KR100542660B1 - Expanded graphite/epoxy nano composite composition - Google Patents
Expanded graphite/epoxy nano composite composition Download PDFInfo
- Publication number
- KR100542660B1 KR100542660B1 KR1020030059115A KR20030059115A KR100542660B1 KR 100542660 B1 KR100542660 B1 KR 100542660B1 KR 1020030059115 A KR1020030059115 A KR 1020030059115A KR 20030059115 A KR20030059115 A KR 20030059115A KR 100542660 B1 KR100542660 B1 KR 100542660B1
- Authority
- KR
- South Korea
- Prior art keywords
- expanded graphite
- epoxy
- nanocomposite
- graphite
- acid
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y99/00—Subject matter not provided for in other groups of this subclass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/08—Stabilised against heat, light or radiation or oxydation
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
본 발명은 우수한 열적 및 기계적 특성을 갖는 팽창흑연/에폭시 나노복합재 조성물 및 이로부터 제조된 나노복합재에 관한 것으로, 본 발명에 따라 산처리 및 열처리된 팽창흑연을 에폭시 수지와 용융혼합한 팽창흑연/에폭시 나노복합재 조성물은 경화시 우수한 열적, 기계적 특성을 가지므로 봉합재, 코팅재, 전기전자, 자동차 및 우주항공 산업 등 다양한 분야에 응용될 수 있다.The present invention relates to an expanded graphite / epoxy nanocomposite composition having excellent thermal and mechanical properties, and a nanocomposite prepared therefrom. The expanded graphite / epoxy obtained by melt-mixing an acid treated and heat-treated expanded graphite with an epoxy resin according to the present invention. The nanocomposite composition has excellent thermal and mechanical properties upon curing and can be applied to various fields such as encapsulants, coating materials, electrical and electronics, automotive and aerospace industries.
Description
도 1a 및 1b는 각각 산처리된 흑연(a) 및 산처리 후 열처리된 팽창흑연(b)의 구조를 전자현미경(SEM)으로 관찰한 것이고,Figures 1a and 1b is an electron microscope (SEM) to observe the structure of the acid-treated graphite (a) and the expanded graphite (b) after the acid treatment, respectively,
도 2는 산처리 및 열처리된 팽창흑연의 X-ray 회절(XRD) 분석결과를 나타낸 것이고,2 shows the results of X-ray diffraction (XRD) analysis of acid treated and heat treated expanded graphite,
도 3은 팽창흑연/에폭시 나노복합재의 KIC 값을 나타낸 것이다.Figure 3 shows the K IC value of the expanded graphite / epoxy nanocomposites.
본 발명은 우수한 열적 및 기계적 특성을 갖는 팽창흑연/에폭시 나노복합재 조성물 및 이로부터 제조된 나노복합재에 관한 것으로, 구체적으로 천연의 흑연을 산처리 및 열처리함으로써 제조된 팽창흑연을 충전재로 사용하여 에폭시 수지에 충전시킨 팽창흑연/에폭시 나노복합재 조성물에 관한 것이다.The present invention relates to an expanded graphite / epoxy nanocomposite composition having excellent thermal and mechanical properties, and a nanocomposite prepared therefrom. Specifically, the present invention relates to an epoxy resin using expanded graphite prepared by acid treatment and heat treatment of natural graphite as a filler. The present invention relates to an expanded graphite / epoxy nanocomposite composition filled in the present invention.
고분자 매트릭스에 나노 크기의 충전재를 분산시켜 개질한 고분자 나노복합재료는 기존의 고분자 복합재료에 비하여 우수한 물성을 가져 봉합재, 코팅재, 전기전자, 자동차, 및 우주항공 산업 등 다양한 분야에 적용되고 있다.Polymer nanocomposites modified by dispersing nano-sized fillers in a polymer matrix have superior physical properties compared to conventional polymer composite materials, and are being applied to various fields such as sealing materials, coating materials, electric electronics, automobiles, and aerospace industries.
나노복합재료의 제조시 충전재로 사용되는 층상 실리카 및 점토와 같은 나노 크기의 층상 물질들은 매우 높은 종횡비를 가지며, 고분자 매트릭스 내에 균일하게 분산될 경우 고분자의 기계적 및 열적 특성, 기체 투과성 및 난연성 등의 물성들은 크게 향상시키는 반면, 전기 전도성, 광학적 및 유전적 특성과 같은 물성은 저하시킨다는 문제점이 있다. Nano-sized layered materials such as layered silica and clay, which are used as fillers in the production of nanocomposites, have very high aspect ratios and, when uniformly dispersed in the polymer matrix, physical properties such as mechanical and thermal properties, gas permeability and flame retardancy of the polymer While they greatly improve, there is a problem that the physical properties such as electrical conductivity, optical and dielectric properties are lowered.
또한, 고분자 복합재료의 제조를 위한 충전재로서 사용되는 카본블랙 및 금속분말은 전도성 향상을 위해 과량의 사용이 요구될 뿐만 아니라 고분자 복합재료의 기계적 물성을 저하시킨다는 단점이 있다. In addition, carbon black and metal powder used as a filler for the preparation of the polymer composite material is not only required to use an excessive amount to improve the conductivity, but also has a disadvantage in that the mechanical properties of the polymer composite material.
따라서, 최근에는 자연에 풍부하게 존재하는 물질로서 층상 구조로 구성되어 있으며, 소량으로도 뛰어난 전도성 (104 S/m)을 나타내는 흑연에 대한 관심이 집중되고 있다. 흑연은 각 층이 약한 반데르발스(van der Waals) 힘으로 결합되어 있어 다양한 원자, 분자 및 이온이 층간에 삽입될 수 있어 층상화합물을 쉽게 생성할 수 있으며, 층상화합물의 빠른 열처리에 의하여 향상된 분산성과 반응 비표면적을 가지게 되는 특성이 있다. Therefore, in recent years, attention has been focused on graphite, which is composed of a layered structure as abundantly present in nature, and exhibits excellent conductivity (10 4 S / m) even in a small amount. Graphite is bonded to each other by weak van der Waals forces, so that various atoms, molecules, and ions can be intercalated to create layered compounds, and improved dispersion by rapid heat treatment of layered compounds There is a characteristic that it has a performance response specific surface area.
이에 본 발명자들은 상기한 특성을 갖는 흑연을 특정조건에서 산처리 및 열처리하여 팽창된 흑연을 제조하고, 이 팽창된 흑연을 충전재로 사용하여 에폭시 수 지와 용융혼합시킴으로써 우수한 열적 및 기계적 물성을 갖는 나노복합재료를 제조할 수 있음을 발견하여 본 발명을 완성하게 되었다. Therefore, the present inventors prepared the expanded graphite by acid treatment and heat treatment of the graphite having the above-mentioned characteristics under specific conditions, and using the expanded graphite as a filler, melt-mixing with the epoxy resin to give nano nanoparticles with excellent thermal and mechanical properties. The discovery of the ability to produce composites has led to the completion of the present invention.
본 발명의 목적은 열적 및 기계적 물성이 우수한 나노복합재 조성물 및 이로부터 제조된 나노복합재를 제공하는 것이다.
It is an object of the present invention to provide a nanocomposite composition having excellent thermal and mechanical properties and a nanocomposite prepared therefrom.
상기 목적을 달성하기 위하여, 본 발명에서는 에폭시 수지에 팽창흑연을 충전시킨 팽창흑연/에폭시 나노복합재 조성물을 제공한다.In order to achieve the above object, the present invention provides an expanded graphite / epoxy nanocomposite composition filled with expanded graphite in the epoxy resin.
상기 다른 목적을 달성하기 위하여, 본 발명에서는 상기 나노복합재 조성물을 매트릭스 수지로 사용하여 경화제로 경화시켜 얻은 나노복합재 제품을 제공한다.In order to achieve the above object, the present invention provides a nanocomposite product obtained by curing with a curing agent using the nanocomposite composition as a matrix resin.
본 발명에 따른 팽창흑연/에폭시 나노복합재 조성물은, 산처리 및 열처리에 의하여 제조된 팽창흑연을 충전재로 사용하여 이를 에폭시 수지에 용융혼합함으로써 제조될 수 있다.The expanded graphite / epoxy nanocomposite composition according to the present invention may be prepared by melt mixing the expanded graphite prepared by acid treatment and heat treatment as a filler to an epoxy resin.
이하 본 발명의 나노복합재의 제조방법을 상세히 설명한다.Hereinafter, a method of manufacturing the nanocomposite of the present invention will be described in detail.
(1) 산처리 및 열처리에 의한 팽창흑연의 제조(1) Preparation of expanded graphite by acid treatment and heat treatment
본 발명에 사용되는 팽창흑연은 우선, 산 용액에 흑연을 침지하고 16 내지 24 시간 동안 실온에서 방치하여 층상 화합물을 제조한 다음, 이를 증류수로 세척한 후 건조시키고 나서, 완전 건조된 층상 화합물을 600 내지 900 ℃에서 60 내지 90 초간 열처리하여 수득할 수 있다. 상기 산처리시 산으로서 황산을 사용하는 것이 바람직하며, 이는 천연흑연의 층간에 삽입됨으로써 역할을 수행한다. 이 때 황산용액의 농도는 95%인 것이 바람직하다. 또한, 천연흑연에 황산의 삽입률을 더욱 향상시키기 위하여 질산, 과산화수소, 과망간산칼륨 및 과염소산과 같은 산화제를 추가로 혼합하여 사용할 수 있으며, 이 때 황산과 산화제의 혼합비율은 4 : 1 내지 5 : 1의 중량비이며, 산화제 용액의 농도는 62%인 것이 바람직하다.Expanded graphite used in the present invention, first, immersed graphite in an acid solution and left at room temperature for 16 to 24 hours to prepare a layered compound, and then washed with distilled water and dried, and then completely dried layered compound 600 It can be obtained by heat treatment at 60 to 90 seconds at 900 ℃. It is preferable to use sulfuric acid as acid in the acid treatment, which plays a role by being intercalated between layers of natural graphite. At this time, the concentration of the sulfuric acid solution is preferably 95%. In addition, oxidizing agents such as nitric acid, hydrogen peroxide, potassium permanganate and perchloric acid may be additionally mixed in order to further improve the insertion rate of sulfuric acid in natural graphite, wherein the mixing ratio of sulfuric acid and oxidizing agent is 4: 1 to 5: 1. It is preferable that it is the weight ratio of and the concentration of an oxidizing agent solution is 62%.
본 발명에 따라 제조되는 팽창흑연의 c-축은 일반 흑연보다 수십에서 수백배 정도가 팽창될 수 있다.The c-axis of the expanded graphite prepared according to the present invention can be expanded by tens to hundreds of times more than ordinary graphite.
(2) 팽창흑연을 충전재로 사용한 나노복합재 조성물의 제조 (2) Preparation of nanocomposite composition using expanded graphite as filler
에폭시 수지에 상기 (1)에서 제조된 팽창흑연을 충전시켜 본 발명에 따른 나노복합재 조성물을 제조할 수 있다. 이 때 에폭시 수지에 충전재인 팽창흑연이 고르게 분산되도록 하기 위해 60 내지 80℃에서 가열하면서 용융혼합한다. 이는 에폭시 수지의 점도가 높을 경우 충전재와의 완전한 혼합 및 고른 분산이 어려워져 결국 나노복합재료의 기계적 특성에 커다란 영향을 미치게 되기 때문이다. 상기 용융혼합을 80℃ 초과의 온도에서 수행할 경우, 상기 조성물을 이용하는 나노복합재의 제조시 첨가되는 경화제가 완전히 용해되기 전에 경화가 일어나 경화제의 효율이 저하되며, 빠른 시간내에 용융 혼합물을 몰드내에 넣어야 한다는 제조공정상 어 려움이 따른다. The nanocomposite composition according to the present invention may be prepared by filling the expanded graphite prepared in (1) in the epoxy resin. In this case, in order to evenly disperse the expanded graphite as a filler in the epoxy resin, it is melt mixed while heating at 60 to 80 ℃. This is because when the viscosity of the epoxy resin is high, it is difficult to completely mix and evenly disperse the filler, and thus have a great influence on the mechanical properties of the nanocomposite. When the melt mixing is performed at a temperature of more than 80 ° C., curing takes place before the curing agent added in the preparation of the nanocomposite using the composition is completely dissolved, and the efficiency of the curing agent is lowered. It is difficult in the manufacturing process.
또한, 팽창흑연의 분산성을 더욱 향상시키기 위하여 미리 1 내지 3 시간 동안 교반하면서 용융혼합하는 것이 바람직하다. In addition, in order to further improve the dispersibility of the expanded graphite, it is preferable to melt-mix with stirring for 1 to 3 hours in advance.
본 발명에서는 상기 팽창흑연의 함량을 달리함으로써 나노복합재의 열적 및 기계적 특성을 용도에 따라 조절할 수 있는데, 팽창흑연은 에폭시 수지 100 중량부에 대하여 1 내지 10 중량부의 양으로 혼합할 수 있다. In the present invention, the thermal and mechanical properties of the nanocomposite can be adjusted according to the use by changing the content of the expanded graphite, the expanded graphite can be mixed in an amount of 1 to 10 parts by weight based on 100 parts by weight of the epoxy resin.
(3) 나노복합재의 제조(3) Preparation of Nanocomposites
상술한 팽창흑연/에폭시 수지의 용융혼합물에 에폭시 수지의 경화를 위해 아민계열 경화제인 DDM (디아미노디페닐 메탄), DDS (디아미노디페닐 설폰), DETA (디에틸렌 트리아민), TETA(트리에틸렌 테트라아민), TEPA (테트라에틸렌 펜타아민) 등을 첨가하여 가열 경화함으로써 본 발명에 따른 나노복합재를 제조할 수 있으며, 이 때 가열경화 공정은 120-180℃에서 수행하는 것이 바람직하다. Amine-based curing agents DDM (diaminodiphenyl methane), DDS (diaminodiphenyl sulfone), DETA (diethylene triamine), TETA (tri) for curing the epoxy resin in the melted mixture of the expanded graphite / epoxy resin described above Ethylene tetraamine), TEPA (tetraethylene pentaamine) and the like can be added to heat-harden the nanocomposite according to the present invention, wherein the heat curing process is preferably carried out at 120-180 ℃.
상기 경화제는 에폭시 수지의 관능기에 대해 1:1의 당량비로 사용되는 것이 바람직하다.The curing agent is preferably used in an equivalent ratio of 1: 1 relative to the functional group of the epoxy resin.
이하 하기 실시예에 의하여 본 발명을 좀더 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.
본 발명의 팽창흑연 및 나노복합재의 각 물성들은 다음과 같은 방법에 의하여 측정하였다.The physical properties of the expanded graphite and nanocomposite of the present invention were measured by the following method.
1. 팽창흑연의 구조 측정1. Measurement of Structure of Expanded Graphite
흑연을 산처리와 열처리하여 제조된 팽창흑연의 특성 및 구조는 전자현미경(SEM) 및 X-ray 회절(XRD) 분석으로 관찰하였으며, XRD의 측정 조건은 40 kV와 40 mA에서 CuKa 방사선을 조사하여 2θ의 각으로 하여 1.5~60 범위를 2/min의 스캔 속도로 측정하였다. The characteristics and structure of expanded graphite prepared by acid treatment and heat treatment of graphite were observed by SEM and X-ray diffraction (XRD) analysis. XRD was measured by CuKa radiation at 40 kV and 40 mA. The range of 1.5-60 was measured at the scan speed of 2 / min as the angle of 2 (theta).
2. 팽창흑연/에폭시 나노복합재의 열안정성 측정 2. Measurement of Thermal Stability of Expanded Graphite / Epoxy Nanocomposites
팽창흑연/에폭시 나노복합재의 열분해 개시 온도 (IDT), 최대 무게 감량 온도 (Tmax), 열분석 후 시료의 잔존량 등과 같은 열안정성 측정은 열중량 분석기 (thermogravimetric analyzer; TGA 2950)를 이용하여 10℃/min의 승온 속도로 질소 분위기 하 30~850℃ 범위에서 측정하였다. Thermal stability measurements such as pyrolysis initiation temperature (IDT), maximum weight loss temperature (Tmax), and residual amount of sample after thermal analysis of the expanded graphite / epoxy nanocomposite were measured at 10 ° C using a thermogravimetric analyzer (TGA 2950). It measured at 30-850 degreeC under nitrogen atmosphere by the temperature increase rate of / min.
3. 팽창흑연/에폭시 나노복합재의 기계적 특성3. Mechanical Properties of Expanded Graphite / Epoxy Nanocomposites
팽창흑연/에폭시 나노복합재료의 기계적 특성은 임계응력 세기 인자 (critical stress intensity factor, KIC)로 측정하였으며, 시편은 48 ×10 ×5 mm3 크기로 제조하였다. 팽창흑연/에폭시 나노복합재는 가운데에 노치(notch)를 가한 단일 가장자리 노치드 밴딩(single edge notched bending, SENB) 시편을 준비하여 사용하였으며, 제조된 시편은 만능 시험기 (universal testing machine, Lloyd LR5K)를 사용하여 측정하였다. The mechanical properties of the expanded graphite / epoxy nanocomposite were measured by the critical stress intensity factor (K IC ), and the specimens were prepared in the size of 48 × 10 × 5 mm 3 . The expanded graphite / epoxy nanocomposite was prepared using a single edge notched bending (SENB) specimen with a notch in the center, and the prepared specimen was used with a universal testing machine (Lloyd LR5K). Measured using.
비교예 1Comparative Example 1
이관능성 에폭시 수지 (DGEBA; 국도화학 (주) YD-128, E.E.W = 185∼190 g/mol, 밀도 1.16 g/cm3)에 충전재 팽창흑연을 첨가하지 않고 경화제 DDM을 1:1의 당량비로 첨가하여 경화시켜 순수 에폭시 조성물을 제조하였다.Addition of curing agent DDM in an equivalent ratio of 1: 1 to the difunctional epoxy resin (DGEBA; Kukdo Chemical Co., Ltd. YD-128, EEW = 185-190 g / mol, density 1.16 g / cm 3 ) without adding filler expanded graphite And cured to prepare a pure epoxy composition.
실시예 1Example 1
(단계 1) (Step 1)
흑연 (Aldrich, >150 ㎛, 비중 2.09~2.23)을 황산/질산 (4:1) 혼합 용액에 침지 처리하고 24 시간 동안 실온에서 반응시켜 층상화합물을 제조한 다음 증류수로 세척하고 오븐에서 8 시간 동안 건조시켰다. 완전 건조 후 900℃로 90 초간 열처리하여 최종적으로 팽창흑연을 제조하였다. Graphite (Aldrich,> 150 μm, specific gravity 2.09 ~ 2.23) was immersed in a sulfuric acid / nitric acid (4: 1) mixed solution and reacted at room temperature for 24 hours to prepare a layered compound, washed with distilled water and then in an oven for 8 hours. Dried. After complete drying, heat treatment was performed at 900 ° C. for 90 seconds to finally prepare expanded graphite.
상기 산처리된 흑연(a) 및 산처리 후 열처리된 팽창흑연(b)을 각각 전자현미경(SEM)으로 관찰하여 도 1a 및 1b에 나타내었으며, 도 2에는 산처리 후 열처리된 팽창흑연의 XRD 분석 곡선을 나타내었다. 여기에서 보듯이, 14.22 Å의 층간 간격을 갖는 흑연을 본 발명에 따라 산처리 및 열처리를 수행한 결과, 층간 간격이 22.92 Å로 팽창되었음을 알 수 있다.The acid treated graphite (a) and the expanded graphite (b) heat treated after the acid treatment were observed by electron microscope (SEM), respectively, and are shown in FIGS. 1a and 1b, and in FIG. 2, XRD analysis of the expanded graphite heat treated after the acid treatment was performed. The curve is shown. As can be seen from the acid treatment and heat treatment of graphite having an interlayer spacing of 14.22 GPa according to the present invention, it can be seen that the interlayer spacing expanded to 22.92 GPa.
(단계 2) (Step 2)
이관능성 에폭시 수지 (DGEBA; 국도화학 (주) YD-128, E.E.W = 185∼190 g/mol, 밀도 1.16 g/cm3) 100 중량부에 대하여 상기 단계 1에서 제조된 팽창흑연 1 중량부를 가하여 80℃에서 용융 혼합한 다음, 경화제 DDM을 에폭시 수지의 관능기에 대해 1:1의 당량비로 첨가하여 완전히 용해시킨 후 혼합물을 몰드에 넣어 120-180℃에서 경화시킴으로써 팽창흑연/에폭시 나노복합재를 제조하였다.100 parts by weight of the difunctional epoxy resin (DGEBA; Kukdo Chemical Co., Ltd. YD-128, EEW = 185-190 g / mol, density 1.16 g / cm 3 ) by adding 1 part by weight of expanded graphite prepared in Step 1 above 80 After melt mixing at 占 폚, the curing agent DDM was added in an equivalent ratio of 1: 1 to the functional group of the epoxy resin to completely dissolve, and then the mixture was placed in a mold and cured at 120-180 占 폚 to prepare expanded graphite / epoxy nanocomposites.
실시예 2Example 2
이관능성 에폭시 수지 100 중량부에 대해 팽창흑연을 3 중량부로 하여 용융혼합하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 팽창흑연/에폭시 나노복합재를 제조하였다.An expanded graphite / epoxy nanocomposite was prepared in the same manner as in Example 1 except that 3 parts by weight of expanded graphite was melted with respect to 100 parts by weight of a bifunctional epoxy resin.
실시예 3Example 3
이관능성 에폭시 수지 100 중량부에 대해 팽창흑연을 5 중량부로 하여 용융혼합하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 팽창흑연/에폭시 나노복합재를 제조하였다.An expanded graphite / epoxy nanocomposite was prepared in the same manner as in Example 1 except that 5 parts by weight of expanded graphite was melted with respect to 100 parts by weight of a bifunctional epoxy resin.
실시예 4Example 4
이관능성 에폭시 수지 100 중량부에 대해 팽창흑연을 10 중량부로 하여 용융혼합하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 팽창흑연/에폭시 나노복합재를 제조하였다.An expanded graphite / epoxy nanocomposite was prepared in the same manner as in Example 1 except that 10 parts by weight of expanded graphite was melted and mixed with 100 parts by weight of a bifunctional epoxy resin.
비교예 2Comparative Example 2
산처리 및 열처리를 수행하지 않은 흑연을 에폭시 수지 100 중량부에 대해 1 중량부로 용융혼합하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 에폭시 나노복합재를 제조하였다.An epoxy nanocomposite was prepared in the same manner as in Example 1 except that the graphite, which was not subjected to the acid treatment and the heat treatment, was melt-mixed at 1 part by weight based on 100 parts by weight of the epoxy resin.
상기 실시예 1 내지 4, 및 비교예 1 및 2에서 제조된 나노복합재료의 열분석에 의한 열적 특성의 변화를 표 1에 나타내었으며, 기계적 특성을 측정하여 도 3에 나타내었다. The change in thermal properties by thermal analysis of the nanocomposites prepared in Examples 1 to 4 and Comparative Examples 1 and 2 is shown in Table 1, and mechanical properties are shown in FIG. 3.
상기 표 1 및 도 3에서 비교예 1 및 2와 실시예 1을 비교함으로써, 본 발명에 따라 제조된 팽창흑연/에폭시 나노복합재의 열안정성 및 기계적 특성은 비교예 의 동일량의 천연흑연을 사용한 나노복합재 또는 충전재를 사용하지 않은 순수 에폭시 수지에 비해 매우 향상되었음을 알 수 있다. By comparing Comparative Examples 1 and 2 and Example 1 in Table 1 and FIG. 3, the thermal stability and mechanical properties of the expanded graphite / epoxy nanocomposite prepared according to the present invention are nano using the same amount of natural graphite of the comparative example. It can be seen that it is greatly improved compared to the pure epoxy resin without the composite or filler.
본 발명에 따라 제조된 팽창흑연/에폭시 나노복합재는 우수한 열적, 기계적 특성을 가지므로 봉합재, 코팅재, 전기전자, 자동차, 우주항공 산업 등 다양한 분야에서 응용할 수 있을 것으로 기대된다.The expanded graphite / epoxy nanocomposite prepared according to the present invention has excellent thermal and mechanical properties, and therefore, it is expected to be applicable to various fields such as sealing materials, coating materials, electrical and electronics, automobiles, aerospace industry, and the like.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030059115A KR100542660B1 (en) | 2003-08-26 | 2003-08-26 | Expanded graphite/epoxy nano composite composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030059115A KR100542660B1 (en) | 2003-08-26 | 2003-08-26 | Expanded graphite/epoxy nano composite composition |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20050022096A KR20050022096A (en) | 2005-03-07 |
KR100542660B1 true KR100542660B1 (en) | 2006-01-11 |
Family
ID=37230098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020030059115A KR100542660B1 (en) | 2003-08-26 | 2003-08-26 | Expanded graphite/epoxy nano composite composition |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100542660B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101084069B1 (en) | 2010-06-17 | 2011-11-16 | 삼성에스디아이 주식회사 | Crystalline carbonaceous material with controlled interlayer spacing and method of preparing same |
KR101538643B1 (en) * | 2013-11-22 | 2015-07-22 | 인하대학교 산학협력단 | Phase change materials comprising expanded graphite |
CN107936472A (en) * | 2017-11-20 | 2018-04-20 | 复旦大学 | A kind of preparation method of high heat conduction epoxy composite material |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100934236B1 (en) * | 2008-02-28 | 2009-12-24 | 금호타이어 주식회사 | Tire Tread Rubber Composition |
KR101837996B1 (en) * | 2012-12-28 | 2018-03-14 | 재단법인 포항산업과학연구원 | Method of Preparing graphene reinforced composite material and device thereof |
KR101581677B1 (en) * | 2014-04-17 | 2016-01-05 | 인하대학교 산학협력단 | Manufacturing method of phase change composites |
CN105001597A (en) * | 2015-08-12 | 2015-10-28 | 哈尔滨理工大学 | Needle-shaped nanometer aluminium oxide/graphene oxide/epoxy resin composite and preparation method |
KR102169771B1 (en) * | 2018-08-24 | 2020-10-27 | 한국과학기술연구원 | A flame retardant composite of tannic acid coated grapheme-epoxy and method preparing the same |
KR102597702B1 (en) * | 2021-06-14 | 2023-11-02 | 중앙대학교 산학협력단 | Material for radiating heat, epoxy compound for radiating heat, and method of manufacturing the same |
-
2003
- 2003-08-26 KR KR1020030059115A patent/KR100542660B1/en not_active IP Right Cessation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101084069B1 (en) | 2010-06-17 | 2011-11-16 | 삼성에스디아이 주식회사 | Crystalline carbonaceous material with controlled interlayer spacing and method of preparing same |
KR101538643B1 (en) * | 2013-11-22 | 2015-07-22 | 인하대학교 산학협력단 | Phase change materials comprising expanded graphite |
CN107936472A (en) * | 2017-11-20 | 2018-04-20 | 复旦大学 | A kind of preparation method of high heat conduction epoxy composite material |
Also Published As
Publication number | Publication date |
---|---|
KR20050022096A (en) | 2005-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kang et al. | Thermal, impact and toughness behaviors of expanded graphite/graphite oxide-filled epoxy composites | |
Fang et al. | Nano–micro structure of functionalized boron nitride and aluminum oxide for epoxy composites with enhanced thermal conductivity and breakdown strength | |
Wang et al. | Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situ polymerization | |
KR101140196B1 (en) | Polyimide Nanocomposites and Method for making the same | |
US8519530B2 (en) | Method for treating nanofiber material and composition of nanofiber material | |
US20050127329A1 (en) | Method of forming nanocomposite materials | |
KR100895696B1 (en) | A Method for Preparation of Silicone Rubber/Carbon Nanotube Composites with Electrical Insulating Properties | |
KR102169771B1 (en) | A flame retardant composite of tannic acid coated grapheme-epoxy and method preparing the same | |
KR100542660B1 (en) | Expanded graphite/epoxy nano composite composition | |
KR100665130B1 (en) | Method for manufacturing epoxy nanocomposite material containing vapor-grown carbon nanofibers and its products thereby | |
KR102496995B1 (en) | Carbon fibers-reinforced epoxy composites with graphene oxide/graphitic nanofibers composites and manufacturing method thereof | |
KR20110101347A (en) | A composite of graphene and polymer and a method for the preparation thereof | |
KR20200086123A (en) | Basalt fiber reinforced epoxy composites reinforced with ozone treated single-walled carbon nanotubes and method for manufacturing the same | |
Shen et al. | Efficient reinforcement of epoxy resin with amine‐rich rigid short‐chain grafted graphene oxide | |
KR102198383B1 (en) | Method for preparation of carbon-benzoxazine complex and its carbon-polymer composite material | |
Kim et al. | Pitch coating of SiC and its effects on the thermal stability and oxidation resistance of SiC/epoxy composites | |
Pandit et al. | Electrically conductive epoxy-polyester-graphite nanocomposites modified with aromatic amines | |
Gao et al. | Improved dielectric properties of poly (arylene ether nitrile) with sulfonated poly (arylene ether nitrile) modified CaCu3Ti4O12 | |
KR101151737B1 (en) | Method for preparating of chemically treated carbon nanotube/polyvinylidene fluoride nanocomposite | |
Nosheen et al. | Synthesis and characterization of polypyrrole and graphene/polypyrrole/epoxy composites | |
KR102382709B1 (en) | Short-molecule-attached boron nitride nanotubes and method for colloidal solution using the same | |
KR100532032B1 (en) | Process for the preparation of nano-composite material | |
Ozaytekin et al. | Preparation of epoxy composites with CTAB‐modified BN and MWCNTs | |
KR101730437B1 (en) | Epoxy composites having enhanced thermal stability and mechnical behaviors and manufacturing method of the same | |
KR100998184B1 (en) | The oxyfluorinated carbon nanomaterials and the preparation method of epoxy curing resin using radioactive rays |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20101228 Year of fee payment: 6 |
|
LAPS | Lapse due to unpaid annual fee |