행렬(W)은 다음의 관계식 을 만족하는 것을 특징으로 하는 제어 모멘트 자이로스코프 클러스터의 구동 방법
    Figure 112004053028567-pat00142
    (υ는 CMG 클러스터에 따라 정해지는 상한).
  8. 청구항 5 또는 청구항 6에 있어서, 상기 CMG 클러스터는 4개의 CMG를 피라미드 형태로 배열한 것이거나 3개의 CMG를 평행하게 배열한 형태일 수 있는 것을 특징으로 하는 제어 모멘트 자이로스코프 클러스터의 구동 방법.
  9. 청구항 7에 있어서, 상기 CMG 클러스터는 4개의 CMG를 피라미드 형태로 배열한 것이거나 3개의 CMG를 평행하게 배열한 형태일 수 있는 것을 특징으로 하는 제어 모멘트 자이로스코프 클러스터의 구동 방법.
  10. 청구항 8에 있어서, 상기 CMG 클러스터가 3개의 CMG를 평행하게 배열한 형태인 경우, 상기 제1 헤시안과 구배 벡터는 다음과 같은 관계식을 통해 계산될 수도 있는 것을 특징으로 하는 제어 모멘트 자이로스코프 클러스터의 구동 방법
    Figure 112004053028567-pat00143
    ,
    Figure 112004053028567-pat00144
    .
    (상기 식에서,
    Figure 112004053028567-pat00145
    )
  11. 청구항 9에 있어서, 상기 CMG 클러스터가 3개의 CMG를 평행하게 배열한 형태인 경우, 상기 제1 헤시안과 구배 벡터는 다음과 같은 관계식을 통해 계산될 수도 있는 것을 특징으로 하는 제어 모멘트 자이로스코프 클러스터의 구동 방법
    Figure 112004053028567-pat00146
    ,
    Figure 112004053028567-pat00147
    .
    (상기 식에서,
    Figure 112004053028567-pat00148
    )
  12. 김벌에 장착되어, 상기 김벌 각을 회전시키는 제어부의 제어 하에서 회전하는 제어 모멘트 자이로스코프(CMG) 클러스터에 있어서, 상기 제어부는
    사용자가 입력하는 제어 토크 명령(u) 신호를 수신하는 수단과,
    상기 제어 토크 명령 신호에 따라, 김벌을 회전시키기 위하여, 김벌 각(
    Figure 112004053028567-pat00149
    ) 과 구동 시간 간격(T) 동안에 김벌이 구동되어 나타나는 구조적 변화를 포함하는 다음과 같은 목적 함수(V)를 이용하여, 그 목적 함수가 최소가 되도록 하는 김벌 각 속도(
    Figure 112004053028567-pat00150
    )의 신호를 계산하여 생성하는 수단과,
    Figure 112004053028567-pat00151
    상기 생성된 김벌 각 속도 신호에 따라 각각의 김벌을 회전시키는 수단
    을 포함하는 것을 특징으로 하는 제어 모멘트 자이로스코프 클러스터.
  13. 청구항 12에 있어서, 상기 김벌 각 속도 신호를 계산하여 생성하는 수단은,
    상기 목적 함수의 김벌 각에 대한 구배 행렬(
    Figure 112004053028567-pat00152
    )과 헤시안 행렬(
    Figure 112004053028567-pat00153
    )을 구하고,
    상기 구해진 구배 행렬과 헤시안 행렬로부터, 다음과 같은 제1 헤시안(
    Figure 112004053028567-pat00154
    )과 구배 벡터(g)를 구하며,
    Figure 112004053028567-pat00155
    상기 구해진 값들과 다음의 관계식을 이용하여 상기 목적 함수를 최소로 하는 김벌 각 속도를 계산하도록 프로그램되어 있는 것을 특징으로 하는 제어 모멘트 자이로스코프 클러스터
    Figure 112004053028567-pat00156
    ,
    (상기 식에서
    Figure 112004053028567-pat00157
    이고, A는 CMG 클러스터의 자코비안 행렬).
  14. 청구항 12 또는 청구항 13에 있어서, 상기 CMG 클러스터는 4개의 CMG를 피라미드 형태로 배열된 것이거나 또는 3개의 CMG를 평행하게 배열한 형태일 수 있는 것을 특징으로 하는 제어 모멘트 자이로스코프 클러스터.
  15. 청구항 14에 있어서, 상기 CMG 클러스터가 3개의 CMG를 평행하게 배열한 형태인 경우, 상기 김벌 각 속도 신호를 계산하여 생성하는 수단은 상기 제1 헤시안과 구배 벡터를 다음과 같은 관계식을 통해 계산하도록 프로그램될 수도 있는 것을 특징으로 하는 제어 모멘트 자이로스코프 클러스터
    Figure 112004053028567-pat00158
    ,
    Figure 112004053028567-pat00159
    (상기 식에서,
    Figure 112004053028567-pat00160
    )
  16. 김벌에 장착되어, 김벌 각을 변화시키는 구동 제어부의 제어 하에서 회전하 는 제어 모멘트 자이로스코프(CMG) 클러스터에 있어서, 상기 제어부는,
    사용자가 입력하는 제어 토크 명령(u) 신호를 입력하는 수단과,
    상기 제어 토크 명령 신호에 따라, 김벌을 회전시키기 위하여, 김벌 각(
    Figure 112004053028567-pat00161
    )과 구동 시간 간격(T) 동안에 김벌이 구동되어 나타나는 구조적 변화를 포함하는 함수 및 에너지 항목을 포함하는 다음과 같은 목적 함수(V)를 이용하여, 상기 목적 함수가 최소가 되도록 하는 김벌 각 속도(
    Figure 112004053028567-pat00162
    )의 신호를 계산하여 생성하는 수단과,
    Figure 112004053028567-pat00163
    (W: 에너지 항목에 해당하는 양(+)의 가중 행렬),
    상기 생성된 김벌 각 속도 신호에 따라 각각의 김벌을 회전시키는 수단
    을 포함하는 것을 특징으로 하는 제어 모멘트 자이로스코프 클러스터.
  17. 청구항 16에 있어서, 상기 김벌 각 속도 신호를 계산하여 생성하는 수단은,
    상기 목적 함수의 김벌 각에 대한 구배 행렬(
    Figure 112004053028567-pat00164
    )과 헤시안 행렬(
    Figure 112004053028567-pat00165
    )을 구하고,
    상기 구해진 구배 행렬과 헤시안 행렬로부터, 다음과 같은 제1 헤시안(
    Figure 112004053028567-pat00166
    ) 과 구배 벡터(g)를 구하며,
    Figure 112004053028567-pat00167
    상기 구해진 값들과 다음의 관계식을 이용하여 상기 목적 함수를 최소로 하는 김벌 각 속도를 계산하도록 프로그램되어 있는 것을 특징으로 하는 제어 모멘트 자이로스코프 클러스터
    Figure 112004053028567-pat00168
    (상기 식에서,
    Figure 112004053028567-pat00169
    이고,
    Figure 112004053028567-pat00170
    이며, H는 제2 헤시안이고, A는 CMG 클러스터의 자코비안 행렬).
  18. 청구항 16 또는 청구항 17에 있어서, 상기 양의 가중 행렬(W)은 다음의 관계식을 만족하는 것을 특징으로 하는 제어 모멘트 자이로스코프 클러스터
    Figure 112004053028567-pat00171
    (υ는 CMG 클러스터에 따라 정해지는 상한).
  19. 청구항 16 또는 청구항 17에 있어서, 상기 CMG 클러스터는 4개의 CMG를 피라미드 형태로 배열한 것이거나 3개의 CMG를 평행하게 배열한 형태일 수 있는 것을 특징으로 하는 제어 모멘트 자이로스코프 클러스터.
  20. 청구항 18에 있어서, 상기 CMG 클러스터는 4개의 CMG를 피라미드 형태로 배열한 것이거나 3개의 CMG를 평행하게 배열한 형태일 수 있는 것을 특징으로 하는 제어 모멘트 자이로스코프 클러스터.
  21. 청구항 19에 있어서, 상기 CMG 클러스터가 3개의 CMG를 평행하게 배열한 형태인 경우, 상기 김벌 각 속도 신호를 계산하여 생성하는 수단은 상기 제1 헤시안과 구배 벡터를 다음과 같은 관계식을 통해 계산하도록 프로그램될 수도 있는 것을 특징으로 하는 제어 모멘트 자이로스코프 클러스터의 구동 방법
    Figure 112004053028567-pat00172
    ,
    Figure 112004053028567-pat00173
    .
    (상기 식에서,
    Figure 112004053028567-pat00174
    )
  22. 청구항 20에 있어서, 상기 CMG 클러스터가 3개의 CMG를 평행하게 배열한 형태인 경우, 상기 김벌 각 속도 신호를 계산하여 생성하는 수단은 상기 제1 헤시안과 구배 벡터를 다음과 같은 관계식을 통해 계산하도록 프로그램될 수도 있는 것을 특징으로 하는 제어 모멘트 자이로스코프 클러스터의 구동 방법
    Figure 112004053028567-pat00175
    ,
    Figure 112004053028567-pat00176
    .
    (상기 식에서,
    Figure 112004053028567-pat00177
    )
KR1020040093331A 2004-11-16 2004-11-16 특이점 문제를 개선한 제어 모멘트 자이로스코프 및 그구동 방법 KR100552583B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040093331A KR100552583B1 (ko) 2004-11-16 2004-11-16 특이점 문제를 개선한 제어 모멘트 자이로스코프 및 그구동 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040093331A KR100552583B1 (ko) 2004-11-16 2004-11-16 특이점 문제를 개선한 제어 모멘트 자이로스코프 및 그구동 방법

Publications (1)

Publication Number Publication Date
KR100552583B1 true KR100552583B1 (ko) 2006-02-15

Family

ID=37178850

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040093331A KR100552583B1 (ko) 2004-11-16 2004-11-16 특이점 문제를 개선한 제어 모멘트 자이로스코프 및 그구동 방법

Country Status (1)

Country Link
KR (1) KR100552583B1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100778098B1 (ko) 2006-07-26 2007-11-22 한국항공우주연구원 인공위성 3축 자세제어용 제어 모멘트 자이로 클러스터
KR101853213B1 (ko) 2016-12-28 2018-04-27 한국항공우주연구원 3개의 관성모멘트 자이로의 김벌 앵글 변경 장치 및 방법
US10202208B1 (en) 2014-01-24 2019-02-12 Arrowhead Center, Inc. High control authority variable speed control moment gyroscopes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6305647B1 (en) 1998-11-19 2001-10-23 Matra Marconi Space France Method and apparatus for steering the attitude of a satellite
US6499699B1 (en) 1999-07-08 2002-12-31 Alcatel Satellite attitude control system and method
JP2004090796A (ja) 2002-08-30 2004-03-25 Nec Corp 飛翔体の姿勢変更制御装置及び姿勢変更制御方法
US20040111194A1 (en) 2002-08-28 2004-06-10 Bong Wie Singularity escape/avoidance steering logic for control moment gyro systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6305647B1 (en) 1998-11-19 2001-10-23 Matra Marconi Space France Method and apparatus for steering the attitude of a satellite
US6499699B1 (en) 1999-07-08 2002-12-31 Alcatel Satellite attitude control system and method
US20040111194A1 (en) 2002-08-28 2004-06-10 Bong Wie Singularity escape/avoidance steering logic for control moment gyro systems
JP2004090796A (ja) 2002-08-30 2004-03-25 Nec Corp 飛翔体の姿勢変更制御装置及び姿勢変更制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100778098B1 (ko) 2006-07-26 2007-11-22 한국항공우주연구원 인공위성 3축 자세제어용 제어 모멘트 자이로 클러스터
US10202208B1 (en) 2014-01-24 2019-02-12 Arrowhead Center, Inc. High control authority variable speed control moment gyroscopes
KR101853213B1 (ko) 2016-12-28 2018-04-27 한국항공우주연구원 3개의 관성모멘트 자이로의 김벌 앵글 변경 장치 및 방법

Similar Documents

Publication Publication Date Title
Slavinskis et al. High spin rate magnetic controller for nanosatellites
Takada et al. Control moment gyro singularity-avoidance steering control based on singular-surface cost function
EP3379366B1 (en) Methods and apparatus to minimize command dynamics of a satellite
EP2340998A1 (en) On-line inertia estimation for use in controlling an aerospace vehicle
Sood et al. Solar sail transfers and trajectory design to sun-earth L 4, L 5: Solar observations and potential earth trojan exploration
Wawrzyniak et al. Generating solar sail trajectories in the Earth-Moon system using augmented finite-difference methods
Gaber et al. Hardware-in-the-loop real-time validation of micro-satellite attitude control
Wang et al. Optimization of low-thrust Earth-orbit transfers using the vectorial orbital elements
Zhao et al. Gravitational force and torque on a solar power satellite considering the structural flexibility
JP7275078B2 (ja) 結合された天文座標系の非線形モデル予測制御
Inumoh et al. Tilted wheel satellite attitude control with air-bearing table experimental results
KR100552583B1 (ko) 특이점 문제를 개선한 제어 모멘트 자이로스코프 및 그구동 방법
Romano et al. Attitude dynamics/control of a dual-body spacecraft with variable-speed control moment gyros
Gaber et al. A hardware implementation of flexible attitude determination and control system for two-axis-stabilized cubesat
Ose Attitude determination for the Norwegian student satellite nCube
Xu et al. Cluster flight control for fractionated spacecraft on an elliptic orbit
Vega et al. Design and modeling of an active attitude control system for CubeSat class satellites
Gaber et al. Real-time implementation of a robust simplified intelligent proportional–integral control for CubeSat attitude determination system
Fan et al. Attitude optimization control method of agile optical small satellite for nonparallel ground track imaging
Lowe et al. Reduced-order model for spacecraft swarm orbit design
Oland Modeling and attitude control of satellites in elliptical orbits
Boodram et al. Efficient Nonlinear Spacecraft Navigation Using Directional State Transition Tensors
Walsh et al. Autonomous orbital rendezvous using a coordinate-free, nonsingular orbit representation
Jonsson Simulations of Satellite Attitude Maneuvers: Detumbling and Pointing
Junkins et al. State vector representations for low-thrust trajectory optimization

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100201

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee