KR100540399B1 - 중복추천 문제를 고려한 다중 캠페인 할당 장치 - Google Patents
중복추천 문제를 고려한 다중 캠페인 할당 장치 Download PDFInfo
- Publication number
- KR100540399B1 KR100540399B1 KR1020030032812A KR20030032812A KR100540399B1 KR 100540399 B1 KR100540399 B1 KR 100540399B1 KR 1020030032812 A KR1020030032812 A KR 1020030032812A KR 20030032812 A KR20030032812 A KR 20030032812A KR 100540399 B1 KR100540399 B1 KR 100540399B1
- Authority
- KR
- South Korea
- Prior art keywords
- campaign
- customer
- customers
- recommendation
- allocation
- Prior art date
Links
- 230000006870 function Effects 0.000 claims abstract description 26
- 230000004043 responsiveness Effects 0.000 claims abstract description 23
- 238000005316 response function Methods 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 20
- 239000011159 matrix material Substances 0.000 claims description 14
- 230000004044 response Effects 0.000 claims description 9
- 230000008901 benefit Effects 0.000 claims description 7
- 238000004458 analytical method Methods 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 4
- 239000000284 extract Substances 0.000 abstract description 3
- 230000002068 genetic effect Effects 0.000 description 6
- 230000006399 behavior Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0241—Advertisements
- G06Q30/0242—Determining effectiveness of advertisements
- G06Q30/0244—Optimization
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Strategic Management (AREA)
- Development Economics (AREA)
- Accounting & Taxation (AREA)
- Finance (AREA)
- Economics (AREA)
- Physics & Mathematics (AREA)
- Game Theory and Decision Science (AREA)
- Marketing (AREA)
- Entrepreneurship & Innovation (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Human Resources & Organizations (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
캠페인1 | 캠페인2 | 캠페인3 | |
고객1 | 100 | 98 | 80 |
고객2 | 70 | 48 | 13 |
고객3 | 50 | 77 | 62 |
고객4 | 34 | 4 | 61 |
고객5 | 9 | 90 | 70 |
캠페인1 | 캠페인2 | 캠페인3 | |
반응도 | 1.0 | 0.7 | 0.5 |
캠페인1 | 캠페인2 | 캠페인3 | |
고객1 | 1 | 1 | 1 |
고객2 | 1 | 0 | 0 |
고객3 | 1 | 1 | 1 |
고객4 | 0 | 0 | 0 |
고객5 | 0 | 1 | 1 |
캠페인1 | 캠페인2 | 캠페인3 | |
고객1 | 1 | 1 | 0 |
고객2 | 1 | 0 | 0 |
고객3 | 0 | 1 | 1 |
고객4 | 1 | 0 | 1 |
고객5 | 0 | 1 | 1 |
Claims (14)
- 삭제
- 컴퓨터 시스템 상에서 하드웨어 및 소프트웨어의 결합에 의해 동작하는 장치로서,고객의 인적사항, 고객의 행동이력 로그를 기반으로 각각의 개별 캠페인에 대한 고객의 선호도를 추출하는 고객선호도추출부;소정의 기간 이내에 다수의 캠페인 추천을 받는 것을 중복추천으로 결정하고, 고객의 중복추천에 대한 반응도 함수를 결정하는 반응도함수결정부;각 캠페인마다 캠페인의 특성 및 환경을 고려하여 할당하여야 할 고객 수를 정하는 제한조건제시부;캠페인-고객 할당이 이루어졌을 때 할당 결과를 예측, 평가하는 캠페인-고객 할당 평가부; 및고객선호도추출부로부터의 고객 선호도, 반응도함수결정부로부터의 고객 반응도, 제한조건제시부로부터의 캠페인 제한 조건을 기반으로 고객들을 행으로 캠페인을 열로 하는 행렬을 생성하고, 어느 고객에게도 캠페인 추천이 이루어져 있지 않은 상태에서 고객 할당 알고리즘을 적용하여 캠페인 추천 고객을 선정하는 고객선정부를 포함하여 구성하되,상기 고객선정부의 고객 할당 알고리즘은최초에 행렬의 모든 원소를 '0'으로 할당하는 행렬 초기화 모듈;각 (캠페인, 고객) 쌍에 대한 이득 값을 계산하는 이득 산출 모듈; 및가장 이득 값이 높은 순으로 (캠페인, 고객)을 할당하는 캠페인-고객 할당 모듈;을 구비한 건설적 할당 알고리즘임을 특징으로 하는 다중 캠페인 할당 장치.
- 제2항에 있어서, 상기 건설적 할당 알고리즘은상기 모듈들을 모두 거친 후 만들어진 캠페인-고객 할당 행렬에서 할당이 이루어진 임의의 원소와 할당이 이루어지지 않은 임의의 원소 사이의 교환이 이득을 줄 경우, 이러한 교환이 이득을 주지 않을 때까지 반복 적용하여 캠페인 추천 고객을 선정하는 모듈을 더 포함하는 것을 특징으로 하는 다중 캠페인 할당 장치.
- 삭제
- 삭제
- 삭제
- 삭제
- 제2항에 있어서, 상기 고객 선정부의 건설적 할당 알고리즘은시간 윈도우를 사용하여, 기 수행된 캠페인들 중 윈도우 범위 안에 속하는 캠페인들에 대한 고객 할당 내용이 행렬에 미리 입력되고, 이것을 출발점으로 수행하고자 하는 단수 또는 복수의 캠페인에 대해 행렬을 채워나가는 방식으로 변형해서 사용할 수도 있는 것을 특징으로 하는 다중 캠페인 할당 장치.
- 제2항에 있어서, 상기 반응도함수결정부는고객에 대한 반응도 함수의 결정을 고객의 인적사항, 고객의 행동이력 로그를 기반으로 고객군을 선정하여 고객군 별로 각기 다른 반응도 함수를 적용하여 이루어짐을 특징으로 하는 다중 캠페인 할당 장치.
- 제2항에 있어서, 상기 반응도함수결정부는모든 캠페인 중복에 대해 고객에 대한 반응도 함수의 결정을 캠페인의 속성 정보, 고객의 캠페인에 대한 행동이력 로그를 기반으로 캠페인 중복별로 각기 다른 반응도 함수를 적용하여 이루어짐을 특징으로 하는 다중 캠페인 할당 장치.
- 제2항에 있어서, 상기 반응도함수결정부는다중 캠페인 할당에 대한 고객의 반응 및 행동이력 분석 결과 등을 사용하여 고객에 대한 반응도 함수를 다시 결정하여 이루어짐을 특징으로 하는 다중 캠페인 할당 장치.
- 제2항에 있어서, 상기 고객선정부는중요도에 따라 캠페인들에 대한 가중치를 두어 고객 선정을 수행함을 특징으로 하는 다중 캠페인 할당 장치.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030032812A KR100540399B1 (ko) | 2003-05-23 | 2003-05-23 | 중복추천 문제를 고려한 다중 캠페인 할당 장치 |
US10/556,266 US20070044019A1 (en) | 2003-05-23 | 2004-05-19 | Multi-campaign assignment apparatus considering overlapping recommendation problem |
PCT/KR2004/001189 WO2004104886A1 (en) | 2003-05-23 | 2004-05-19 | Multi-campaign assignment apparatus considering overlapping recommendation problem |
DE112004000870T DE112004000870T5 (de) | 2003-05-23 | 2004-05-19 | Mehrkampagnen-Zuordnungsvorrichtung, die das Problem sich überschneidender Empfehlungen berücksichtigt |
JP2006532050A JP2006529040A (ja) | 2003-05-23 | 2004-05-19 | 重複推薦の問題を考慮したマルチキャンペーン割り当て装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030032812A KR100540399B1 (ko) | 2003-05-23 | 2003-05-23 | 중복추천 문제를 고려한 다중 캠페인 할당 장치 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040100441A KR20040100441A (ko) | 2004-12-02 |
KR100540399B1 true KR100540399B1 (ko) | 2006-01-10 |
Family
ID=33476005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020030032812A KR100540399B1 (ko) | 2003-05-23 | 2003-05-23 | 중복추천 문제를 고려한 다중 캠페인 할당 장치 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20070044019A1 (ko) |
JP (1) | JP2006529040A (ko) |
KR (1) | KR100540399B1 (ko) |
DE (1) | DE112004000870T5 (ko) |
WO (1) | WO2004104886A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102380750B1 (ko) * | 2021-07-20 | 2022-04-04 | 주식회사 모비젠 | 잠재적 고객의 예측 방법 및 그 시스템 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6610917B2 (en) | 1998-05-15 | 2003-08-26 | Lester F. Ludwig | Activity indication, external source, and processing loop provisions for driven vibrating-element environments |
US9019237B2 (en) * | 2008-04-06 | 2015-04-28 | Lester F. Ludwig | Multitouch parameter and gesture user interface employing an LED-array tactile sensor that can also operate as a display |
US8345014B2 (en) | 2008-07-12 | 2013-01-01 | Lester F. Ludwig | Control of the operating system on a computing device via finger angle using a high dimensional touchpad (HDTP) touch user interface |
US8169414B2 (en) | 2008-07-12 | 2012-05-01 | Lim Seung E | Control of electronic games via finger angle using a high dimensional touchpad (HDTP) touch user interface |
US8604364B2 (en) * | 2008-08-15 | 2013-12-10 | Lester F. Ludwig | Sensors, algorithms and applications for a high dimensional touchpad |
US8170346B2 (en) | 2009-03-14 | 2012-05-01 | Ludwig Lester F | High-performance closed-form single-scan calculation of oblong-shape rotation angles from binary images of arbitrary size using running sums |
US20110055722A1 (en) * | 2009-09-02 | 2011-03-03 | Ludwig Lester F | Data Visualization Environment with DataFlow Processing, Web, Collaboration, Advanced User Interfaces, and Spreadsheet Visualization |
US20110066933A1 (en) * | 2009-09-02 | 2011-03-17 | Ludwig Lester F | Value-driven visualization primitives for spreadsheets, tabular data, and advanced spreadsheet visualization |
US20110202934A1 (en) * | 2010-02-12 | 2011-08-18 | Ludwig Lester F | Window manger input focus control for high dimensional touchpad (htpd), advanced mice, and other multidimensional user interfaces |
US10146427B2 (en) | 2010-03-01 | 2018-12-04 | Nri R&D Patent Licensing, Llc | Curve-fitting approach to high definition touch pad (HDTP) parameter extraction |
US9626023B2 (en) | 2010-07-09 | 2017-04-18 | Lester F. Ludwig | LED/OLED array approach to integrated display, lensless-camera, and touch-screen user interface devices and associated processors |
US9632344B2 (en) | 2010-07-09 | 2017-04-25 | Lester F. Ludwig | Use of LED or OLED array to implement integrated combinations of touch screen tactile, touch gesture sensor, color image display, hand-image gesture sensor, document scanner, secure optical data exchange, and fingerprint processing capabilities |
US8754862B2 (en) * | 2010-07-11 | 2014-06-17 | Lester F. Ludwig | Sequential classification recognition of gesture primitives and window-based parameter smoothing for high dimensional touchpad (HDTP) user interfaces |
US9950256B2 (en) | 2010-08-05 | 2018-04-24 | Nri R&D Patent Licensing, Llc | High-dimensional touchpad game controller with multiple usage and networking modalities |
US20120204577A1 (en) | 2011-02-16 | 2012-08-16 | Ludwig Lester F | Flexible modular hierarchical adaptively controlled electronic-system cooling and energy harvesting for IC chip packaging, printed circuit boards, subsystems, cages, racks, IT rooms, and data centers using quantum and classical thermoelectric materials |
US9442652B2 (en) | 2011-03-07 | 2016-09-13 | Lester F. Ludwig | General user interface gesture lexicon and grammar frameworks for multi-touch, high dimensional touch pad (HDTP), free-space camera, and other user interfaces |
US9052772B2 (en) | 2011-08-10 | 2015-06-09 | Lester F. Ludwig | Heuristics for 3D and 6D touch gesture touch parameter calculations for high-dimensional touch parameter (HDTP) user interfaces |
US10430066B2 (en) | 2011-12-06 | 2019-10-01 | Nri R&D Patent Licensing, Llc | Gesteme (gesture primitive) recognition for advanced touch user interfaces |
US9823781B2 (en) | 2011-12-06 | 2017-11-21 | Nri R&D Patent Licensing, Llc | Heterogeneous tactile sensing via multiple sensor types |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6925441B1 (en) * | 1997-10-27 | 2005-08-02 | Marketswitch Corp. | System and method of targeted marketing |
KR20010007715A (ko) * | 2000-02-29 | 2001-02-05 | 조현길 | 감성 지수를 이용한 맞춤 정보 제공 시스템 및 그 방법 |
JP3686812B2 (ja) * | 2000-03-09 | 2005-08-24 | 株式会社ワコール | カップ部を有する衣類 |
KR20020008295A (ko) * | 2000-07-21 | 2002-01-30 | 김용민 | 인터넷을 이용한 데이터베이스 마케팅 시스템 및 방법 |
KR20020025341A (ko) * | 2000-09-28 | 2002-04-04 | 양태연 | 인터넷 쇼핑몰 구축을 위한 개별화된 에이전트 엔진을구축하는 장치 및 그 서비스 방법 |
WO2002033628A2 (en) * | 2000-10-18 | 2002-04-25 | Johnson & Johnson Consumer Companies, Inc. | Intelligent performance-based product recommendation system |
US20030036937A1 (en) * | 2001-03-06 | 2003-02-20 | Mohammad Shahidehpour | Method for control and coordination of independent tasks using benders decomposition |
AU2003237135A1 (en) * | 2002-04-30 | 2003-11-17 | Veridiem Inc. | Marketing optimization system |
US7698163B2 (en) * | 2002-11-22 | 2010-04-13 | Accenture Global Services Gmbh | Multi-dimensional segmentation for use in a customer interaction |
US7707059B2 (en) * | 2002-11-22 | 2010-04-27 | Accenture Global Services Gmbh | Adaptive marketing using insight driven customer interaction |
US20040204973A1 (en) * | 2003-04-14 | 2004-10-14 | Thomas Witting | Assigning customers to activities in marketing campaigns |
US8458033B2 (en) * | 2003-08-11 | 2013-06-04 | Dropbox, Inc. | Determining the relevance of offers |
US20060047563A1 (en) * | 2004-09-02 | 2006-03-02 | Keith Wardell | Method for optimizing a marketing campaign |
-
2003
- 2003-05-23 KR KR1020030032812A patent/KR100540399B1/ko active IP Right Grant
-
2004
- 2004-05-19 US US10/556,266 patent/US20070044019A1/en not_active Abandoned
- 2004-05-19 DE DE112004000870T patent/DE112004000870T5/de not_active Ceased
- 2004-05-19 JP JP2006532050A patent/JP2006529040A/ja active Pending
- 2004-05-19 WO PCT/KR2004/001189 patent/WO2004104886A1/en active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102380750B1 (ko) * | 2021-07-20 | 2022-04-04 | 주식회사 모비젠 | 잠재적 고객의 예측 방법 및 그 시스템 |
Also Published As
Publication number | Publication date |
---|---|
DE112004000870T5 (de) | 2006-03-30 |
JP2006529040A (ja) | 2006-12-28 |
WO2004104886A1 (en) | 2004-12-02 |
US20070044019A1 (en) | 2007-02-22 |
KR20040100441A (ko) | 2004-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100540399B1 (ko) | 중복추천 문제를 고려한 다중 캠페인 할당 장치 | |
WO2022037337A1 (zh) | 机器学习模型的分布式训练方法、装置以及计算机设备 | |
Iftikhar et al. | HunterPlus: AI based energy-efficient task scheduling for cloud–fog computing environments | |
US11200592B2 (en) | Simulation-based evaluation of a marketing channel attribution model | |
CN111258767B (zh) | 复杂系统仿真应用的云计算资源智能分配方法与装置 | |
US9355067B1 (en) | Distribution of parameter calculation for iterative optimization methods | |
US20130332260A1 (en) | Optimal supplementary award allocation | |
US8521579B2 (en) | Predicting marketing campaigns having more than one step | |
US20150161662A1 (en) | System and Method for Directing Online Advertising Across Multiple Channels | |
US20040204975A1 (en) | Predicting marketing campaigns using customer-specific response probabilities and response values | |
Kuiper et al. | Appointment scheduling in tandem-type service systems | |
US20200302486A1 (en) | Method and system for determining optimized customer touchpoints | |
Nunes et al. | iUCP: Estimating Interactive-Software Project Size with Enhanced Use-Case Points. | |
Verboven et al. | Runtime prediction based grid scheduling of parameter sweep jobs | |
KR102506794B1 (ko) | 심층 신경망 학습 가속 장치 및 그 동작 방법 | |
KR100935361B1 (ko) | 가중치 기반 멀티큐 부하분산 병렬처리 시스템 및 방법 | |
US11538047B2 (en) | Utilizing a machine learning model to determine attribution for communication channels | |
Meyerhenke et al. | Balancing parallel adaptive FEM computations by solving systems of linear equations | |
Alrefaei et al. | Subset selection of best simulated systems | |
US11430002B2 (en) | System and method using deep learning machine vision to conduct comparative campaign analyses | |
JP5186111B2 (ja) | 顧客コンタクト戦略の効率性を高めるための方法、システム及びプログラム | |
JP7424373B2 (ja) | 分析装置、分析方法及び分析プログラム | |
US20230267006A1 (en) | Method for optimizing resource allocation basedon prediction with reinforcement learning | |
US7716447B2 (en) | System, method and program for supporting a computer sizing having N level hierarchical resources | |
JP7439922B2 (ja) | 最適化処理装置、最適化処理方法、及びプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20121224 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20131223 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20141226 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20151223 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20161226 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20171226 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20181226 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20191226 Year of fee payment: 15 |