KR100540511B1 - Core-shell structured zinc oxide nanowire and preparation thereof - Google Patents
Core-shell structured zinc oxide nanowire and preparation thereof Download PDFInfo
- Publication number
- KR100540511B1 KR100540511B1 KR1020030024293A KR20030024293A KR100540511B1 KR 100540511 B1 KR100540511 B1 KR 100540511B1 KR 1020030024293 A KR1020030024293 A KR 1020030024293A KR 20030024293 A KR20030024293 A KR 20030024293A KR 100540511 B1 KR100540511 B1 KR 100540511B1
- Authority
- KR
- South Korea
- Prior art keywords
- zinc oxide
- nanowires
- zinc
- nanowire
- wall structure
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/18—Status alarms
- G08B21/185—Electrical failure alarms
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B7/00—Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00
- G08B7/06—Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00 using electric transmission, e.g. involving audible and visible signalling through the use of sound and light sources
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
본 발명은 다중벽 구조의 산화아연계 나노선 및 이의 제조방법에 관한 것으로, 본 발명에 따라 산화아연 나노선 위에 금속, 반도체, 유전체 등 다양한 이종물질을 코팅시켜 제조된 다중벽(core-shell) 구조의 산화아연계 나노선은, 다기능을 갖는 다양한 나노선이 단일선으로 제작될 수 있어 집적화가 용이하고, 다양한 나노소자의 핵심부품을 제조할 수 있어 다기능 집적형 나노소자 및 나노시스템을 구현하는데 유리하게 이용될 수 있다.The present invention relates to a zinc oxide nanowire having a multi-wall structure and a method for manufacturing the same. A multi-wall (core-shell) prepared by coating various heterogeneous materials such as metal, semiconductor, and dielectric on a zinc oxide nanowire according to the present invention. Zinc oxide nanowires have a multi-functional nanowire structure that can be fabricated in a single line for easy integration, and can manufacture core components of various nano-devices. It can be used advantageously.
Description
도 1은 본 발명에 따른 다중벽 구조의 산화아연계 나노선, 및 이를 이용한 나노소자의 기본 구조도로서,1 is a basic structural diagram of a zinc oxide nanowire having a multi-wall structure according to the present invention, and a nanodevice using the same.
(a)는 다중벽 구조의 산화아연(ZnO)계 나노선의 구조도이고,(a) is a structural diagram of a zinc oxide (ZnO) nanowire having a multi-wall structure,
(b)는 다중벽 구조의 산화아연계 나노선을 이용한 정류기(rectifier), 발광 다이오드(light emitting diode, LED), 광검출(photo-detector) 소자 등과 같은 나노 소자의 구조도이고, (b) is a structural diagram of a nano device such as a rectifier, a light emitting diode (LED), a photo-detector device, etc. using a zinc oxide nanowire having a multi-wall structure,
(c)는 다중벽 구조의 산화아연계 나노선을 이용한 전자 고이동 트랜지스터(high electron mobility transistor, HEMT), 스핀소자(spintronics) 등과 같은 나노 소자의 구조도이며;(c) is a structural diagram of a nano device such as a high electron mobility transistor (HEMT), spintronics, etc. using a zinc oxide nanowire having a multi-wall structure;
도 2는 본 발명에 따른 산화아연 나노선 및 다중벽 구조의 산화아연계 나노선의 주사전자현미경(SEM) 사진으로서, 2 is a scanning electron microscope (SEM) photograph of a zinc oxide nanowire and a zinc oxide nanowire having a multi-wall structure according to the present invention.
(a)는 산화아연 나노선의 주사전자현미경 사진이고,(a) is a scanning electron micrograph of a zinc oxide nanowire,
(b) 내지 (d)는 산화아연 나노선 위에 산화아연마그네슘(ZnMgO), 산화타이타늄(TiO2) 및 질화갈륨(GaN)을 각각 코팅시켜 제조된 다중벽 구조의 산화아연마그네슘(ZnMgO)/산화아연(ZnO), 산화타이타늄(TiO2)/산화아연(ZnO) 및 질화갈륨(GaN)/산화아연(ZnO) 나노선의 주사전자현미경 사진이며,(b) to (d) are multi-walled zinc magnesium oxide (ZnMgO) / oxidation prepared by coating zinc magnesium oxide (ZnMgO), titanium oxide (TiO 2 ) and gallium nitride (GaN) on zinc oxide nanowires, respectively. Scanning electron micrographs of zinc (ZnO), titanium oxide (TiO 2 ) / zinc oxide (ZnO), and gallium nitride (GaN) / zinc oxide (ZnO) nanowires,
도 3은 본 발명에 따른 다중벽 구조의 산화아연계 나노선의 투과전자현미경 사진(TEM)으로서, 3 is a transmission electron micrograph (TEM) of a zinc oxide nanowire having a multi-wall structure according to the present invention,
(a)는 다중벽 구조의 질화갈륨(GaN)/산화아연(ZnO) 나노선의 투과전자현미경 사진이고,(a) is a transmission electron micrograph of a multi-walled gallium nitride (GaN) / zinc oxide (ZnO) nanowire,
(b)는 상기 다중벽 나노선의 일부를 제거하여 얻어진 질화갈륨 나노튜브와 다중벽 구조의 질화갈륨/산화아연 나노선이 접합된 이종구조물의 투과전자현미경 사진이다. (b) is a transmission electron microscope photograph of a heterostructure in which a gallium nitride nanotube obtained by removing a part of the multiwall nanowire and a gallium nitride / zinc oxide nanowire having a multiwall structure are joined.
본 발명은 다중벽 구조의 산화아연계 나노선 및 이의 제조방법에 관한 것으로, 구체적으로는 유기금속 증착법에 의해 제조된 산화아연 나노선 위에 금속, 반도체, 유도체 등의 다양한 이종물질을 코팅시켜 제조된 다중벽 구조의 산화아연계 나노선에 관한 것이다. The present invention relates to a zinc oxide nanowire having a multi-wall structure and a method for manufacturing the same, and specifically, prepared by coating various heterogeneous materials such as metals, semiconductors, and derivatives on zinc oxide nanowires prepared by organometallic deposition. A zinc oxide nanowire having a multi-wall structure.
100 nm 이하의 나노 크기 반도체 소재들은 물질의 종류에 따라 다양한 물리 적 특성을 보일 뿐만 아니라, 사이즈에 따라 양자화된 에너지 준위가 형성되어 독특한 광학적, 전기적 특성, 예를 들면 사이즈에 따른 흡수 및 발광 파장의 변화(블루 쉬프트(blue shift)), 양자화된 전기전도도(quantized conductance), 쿨롱 차폐현상(Coulomb blockade) 등을 나타낸다. Nano-sized semiconductor materials up to 100 nm exhibit not only various physical properties depending on the type of material, but also quantized energy levels are formed according to the size of the optical and electrical properties such as absorption and emission wavelengths depending on the size. Change (blue shift), quantized conductance, Coulomb blockade, and the like.
또한, 반도체 나노막대, 나노선 등의 일차원 반도체 나노소재는 종횡비가 커서 인위적인 조작이 용이하며, 물질의 종류에 따라 다양한 물리적 특성을 보일 뿐만 아니라 이물질을 첨가함으로써 전기 전도도 및 밴드갭 등을 조절하기가 용이하고, 빛을 내기 때문에 쌓아가기(bottom up) 방식을 이용한 차세대 나노소자의 빌딩블럭으로 주목을 받고 있다. 특히, 이러한 일차원 반도체 나노소재를 이용한 전계 효과 트랜지스터(field effect transistor, FET), 광검출(photo-detector) 소자, 생화학 센서(bio-chemical sensor), 비휘발성 메모리 소자뿐만 아니라, p-타입 및 n-타입 나노선을 이용한 다이오드 및 정류기(rectifier), 논리회로(logic devices), 발광다이오드 등의 다양한 나노소자가 구현되기 시작하면서 많은 관심을 받기 시작했다. In addition, one-dimensional semiconductor nanomaterials, such as semiconductor nanorods and nanowires, have a large aspect ratio and are easy to artificially manipulate, and exhibit various physical properties according to the type of material, and also control electric conductivity and band gap by adding foreign materials. It is attracting attention as a building block of next-generation nano devices using a bottom up method because it is easy and emits light. In particular, field effect transistors (FETs), photo-detector devices, bio-chemical sensors, non-volatile memory devices using such one-dimensional semiconductor nanomaterials, as well as p-type and n A variety of nano devices such as diodes, rectifiers, logic devices, and light emitting diodes using type nanowires have begun to receive much attention.
그러나, 기존의 나노 소자는 단일구조로 이루어진 나노소재를 이용하기 때문에 소자구현 및 집적화가 매우 까다롭고, 성능도 저조하다는 문제점이 있다. 이를 극복하기 위해서는 원하는 기능을 충족시켜줄 수 있는 다양한 나노 구조물들을 단일 나노선(다중벽 구조 나노선)으로 구현할 수 있는 기술개발이 필수적이다.However, the conventional nano devices have a problem in that device implementation and integration are very difficult because of the use of nano materials having a single structure, and performance is also low. To overcome this problem, it is necessary to develop a technology capable of realizing various nanostructures that can satisfy a desired function as a single nanowire (multi-walled nanowire).
따라서, 본 발명의 목적은 산화아연 나노선 위에 다양한 물질들을 코팅시켜 다양한 기능을 갖는 나노 구조물들을 단일 나노선으로 구현할 수 있는 다중벽 구조의 산화아연계 나노선, 및 이를 대량으로 제조하는 방법을 제공하는 것이다.
Accordingly, an object of the present invention is to provide a multi-walled zinc oxide-based nanowires, and a method of manufacturing the same, which can realize nanostructures having various functions by coating various materials on the zinc oxide nanowires as a single nanowire. It is.
상기 목적을 달성하기 위하여 본 발명에서는, 산화아연 나노선 위에 전이금속계 물질, 질화물 반도체 또는 유전체 등의 이종물질이 코팅된 산화아연/전이금속계 물질, 산화아연/질화물 반도체 또는 산화아연/유전체와 같은 다중벽 구조의 산화아연계 나노선을 제공한다.In order to achieve the above object, in the present invention, a zinc oxide / transition metal-based material, zinc oxide / nitride semiconductor or zinc oxide / dielectric such as a transition metal-based material, a nitride semiconductor or a dielectric material coated on a zinc oxide nanowire A zinc oxide nanowire having a wall structure is provided.
또한 본 발명에서는 유기금속 화학 증착법에 의해 제조된 산화아연 나노선 위에 전이금속, 질화물 반도체 또는 유전체를 코팅시키는 것을 포함하는, 다중벽 구조의 산화아연계 나노선의 제조방법을 제공한다. The present invention also provides a method for producing a zinc oxide nanowire having a multi-wall structure, including coating a transition metal, a nitride semiconductor or a dielectric on the zinc oxide nanowires produced by organometallic chemical vapor deposition.
이하 본 발명에 대하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.
구체적으로, 본 발명에 따른 다중벽 구조의 산화아연계 나노선은, 유기금속 화학 증착법에 의해 제조된 산화아연 나노선 위에 두께 조절을 하면서 목적하는 용도에 따라 다양한 이종물질을 코팅시킴으로써, 다양한 나노 구조물을 단일 나노선 형태로 얻는 것을 특징으로 한다.Specifically, the zinc oxide nanowires having a multi-wall structure according to the present invention are coated with various heterogeneous materials according to the intended use while controlling the thickness on the zinc oxide nanowires prepared by organometallic chemical vapor deposition. It is characterized by obtaining in the form of a single nanowire.
본 발명에 따른 방법에 있어서, 산화아연계 나노선 위에 코팅하는 물질로는 특별한 제약은 없고, 밴드갭 조절, 전기 전도도 조절, 자성물질 첨가, 새로운 나노 선 또는 나노튜브 형성 등의 목적하는 용도에 따라 다양하게 거의 모든 물질을 사용할 수 있다.In the method according to the present invention, the material coated on the zinc oxide-based nanowires is not particularly limited, and according to the intended use, such as bandgap adjustment, electric conductivity control, magnetic material addition, new nanowire or nanotube formation, etc. Various materials can be used in various ways.
예를 들면, 밴드갭 조절을 위해 산화아연 나노선 위에 코팅하는 물질로는, 마그네슘(Mg), 카드뮴(Cd) 등을 들 수 있으며, 산화아연 나노선 위에 이들 금속을 코팅시켜 산화아연(ZnO)에 마그네슘 또는 카드뮴이 첨가된 형태의 산화아연 마그네슘(Zn1-xMgxO, 0<x<1) 또는 산화아연 카드뮴(Zn1-xCdxO, 0<x<1) 등을 제조할 수 있다. For example, the material coated on the zinc oxide nanowires to control the band gap may include magnesium (Mg), cadmium (Cd), and the like, and these metals may be coated on the zinc oxide nanowires to form zinc oxide (ZnO). Zinc oxide (Zn 1-x Mg x O, 0 <x <1) or zinc cadmium oxide (Zn 1-x Cd x O, 0 <x <1) Can be.
자성을 띄게 하기 위해 사용되는 물질로는 망간(Mn), 코발트(Co) 등이 있으며, 본 발명에 따라 산화아연 나노선 위에 이들 전이금속을 코팅시켜 산화아연에 망간 또는 코발트가 도핑된 형태의 산화아연 망간(Zn1-xMnxO, 0<x<1) 또는 산화아연 코발트(Zn1-xCoxO, 0<x<1) 등을 제조할 수 있다.Manganese (Mn), cobalt (Co) and the like are used to make the magnetism, and according to the present invention by coating these transition metals on the zinc oxide nanowires zinc oxide doped with manganese or cobalt oxide Zinc manganese (Zn 1-x Mn x O, 0 <x <1) or zinc cobalt (Zn 1-x Co x O, 0 <x <1) and the like can be prepared.
또한, 산화아연 나노선 위에 GaN, AlN, InN 또는 이들의 합금 등과 같은 질화물 반도체를 코팅하여 새로운 나노선(나노튜브)을 형성할 수도 있고, 전기 전도도를 조절하기 위하여 산화타이타늄(TiO2), 질화타이타늄(TiN), 산화실리콘(SiO2), 바륨타이타늄옥사이드(BaTiO3) 등과 같은 유전체를 코팅한 다중벽 구조의 산화아연계 나노선을 제조할 수도 있다.In addition, a nitride semiconductor such as GaN, AlN, InN, or an alloy thereof may be coated on the zinc oxide nanowires to form new nanowires (nanotubes), and titanium oxide (TiO 2 ) and nitride to control electrical conductivity. Zinc oxide nanowires having a multi-wall structure coated with a dielectric such as titanium (TiN), silicon oxide (SiO 2 ), and barium titanium oxide (BaTiO 3 ) may be prepared.
본 발명의 방법에 있어서, 산화아연 나노선 위에 상기 이종 물질들을 코팅하는 방법으로는 유기금속 화학증착법을 포함하는 화학 기상증착법, 스퍼터링(sputtering), 열 또는 전자빔 증발법(thermal or electron beam evaporation), 펄스레이저 증착법(pulse laser deposition) 등과 같은 물리적 성장 방법뿐만 아니라 금과 같은 금속촉매를 이용하는 기상 이송법(vapor-phase transport process) 등과 같은 당업계에 공지된 통상적인 박막 형성 방법이 모두 사용될 수 있으며, 바람직하게는 금속촉매 없이 자기결합 모드를 이용해 나노선을 제조하는 유기금속 화학증착법이 사용될 수 있다.In the method of the present invention, the method of coating the heterogeneous materials on the zinc oxide nanowires may include chemical vapor deposition, sputtering, thermal or electron beam evaporation, including organometallic chemical vapor deposition, As well as physical growth methods such as pulse laser deposition, as well as conventional thin film formation methods known in the art, such as a vapor-phase transport process using a metal catalyst such as gold, may be used. Preferably, an organometallic chemical vapor deposition method for producing nanowires using a magnetic coupling mode without a metal catalyst may be used.
본 발명에 사용되는 산화아연 나노선은, 아연-함유 유기금속 및 산소-함유 기체 또는 산소-함유 유기물을 별개의 라인을 통해 각각 반응기에 주입하고, 10-5 내지 760 mmHg의 압력 및 온도 400 내지 900 ℃의 반응 조건 하에서 상기 반응물의 전구체들을 화학반응시켜 기재상에 산화아연계 나노선을 증착, 성장시키는 것을 특징으로 하는 유기금속 화학증착법에 의해 제조된다. 본 발명에 사용되는 아연-함유 유기금속으로는 디메틸아연[Zn(CH3)2], 디에틸아연[Zn(C2H5) 2], 아연아세테이트[Zn(OOCCH3)2·H2O], 아연아세테이트 무수물[Zn(OOCCH3 )2], 아연 아세틸아세토네이트[Zn(C5H7O2)2] 등을 예로 들 수 있다. The zinc oxide nanowires used in the present invention are injected with zinc-containing organometallic and oxygen-containing gas or oxygen-containing organics into the reactor via separate lines, respectively, and have a pressure of 10 -5 to 760 mmHg and a temperature of 400 to It is prepared by an organometallic chemical vapor deposition method characterized in that the precursors of the reactants are chemically reacted under the reaction conditions of 900 ℃ to deposit and grow zinc oxide-based nanowires on the substrate. Zinc-containing organometallics used in the present invention include dimethyl zinc [Zn (CH 3 ) 2 ], diethyl zinc [Zn (C 2 H 5 ) 2 ], zinc acetate [Zn (OOCCH 3 ) 2 H 2 O. ], Zinc acetate anhydride [Zn (OOCCH 3 ) 2 ], zinc acetylacetonate [Zn (C 5 H 7 O 2 ) 2 ], and the like.
또한, 본 발명에 사용되는 산소-함유 기체로는 O2, O3, NO2, 수증기, CO 2 등을 예로 들 수 있으며, 산소-함유 유기물로는 C4H8O를 예로 들 수 있고, 본 발명에 따라 제조되는 산화아연 나노선의 직경, 길이 및 밀도는 성장온도, 압력 및 반응물질의 흐름속도에 따라 다양하게 조절할 수 있다.In addition, the oxygen-containing gas used in the present invention may include O 2 , O 3 , NO 2 , water vapor, CO 2 and the like, the oxygen-containing organic substance may include C 4 H 8 O, The diameter, length and density of the zinc oxide nanowires prepared according to the present invention can be variously adjusted according to the growth temperature, pressure and flow rate of the reactant.
상기 제조된 산화아연 나노선 위에 바람직하게는 유기금속 화학증착법을 이 용하여, 당분야에 공지된 다양한 전구체를 사용하여 이종물질을 코팅함으로써 다중벽 구조의 산화아연계 나노선을 제조할 수 있다.The zinc oxide nanowires having a multi-wall structure can be prepared by coating a heterogeneous material using various precursors known in the art, preferably using organometallic chemical vapor deposition on the prepared zinc oxide nanowires.
즉, 코팅시키고자 하는 물질의 반응전구체들을 개별라인을 통해 각각 반응기에 주입하고, 10-5 내지 760 mmHg의 압력 및 온도 400 내지 900 ℃의 반응조건 하에서 화학반응시킴으로써, 산화아연 나노선 위에 이종물질을 코팅할 수 있다. 상기 압력 및 온도 범위에서 화학반응시키면, 코팅하려는 물질이 산화아연 나노선 위에 적당한 밀도로 성장이 잘 된다. 또한, 약 500 ℃에서 코팅시키는 경우에는 5분 내지 10분, 800 내지 900 ℃에서 코팅시키는 경우에는 30분 내지 1시간 정도 수행하는 것이 바람직한데, 코팅막의 두께는 성장시간에 비례하여 증가하므로 반응시간은 대략 수 내지 수십 나노미터 정도의 두께를 갖는 막이 성장되는 정도의 시간을 유지하였다.In other words, by injecting the reaction precursors of the material to be coated into the reactor through separate lines, and chemically reacting under a reaction condition of a pressure of 10 -5 to 760 mmHg and a temperature of 400 to 900 ℃, heterogeneous materials on the zinc oxide nanowires Can be coated. When chemically reacted at the above pressure and temperature ranges, the material to be coated is well grown on the zinc oxide nanowires at an appropriate density. In addition, when coating at about 500 ℃ 5 minutes to 10 minutes, when coating at 800 to 900 ℃ 30 minutes to 1 hour is preferably performed, the coating film thickness increases in proportion to the growth time reaction time The time was maintained to grow a film having a thickness of about several tens to several tens of nanometers.
본 발명에 사용되는 반응전구체로서 마그네슘-함유 유기금속으로는 비스시클로펜타디에닐마그네슘[bis-cyclopentadienyl-Mg, (C5H5)2Mg], 비스메틸시클로펜타디에닐마그네슘[bis-methylcyclopentadienyl-Mg, (CH3C5H4)2Mg], 비스에틸시클로펜타디에닐마그네슘[bis-ethylcyclopentadienyl-Mg, (C2H5C5H4)2 Mg], 비스펜타메틸시클로펜타디에닐마그네슘[bis-pentamethylcyclopentadienyl-Mg, {(CH3)5C5}2 Mg], 마그네슘 아세테이트[Mg(OOCCH3)2·2H2O], 마그네슘 아세테이트 무수물[Mg(OOCCH 3)2], 마그네슘 아세틸아세토네이트[Mg(C5H7O2)2·H2O] 등을 예로 들 수 있고, 카드뮴-함유 유기 금속으로는 디에틸카드뮴 등을 예로 들 수 있으며, 망간-함유 유기금속으로는 비스시클로펜타디에닐 망간 등을 예로 들 수 있다. 또한, 갈륨-함유 유기금속으로는 트리메틸 갈륨(TMGa), 트리에틸 갈륨(TEGa) 등을 예로 들 수 있고, 알루미늄-함유 유기금속으로는 트리메틸 알루미늄(TMAl), 트리에틸 알루미늄(TEAl) 등을 예로 들 수 있으며, 인듐-함유 유기금속으로는 트리메틸인듐(TMIn) 등을 예로 들 수 있고, 타이타늄-함유 유기금속으로는 테트라키스 디에틸아미도 타이타늄[Tetrakis diethylamido titanium, Ti{N(C2H5)2}4], 테트라키스 디메틸아미도 타이타늄[Tetrakis dimethylamido titanium, Ti{N(CH3)2}4], 타이타늄 t-부톡사이드[Titanium tert-butoxide, Ti{O(t-C4H9)}4], 타이타늄 에톡사이드[Titinium ethoxide, Ti(OC2H5)4], 타이타늄 이소프로폭사이드[Titanium isopropoxide, Ti{O(i-C3H7)4}] 등을 예로 들 수 있다.Examples of the reaction precursor used in the present invention include magnesium-containing organometallic biscyclopentadienyl magnesium [bis-cyclopentadienyl magnesium, (C 5 H 5 ) 2 Mg], bismethylcyclopentadienyl magnesium [bis-methylcyclopentadienyl- Mg, (CH 3 C 5 H 4 ) 2 Mg], bisethylcyclopentadienyl magnesium [bis-ethylcyclopentadienyl-Mg, (C 2 H 5 C 5 H 4 ) 2 Mg], bispentamethylcyclopentadienyl magnesium [bis-pentamethylcyclopentadienyl-Mg, {(CH 3 ) 5 C 5 } 2 Mg], magnesium acetate [Mg (OOCCH 3 ) 2 .2H 2 O], magnesium acetate anhydride [Mg (OOCCH 3 ) 2 ], magnesium acetylaceto Nate [Mg (C 5 H 7 O 2 ) 2 .H 2 O] and the like, cadmium-containing organic metals include diethyl cadmium and the like, manganese-containing organic metals such as biscyclo Pentadienyl manganese etc. are mentioned. Examples of the gallium-containing organic metal include trimethyl gallium (TMGa) and triethyl gallium (TEGa). Examples of the aluminum-containing organic metal include trimethyl aluminum (TMAl) and triethyl aluminum (TEAl). Examples of the indium-containing organic metal include trimethylindium (TMIn), and the titanium-containing organic metal includes tetrakis diethylamido titanium, Ti {N (C 2 H 5). ) 2 } 4 ], Tetrakis dimethylamido titanium, Ti {N (CH 3 ) 2 } 4 ], titanium tert-butoxide, Ti {O (tC 4 H 9 )} 4 ], titanium ethoxide, Ti (OC 2 H 5 ) 4 , titanium isopropoxide, Ti {O (iC 3 H 7 ) 4 }], and the like.
본 발명에 따른 산화아연계 나노선의 기본 구조는 도 1(a)에 나타낸 바와 같이 다중벽(core-shell) 구조로서 매우 뚜렷한 계면을 가지며, 도 1(b)에 나타낸 정류기, 발광다이오드, 광검출 소자 등의 나노소자, 및 도 1(c)에 나타낸 HEMT, 스핀 소자 등의 나노소자에 이용될 수 있다. 도 1(b)에 나타낸 바와 같이 p-n 접합을 통하여 나노크기의 트랜지스터, 다이오드, 센서 등을 제작하면 안정성과 소자효율이 뛰어날뿐만 아니라 고집적화가 용이해진다. 또한, 도 1(c)에 나타낸 바와 같이 밴드갭 및 도핑 영역을 달리하여 HEMT, 스핀소자 등의 나노소자도 제작할 수 있다. The basic structure of the zinc oxide nanowires according to the present invention has a very distinct interface as a core-shell structure, as shown in FIG. 1 (a), and has a rectifier, a light emitting diode, and a photodetector as shown in FIG. Nanodevices such as devices, and HEMTs, spin devices, and the like shown in Fig. 1C. As shown in FIG. 1 (b), fabrication of nano-sized transistors, diodes, sensors, etc. through p-n junctions not only provides excellent stability and device efficiency, but also facilitates high integration. In addition, as shown in FIG. 1 (c), nanobands such as HEMT and spin devices may be manufactured by varying the band gap and the doped region.
이와 같이, 본 발명에 따라 제조된 다중벽 구조의 산화아연계 나노선은 원하는 기능을 충족시켜주는 나노 구조물들을 단일나노선으로 구현할 수 있어 집적화가 매우 용이하고, 다양한 나노소자의 핵심부품을 제작할 수 있어 다기능 집적형 나노소자에 유리하게 이용될 수 있다. As described above, the zinc oxide-based nanowires of the multi-wall structure manufactured according to the present invention can implement nanostructures satisfying a desired function as single nanowires, and thus are easy to integrate and fabricate core components of various nano devices. It can be advantageously used in the multi-function integrated nano device.
이하 실시예를 통하여 본 발명을 더욱 상세히 설명한다. 단 본 발명의 범위가 하기 실시예만으로 한정되는 것은 아니다. The present invention will be described in more detail with reference to the following examples. However, the scope of the present invention is not limited only to the following examples.
실시예 1Example 1
개별적인 라인을 통해 운반기체로 아르곤을 사용하여 반응전구체인 디메틸아연(Zn(CH3)2) 및 O2 기체를 각각 반응기내로 0.1 내지 10 sccm 및 10 내지 100 sccm 범위의 흐름속도로 주입하고, 기재 상에 상기 물질들을 화학반응시켜 산화아연 나노선을 증착, 성장시켰다. 약 1시간에 걸쳐 나노선의 성장이 진행되는 동안 반응기 내의 압력은 10-5 내지 760 mmHg로, 온도는 400 내지 900 ℃로 유지하였다. Using argon as a carrier gas through separate lines, the reaction precursors, dimethylzinc (Zn (CH 3 ) 2 ) and O 2 gases, were injected into the reactor at flow rates ranging from 0.1 to 10 sccm and 10 to 100 sccm, respectively. The materials were chemically reacted on the substrate to deposit and grow zinc oxide nanowires. The pressure in the reactor was maintained at 10 −5 to 760 mmHg and the temperature at 400 to 900 ° C. during the growth of the nanowires over about 1 hour.
증착 반응을 완료한 후, 주사 전자 현미경법으로 단면을 측정한 결과를 도 2(a)에 나타내었다. 도 2(a)로부터, 형성된 산화아연 나노선의 직경은 대략 10 nm 정도이고, 길이는 대략 1 내지 5 ㎛임을 알 수 있다.After completion of the deposition reaction, the result of measuring the cross section by scanning electron microscopy is shown in Fig. 2 (a). 2 (a), it can be seen that the diameter of the formed zinc oxide nanowires is about 10 nm, and the length is about 1 to 5 μm.
이어서, 개별적인 라인을 통해 디메틸아연, 비스시클로펜타디에닐마그네슘[bis-cyclopentadienyl-Mg, (C5H5)2Mg] 및 O2 기체를 각각 0.1 내지 10 sccm, 1 내지 50 sccm 및 10 내지 100 sccm 범위의 흐름속도로 반응기내로 주입하고, 압력은 5 torr로, 온도는 500 ℃로 유지하면서 반응기 내에서 상기 반응전구체들을 10 분 동안 화학반응시켜, 산화아연 나노선 위에 산화아연마그네슘을 코팅시킨 다중벽 구조의 산화아연마그네슘/산화아연 나노선을 제조하였다. Subsequently, dimethylzinc, biscyclopentadienylmagnesium, (C 5 H 5 ) 2 Mg] and O 2 gases were separated via separate lines from 0.1 to 10 sccm, 1 to 50 sccm and 10 to 100, respectively. The reaction precursors were chemically reacted in the reactor for 10 minutes while maintaining the pressure at 5 torr and the temperature at 500 ° C., thereby coating zinc oxide on the zinc oxide nanowires. A zinc oxide magnesium oxide / zinc oxide nanowire having a multi-wall structure was prepared.
실시예 2Example 2
산화아연 나노선 위에 코팅시키려는 물질의 반응전구체로 디메틸아연, 비스시클로펜타디에닐마그네슘 및 O2 기체 대신, 산화타이타늄이소프로폭사이드 [Ti{O(i-C3H7)}4] 및 O2 기체를 각각 1 내지 50 sccm 및 10 내지 100 sccm 범위의 흐름속도로 주입하여 사용하는 것을 제외하고는, 실시예 1과 유사한 방법을 실시하여 산화아연 나노선 위에 산화타이타늄을 코팅시킨 다중벽 구조의 산화타이타늄/산화아연 나노선을 제조하였다.Titanium oxide isopropoxide [Ti {O (iC 3 H 7 )} 4 ] and O 2 gas instead of dimethylzinc, biscyclopentadienylmagnesium and O 2 gas as reaction precursors of the material to be coated on the zinc oxide nanowires Titanium oxide with a multi-wall structure coated with titanium oxide on zinc oxide nanowires in a similar manner to Example 1, except that was injected at a flow rate in the range of 1 to 50 sccm and 10 to 100 sccm, respectively. Zinc oxide nanowires were prepared.
실시예 3Example 3
산화아연 나노선 위에 코팅시키려는 물질의 반응전구체로 디메틸아연, 비스시클로펜타디에닐마그네슘 및 O2 기체 대신 TMGa 및 NH3 기체를 각각 1 내지 50 sccm 및 100 내지 2000 sccm 범위의 흐름속도로 주입하여 사용하는 것을 제외하고는, 실시예 1과 유사한 방법을 실시하여 산화아연 나노선 위에 질화갈륨을 코팅시킨 다중벽 구조의 질화갈륨/산화아연 나노선을 제조하였다.As a precursor of the material to be coated on the zinc oxide nanowires, TMGa and NH 3 gases were injected at a flow rate in the range of 1 to 50 sccm and 100 to 2000 sccm, respectively, instead of dimethyl zinc, biscyclopentadienyl magnesium and O 2 gas. A gallium nitride / zinc oxide nanowire having a multi-walled structure coated with gallium nitride on the zinc oxide nanowire was fabricated in a similar manner to Example 1, except that.
상기 수득된 각각의 다중벽 구조의 산화아연계 나노선의 주사 전자 현미경 사진을 도 2(b) 내지 2(d)에 나타내었다. 도 2로부터, 산화아연 나노선은 직경이 대략 10 nm 정도로 매우 가늘지만(도 2(a)), 이 위에 이종물질(산화아연마그네슘, 산화타이타늄 및 질화갈륨)을 코팅한 경우(도 2(b) 내지 2(d)) 직경이 약 20 내지 50 nm 정도로 굵어진 것으로 보아 다중벽 구조의 산화아연계 나노선이 성공적으로 제조되었음을 알 수 있다. Scanning electron micrographs of the zinc oxide-based nanowires of each of the multiwall structures obtained above are shown in FIGS. 2 (b) to 2 (d). From FIG. 2, the zinc oxide nanowires are very thin, approximately 10 nm in diameter (FIG. 2 (a)), but when a heterogeneous material (magnesium oxide, titanium oxide and gallium nitride) is coated thereon (FIG. 2 (b) It can be seen that the zinc oxide-based nanowires having a multi-wall structure were successfully manufactured, as the diameters of 2 to 2 (d)) were about 20 to 50 nm thick.
도 3(a)는 산화아연 나노선 위에 질화갈륨을 코팅시켜 제조된 다중벽 구조의 산화아연/질화갈륨 나노선의 투과전자현미경 사진이고, 도 3(b)는 상기 도 3(a)의 다중벽 구조의 나노선을 일부 제거해서 얻어진 질화갈륨 나노튜브와 다중벽 구조의 산화아연/질화갈륨이 접합된 이종구조물의 투과전자현미경 사진인데, 도 3으로부터, 직경이 대략 10 nm인 산화아연 나노선 위에 수 nm 두께의 질화갈륨이 코팅되었음을 알 수 있다.Figure 3 (a) is a transmission electron micrograph of a multi-walled zinc oxide / gallium nitride nanowires prepared by coating gallium nitride on the zinc oxide nanowires, Figure 3 (b) is a multi-wall of Figure 3 (a) A transmission electron micrograph of a heterostructure in which a gallium nitride nanotube obtained by partially removing nanostructures of a structure and a multi-walled zinc oxide / gallium nitride is bonded is shown. From FIG. 3, on a zinc oxide nanowire having a diameter of about 10 nm. It can be seen that several nm thick gallium nitride was coated.
본 발명에 따라 산화아연 나노선 위에 금속, 반도체, 유전체 등의 다양한 물질을 2층 이상의 다층으로 코팅시킴으로써 도핑농도, 밴드갭 등을 적절히 제어한, 다중벽 구조의 산화아연계 나노선을 대량으로 제조할 수 있다. 따라서, 대부분의 전자소자, 광소자 및 센서의 기본구조를 단일 나노선 안에 안정적, 효율적으로 제작할 수 있고, 고집적화가 용이하여 다기능 집적형 나노소자 및 나노시스템을 구현할 수 있다.According to the present invention, zinc oxide nanowires having a multi-wall structure are manufactured in large quantities by appropriately controlling doping concentration and band gap by coating various materials such as metals, semiconductors, dielectrics, etc. in two or more layers on the zinc oxide nanowires. can do. Therefore, the basic structures of most electronic devices, optical devices, and sensors can be manufactured stably and efficiently within a single nanowire, and high integration can be easily implemented to implement multifunctional integrated nano devices and nano systems.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030024293A KR100540511B1 (en) | 2003-04-17 | 2003-04-17 | Core-shell structured zinc oxide nanowire and preparation thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030024293A KR100540511B1 (en) | 2003-04-17 | 2003-04-17 | Core-shell structured zinc oxide nanowire and preparation thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040090524A KR20040090524A (en) | 2004-10-26 |
KR100540511B1 true KR100540511B1 (en) | 2006-01-11 |
Family
ID=37371563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020030024293A KR100540511B1 (en) | 2003-04-17 | 2003-04-17 | Core-shell structured zinc oxide nanowire and preparation thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100540511B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100851281B1 (en) * | 2007-04-20 | 2008-08-08 | 연세대학교 산학협력단 | Preparation method of doped zno nanorods |
US11183978B2 (en) * | 2019-06-06 | 2021-11-23 | International Business Machines Corporation | Low-noise amplifier with quantized conduction channel |
-
2003
- 2003-04-17 KR KR1020030024293A patent/KR100540511B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
KR20040090524A (en) | 2004-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100593264B1 (en) | P-n heterojunction structure of zinc oxide nanorod with semiconductive substrate, preparation thereof, and device using same | |
KR100644166B1 (en) | Heterojunction structure of nitride semiconductor and nano-devices or their array comprising same | |
US7638345B2 (en) | Method of manufacturing silicon nanowires and device comprising silicon nanowires formed by the same | |
CN102403428B (en) | III group-III nitride nanorod light emitting device and manufacture method thereof | |
US20110163292A1 (en) | Nanowire Array-Based Light Emitting Diodes and Lasers | |
TWI425560B (en) | Semiconductor device, light emitting device and method for manufacturing the same | |
KR100507610B1 (en) | Nitride semiconductor nanophase opto-electronic cell and the preparation method thereof | |
KR101137632B1 (en) | Manufacturing method of metal oxide nanostructure and electronic device having the same | |
WO2007129773A1 (en) | Iii nitride compound semiconductor laminated structure | |
US20040252737A1 (en) | Zinc oxide based nanorod with quantum well or coaxial quantum structure | |
CN115714155A (en) | Deep ultraviolet light emitting diode epitaxial wafer, preparation method thereof and deep ultraviolet light emitting diode | |
KR20070007785A (en) | Gallium nitride-based compound semiconductor multilayer structure and production method thereof | |
US20110003420A1 (en) | Fabrication method of gallium nitride-based compound semiconductor | |
CN108767055B (en) | P-type AlGaN epitaxial film and preparation method and application thereof | |
CN101522942A (en) | Filming method for iii-group nitride semiconductor laminated structure | |
US8222055B2 (en) | Silicon nitride layer for light emitting device, light emitting device using the same, and method of forming silicon nitride layer for light emitting device | |
US7575631B2 (en) | Fabrication method of gallium manganese nitride single crystal nanowire | |
KR100499274B1 (en) | Manufacturing method for ZnO based hetero-structure nanowires | |
KR20090002758A (en) | A luminous element and method for preparing the luminous element | |
KR100540511B1 (en) | Core-shell structured zinc oxide nanowire and preparation thereof | |
KR100604130B1 (en) | Core-removed nano structure and preparation thereof | |
KR100458162B1 (en) | ZnO based quantum well and/or superlattice nanowires | |
KR101203140B1 (en) | METHOD FOR FABRICATING A ZnO BASED LIGHT EMITTING DEVICE AND A ZnO BASED LIGHT EMITTING DEVICE FABRICATED BY THE METHOD | |
KR101191466B1 (en) | Method of fabricating a zinc oxide based 2 dimensional nanostructure and zinc oxide based 2 dimensional nanostructure manufatured thereof | |
KR100536483B1 (en) | Zinc oxide nanoneedle, preparation thereof, and electronic device using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120928 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20130930 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20141124 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20161118 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20171116 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20181114 Year of fee payment: 14 |